1
|
Urano Y, Noguchi N. Enzymatically Formed Oxysterols and Cell Death. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:193-211. [PMID: 38036881 DOI: 10.1007/978-3-031-43883-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The side-chain hydroxylation of cholesterol by specific enzymes produces 24(S)-hydroxycholesterol, 25-hydroxycholesterol, 27-hydroxycholesterol, and other products. These enzymatically formed side-chain oxysterols act as intermediates in the biosynthesis of bile acids and serve as signaling molecules that regulate cholesterol homeostasis. Besides these intracellular functions, an imbalance in oxysterol homeostasis is implicated in pathophysiology. Furthermore, growing evidence reveals that oxysterols affect cell proliferation and cause cell death. This chapter provides an overview of the pathophysiological role of side-chain oxysterols in developing human diseases. We also summarize our understanding of the molecular mechanisms underlying the induction of various forms of cell death by side-chain oxysterols.
Collapse
Affiliation(s)
- Yasuomi Urano
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan.
| | - Noriko Noguchi
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| |
Collapse
|
2
|
He T, Tao B, Yi C, Zhang C, Zhang P, Shao W, Li Y, Chen Z, Lu L, Jia H, Zhu W, Lin J, Chen J. 27-Hydroxycholesterol promotes metastasis by SULT2A1-dependent alteration in hepatocellular carcinoma. Cancer Sci 2022; 113:2575-2589. [PMID: 35599597 PMCID: PMC9357618 DOI: 10.1111/cas.15435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/06/2022] [Accepted: 05/15/2022] [Indexed: 12/24/2022] Open
Abstract
Oxysterol metabolism plays an important role in the initiation and development of various tumors. However, little is known that the metabolic alternation can promote the metastasis of hepatocellular carcinoma (HCC). In this study, we identify the sulfotransferase family 2A member 1 (SULT2A1) to 27‐hydroxycholesterol (27‐OHC) metabolic axis as playing a critical role in HCC metastasis. The level of 27‐OHC closely corresponded with HCC metastasis instead of proliferation in vitro and in vivo. Also, the expression of SULT2A1 is extremely downregulated in human HCC tissues and is correlated with poor prognosis and tumor metastasis. Gain‐ and loss‐of‐function studies reveal that SULT2A1 suppresses the metastasis of HCC by regulating the level of 27‐OHC. Further mechanistic studies indicated that SULT2A1‐dependent alternation of 27‐OHC activates the nuclear factor‐κB signaling pathway and promotes HCC metastasis by enhancing Twist1 expression and epithelial–mesenchymal transition. In conclusion, our findings indicate the relationship between the metabolism of 27‐OHC and the metastasis of HCC. Moreover, SULT2A1 could act as a potential prognostic biomarker and a therapeutic target for preventing HCC metastasis.
Collapse
Affiliation(s)
- Taochen He
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Cancer Metastasis, Fudan University, Shanghai, China
| | - Baorui Tao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Cancer Metastasis, Fudan University, Shanghai, China
| | - Chenhe Yi
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Cancer Metastasis, Fudan University, Shanghai, China
| | - Chong Zhang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Cancer Metastasis, Fudan University, Shanghai, China
| | - Peng Zhang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Cancer Metastasis, Fudan University, Shanghai, China
| | - Weiqing Shao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yitong Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Cancer Metastasis, Fudan University, Shanghai, China
| | - Zhenmei Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Cancer Metastasis, Fudan University, Shanghai, China
| | - Lu Lu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Huliang Jia
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenwei Zhu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Lin
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Cancer Metastasis, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Pan Q, Guo K, Xue M, Tu Q. Estradiol exerts a neuroprotective effect on SH-SY5Y cells through the miR-106b-5p/TXNIP axis. J Biochem Mol Toxicol 2021; 35:e22861. [PMID: 34318539 DOI: 10.1002/jbt.22861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/31/2021] [Accepted: 07/14/2021] [Indexed: 01/16/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease. Thioredoxin and thioredoxin-interacting protein (TXNIP) complexes help sustain cell oxidation/reduction balance. In the present study, we verified the neuroprotective role of estradiol against amyloid-beta 42 in SH-SY5Y cells through inhibiting TXNIP expression, promoting cell viability and DNA synthesis ability, inhibiting cell apoptosis, and affecting caspase and Bax/Bcl-2 apoptotic signaling. miR-106b-5p could bind to TXNIP 3'-untranslated region to inhibit the expression level of TXNIP. Within SH-SY5Y cells, miR-106b-5p inhibition repressed cell viability and DNA synthesis ability and promoted cell apoptosis through caspase and Bax/Bcl-2 apoptotic signaling, while miR-106b-5p overexpression or TXNIP knockdown exerted the opposite effects on SH-SY5Y cells; TXNIP knockdown remarkably attenuated the roles of miR-106b-5p inhibition. In conclusion, estradiol treatment on SH-SY5Y cells downregulates TXNIP expression and upregulates miR-106b-5p expression. miR-106b-5p exerts a neuroprotective effect on SH-SY5Y cells by promoting cell proliferation and inhibiting cell apoptosis through targeting TXNIP.
Collapse
Affiliation(s)
- Qiong Pan
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ke Guo
- Department of Neurology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Min Xue
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qiuyun Tu
- Department of Geriatric, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| |
Collapse
|
4
|
Marelli C, Lamari F, Rainteau D, Lafourcade A, Banneau G, Humbert L, Monin ML, Petit E, Debs R, Castelnovo G, Ollagnon E, Lavie J, Pilliod J, Coupry I, Babin PJ, Guissart C, Benyounes I, Ullmann U, Lesca G, Thauvin-Robinet C, Labauge P, Odent S, Ewenczyk C, Wolf C, Stevanin G, Hajage D, Durr A, Goizet C, Mochel F. Plasma oxysterols: biomarkers for diagnosis and treatment in spastic paraplegia type 5. Brain 2019; 141:72-84. [PMID: 29228183 DOI: 10.1093/brain/awx297] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
The hereditary spastic paraplegias are an expanding and heterogeneous group of disorders characterized by spasticity in the lower limbs. Plasma biomarkers are needed to guide the genetic testing of spastic paraplegia. Spastic paraplegia type 5 (SPG5) is an autosomal recessive spastic paraplegia due to mutations in CYP7B1, which encodes a cytochrome P450 7α-hydroxylase implicated in cholesterol and bile acids metabolism. We developed a method based on ultra-performance liquid chromatography electrospray tandem mass spectrometry to validate two plasma 25-hydroxycholesterol (25-OHC) and 27-hydroxycholesterol (27-OHC) as diagnostic biomarkers in a cohort of 21 patients with SPG5. For 14 patients, SPG5 was initially suspected on the basis of genetic analysis, and then confirmed by increased plasma 25-OHC, 27-OHC and their ratio to total cholesterol. For seven patients, the diagnosis was initially based on elevated plasma oxysterol levels and confirmed by the identification of two causal CYP7B1 mutations. The receiver operating characteristic curves analysis showed that 25-OHC, 27-OHC and their ratio to total cholesterol discriminated between SPG5 patients and healthy controls with 100% sensitivity and specificity. Taking advantage of the robustness of these plasma oxysterols, we then conducted a phase II therapeutic trial in 12 patients and tested whether candidate molecules (atorvastatin, chenodeoxycholic acid and resveratrol) can lower plasma oxysterols and improve bile acids profile. The trial consisted of a three-period, three-treatment crossover study and the six different sequences of three treatments were randomized. Using a linear mixed effect regression model with a random intercept, we observed that atorvastatin decreased moderately plasma 27-OHC (∼30%, P < 0.001) but did not change 27-OHC to total cholesterol ratio or 25-OHC levels. We also found an abnormal bile acids profile in SPG5 patients, with significantly decreased total serum bile acids associated with a relative decrease of ursodeoxycholic and lithocholic acids compared to deoxycholic acid. Treatment with chenodeoxycholic acid restored bile acids profile in SPG5 patients. Therefore, the combination of atorvastatin and chenodeoxycholic acid may be worth considering for the treatment of SPG5 patients but the neurological benefit of these metabolic interventions remains to be evaluated in phase III therapeutic trials using clinical, imaging and/or electrophysiological outcome measures with sufficient effect sizes. Overall, our study indicates that plasma 25-OHC and 27-OHC are robust diagnostic biomarkers of SPG5 and shall be used as first-line investigations in any patient with unexplained spastic paraplegia.
Collapse
Affiliation(s)
- Cecilia Marelli
- Gui de Chauliac University Hospital, Department of Neurology, Montpellier, France.,Gui de Chauliac University Hospital, Expert Center for Neurogenetic Diseases and Adult Mitochondrial and Metabolic Diseases, Montpellier, France
| | - Foudil Lamari
- APHP, La Pitié-Salpêtrière University Hospital, Department of Biochemistry, Paris, France.,University Pierre and Marie Curie, Neurometabolic Research Group, Paris, France.,APHP, La Pitié-Salpêtrière University Hospital, Reference Center for Adult Neurometabolic Diseases, Paris, France
| | - Dominique Rainteau
- APHP, Hôpital Saint Antoine, Département PM2 Plateforme de Métabolomique, Peptidomique et dosage de Médicaments, Paris, France
| | - Alexandre Lafourcade
- APHP, Hôpital La Pitié-Salpêtrière, Département de Biostatistiques, Santé publique et Information médicale, Centre de Pharmacoépidémiologie (Cephepi), F-75013, Paris, France
| | - Guillaume Banneau
- APHP, La Pitié-Salpêtrière University Hospital, Department of Genetics, Functional Unit of Molecular and Cellular Neurogenetics, Paris, France
| | - Lydie Humbert
- APHP, Hôpital Saint Antoine, Département PM2 Plateforme de Métabolomique, Peptidomique et dosage de Médicaments, Paris, France
| | - Marie-Lorraine Monin
- APHP, La Pitié-Salpêtrière University Hospital, Department of Genetics, Paris, France.,Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Elodie Petit
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Rabab Debs
- APHP, La Pitié-Salpêtrière University Hospital, Department of Neurology, Paris, France
| | | | - Elisabeth Ollagnon
- La Croix-Rousse University Hospital, Department of Genetics, Lyon, France
| | - Julie Lavie
- Laboratoire MRGM, INSERM U1211, Univ Bordeaux, Bordeaux, France
| | - Julie Pilliod
- Laboratoire MRGM, INSERM U1211, Univ Bordeaux, Bordeaux, France
| | - Isabelle Coupry
- Laboratoire MRGM, INSERM U1211, Univ Bordeaux, Bordeaux, France
| | - Patrick J Babin
- Laboratoire MRGM, INSERM U1211, Univ Bordeaux, Bordeaux, France
| | - Claire Guissart
- Institut Universitaire de Recherche Clinique, Laboratoire de Génétique Moléculaire, Montpellier, France
| | - Imen Benyounes
- APHP, La Pitié-Salpêtrière University Hospital, Department of Biochemistry, Paris, France
| | - Urielle Ullmann
- Institut de Pathologie et Génétique, Centre de Génétique Humaine, Gosselies, Belgium
| | - Gaetan Lesca
- Lyon University Hospital, Department of Medical Genetics, Lyon, France
| | | | - Pierre Labauge
- Gui de Chauliac University Hospital, Department of Neurology, Montpellier, France.,Gui de Chauliac University Hospital, Reference Center for Adult Leukodystrophy, Montpellier, France
| | - Sylvie Odent
- Rennes University Hospital, Department of Clinical Genetics, Rennes, France
| | - Claire Ewenczyk
- APHP, La Pitié-Salpêtrière University Hospital, Department of Genetics, Paris, France.,Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Claude Wolf
- APHP, Hôpital Saint Antoine, Département PM2 Plateforme de Métabolomique, Peptidomique et dosage de Médicaments, Paris, France
| | - Giovanni Stevanin
- APHP, La Pitié-Salpêtrière University Hospital, Department of Genetics, Paris, France.,Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Ecole Pratique des Hautes Etudes, PSL Research University, Neurogenetic lab, Paris, France
| | - David Hajage
- APHP, Hôpital La Pitié-Salpêtrière, Département de Biostatistiques, Santé publique et Information médicale, Centre de Pharmacoépidémiologie (Cephepi), F-75013, Paris, France.,Paris Diderot University, Sorbonne Paris Cité, UMR 1123 ECEVE, Paris, France
| | - Alexandra Durr
- APHP, La Pitié-Salpêtrière University Hospital, Department of Genetics, Paris, France.,Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,APHP, La Pitié-Salpêtrière University Hospital, Neurogenetic Reference Center, Paris, France
| | - Cyril Goizet
- Laboratoire MRGM, INSERM U1211, Univ Bordeaux, Bordeaux, France.,Bordeaux University Hospital, Department of Medical Genetics, Bordeaux, France.,Bordeaux University Hospital, Neurogenetic Reference Center, Bordeaux, France
| | - Fanny Mochel
- APHP, La Pitié-Salpêtrière University Hospital, Reference Center for Adult Neurometabolic Diseases, Paris, France.,APHP, La Pitié-Salpêtrière University Hospital, Department of Genetics, Paris, France.,Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| |
Collapse
|
5
|
Wang Y, An Y, Zhang D, Yu H, Zhang X, Wang Y, Tao L, Xiao R. 27-Hydroxycholesterol Alters Synaptic Structural and Functional Plasticity in Hippocampal Neuronal Cultures. J Neuropathol Exp Neurol 2019; 78:238-247. [PMID: 30753597 PMCID: PMC7967841 DOI: 10.1093/jnen/nlz002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This study aimed to explore the neurotoxic effects of 27-hydroxycholesterol (27-OHC), a major circulating cholesterol active derivative in brain on synaptic structural and functional plasticity in primary hippocampal neurons. Newborn SD rat primary hippocampal neurons were treated with 0, 1, 3, 10, and 30 μM 27-OHC for 24 hours. MTT and CCK-8 assays were used to monitor the cell viability of neurons with different treatments. Neurite morphology was assessed by staining for microtubule-associated protein-2 (MAP2) and analyzed by immunofluorescence. Synaptic ultrastructure was evaluated by transmission electron microscopy. Real-time polymerase chain reaction and Western blot analyses were used to evaluate the expression of key synaptic proteins: synaptophysin (SYP), postsynaptic density protein-95 (PSD-95), synaptosomal-associated protein 25 (SNAP-25), growth-associated protein-43 (GAP-43), MAP2, and activity-regulated cytoskeleton-associated protein (Arc). Treatment with 27-OHC at various doses stimulated cell death and resulted in significant decreases in neurite number and length, alteration of synaptic ultrastructure, and downregulated expression of synaptic proteins in a dose-dependent manner. These results suggest that 27-OHC is deleterious for synaptic structural and functional plasticity, which may partially account for its neurotoxic effects.
Collapse
Affiliation(s)
- Yushan Wang
- School of Public Health, Capital Medical University, Beijing, China
| | - Yu An
- School of Public Health, Capital Medical University, Beijing, China
| | - Dandi Zhang
- School of Public Health, Capital Medical University, Beijing, China
| | - Huiyan Yu
- School of Public Health, Capital Medical University, Beijing, China
| | - Xiaona Zhang
- School of Public Health, Capital Medical University, Beijing, China
| | - Ying Wang
- School of Public Health, Capital Medical University, Beijing, China
| | - Lingwei Tao
- School of Public Health, Capital Medical University, Beijing, China
| | - Rong Xiao
- School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Chen S, Zhou C, Yu H, Tao L, An Y, Zhang X, Wang Y, Wang Y, Xiao R. 27-Hydroxycholesterol Contributes to Lysosomal Membrane Permeabilization-Mediated Pyroptosis in Co-cultured SH-SY5Y Cells and C6 Cells. Front Mol Neurosci 2019; 12:14. [PMID: 30881285 PMCID: PMC6405519 DOI: 10.3389/fnmol.2019.00014] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/15/2019] [Indexed: 01/01/2023] Open
Abstract
Purpose: Emerging evidence suggests that 27-Hydroxycholesterol (27-OHC) causes neurodegenerative diseases through the induction of cytotoxicity and cholesterol metabolism disorder. The objective of this study is to determine the impacts of 27-OHC on lysosomal membrane permeabilization (LMP) and pyroptosis in neurons in the development of neural degenerative diseases. Methods: In this study, SH-SY5Y cells and C6 cells were co-cultured in vitro to investigate the influence of 27-OHC on the function of lysosome, LMP and pyroptosis related factors in neuron. Lyso Tracker Red (LTR) was used to detect the changes of lysosome pH, volume and number. Acridine orange (AO) staining was also used to detect the LMP in neurons. Then the morphological changes of cells were observed by a scanning electron microscope (SEM). The content of lysosome function associated proteins [including Cathepsin B (CTSB), Cathepsin D (CTSD), lysosomal-associated membraneprotein-1 (LAMP-1), LAMP-2] and the pyroptosis associated proteins [including nod-like recepto P3 (NLRP3), gasdermin D (GSDMD), caspase-1 and interleukin (IL)-1β] were detected through Western blot. Results: Results showed higher levels of lysosome function associated proteins, such as CTSB (p < 0.05), CTSD (p < 0.05), LAMP-1 (p < 0.01), LAMP-2; p < 0.01) in 27-OHC treated group than that in the control group. AO staining and LTR staining showed that 27-OHC induced lysosome dysfunction with LMP. Content of pyroptosis related factor proteins, such as GSDMD (p < 0.01), NLRP3 (p < 0.001), caspase-1 (p < 0.01) and IL-1β (p < 0.01) were increased in 27-OHC treated neurons. Additionally, CTSB was leaked through LMP into the cytosol and induced pyroptosis. Results from the present study also suggested that the CTSB is involved in activation of pyroptosis. Conclusion: Our data indicate that 27-OHC contributes to the pathogenesis of cell death by inducing LMP and pyroptosis in neurons.
Collapse
Affiliation(s)
- Si Chen
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Cui Zhou
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Huiyan Yu
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Lingwei Tao
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Yu An
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Xiaona Zhang
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Ying Wang
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Yushan Wang
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Rong Xiao
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Raju A, Jaisankar P, Borah A, Mohanakumar KP. 1-Methyl-4-Phenylpyridinium-Induced Death of Differentiated SH-SY5Y Neurons Is Potentiated by Cholesterol. Ann Neurosci 2017; 24:243-251. [PMID: 29849448 DOI: 10.1159/000481551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background/Aims Hypercholesterolemia is recently considered a risk factor for Parkinson's disease (PD), the most consistent neurodegenerative movement disorder. The study aimed to investigate the effect of exogenous cholesterol on 1-methyl-4-phenylpyridinium (MPP+) parkinsonian neurotoxin-induced cell death, loss of mitochondrial membrane potential, and dopaminergic deficiency in a cellular model of PD. Methods Cholesterol (50 μM) when added in the culture media alone or in combination with MPP+ was studied in SH-SY5Y neuroblastoma cells. There were 4 groups that were studied; SH-SY5Y cells treated with vehicle (control), cells that were treated with 1 mM MPP+ (MPP+), or cholesterol (chol) or both (M + chol). The loss of cell survival was measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Dopamine depletion, microtubule-associated protein 2 (MAP-2), and tyrosine hydroxylase (TH)-positive neuronal loss were determined by HPLC-electrochemical detection and TH immunocytochemistry respectively. Mitochondrial membrane potential in cells stained by tetramethylrhodamine methyl ester dye was analysed by flow cytometry. Results Cholesterol treatment potentiated a reduction of neuronal viability with loss of TH-positive neurons in cultures. MPP+-induced depletion of dopamine level in the post-mitotic MAP-2 immunoreactive neurons and loss of mitochondrial membrane potential were also heightened by cholesterol. Conclusion Apparently, changes in neuronal cholesterol content significantly influenced the neurotoxicity and the direct mitochondrial mechanisms involved in MPP+-induced cell death. Our observations demonstrate that high cholesterol incorporated into the differentiated human neuroblastoma cells worsened dopaminergic neuronal survivability through increased depolarization of mitochondrial membrane potential, which is a known mechanism of dopaminergic cell death by MPP+. The present findings support the hypothesis that hypercholesterolemia could be a risk factor for PD.
Collapse
Affiliation(s)
- Anu Raju
- Division of Cell Biology and Physiology, Kolkata, India.,Division of Chemistry, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR Campus, CSIR Road, Taramani, Chennai, India
| | - Parasuram Jaisankar
- Division of Chemistry, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR Campus, CSIR Road, Taramani, Chennai, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Kochupurackal Parameswarannayar Mohanakumar
- Division of Cell Biology and Physiology, Kolkata, India.,Division of Chemistry, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India.,Inter University Centre for Biomedical Research and Super Speciality Hospital (IUCBR and SSH), Mahatma Gandhi University Campus at Thalappady, Kottayam, India
| |
Collapse
|
8
|
Unsworth AJ, Bye AP, Tannetta DS, Desborough MJR, Kriek N, Sage T, Allan HE, Crescente M, Yaqoob P, Warner TD, Jones CI, Gibbins JM. Farnesoid X Receptor and Liver X Receptor Ligands Initiate Formation of Coated Platelets. Arterioscler Thromb Vasc Biol 2017; 37:1482-1493. [PMID: 28619996 PMCID: PMC5526435 DOI: 10.1161/atvbaha.117.309135] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/30/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The liver X receptors (LXRs) and farnesoid X receptor (FXR) have been identified in human platelets. Ligands of these receptors have been shown to have nongenomic inhibitory effects on platelet activation by platelet agonists. This, however, seems contradictory with the platelet hyper-reactivity that is associated with several pathological conditions that are associated with increased circulating levels of molecules that are LXR and FXR ligands, such as hyperlipidemia, type 2 diabetes mellitus, and obesity. APPROACH AND RESULTS We, therefore, investigated whether ligands for the LXR and FXR receptors were capable of priming platelets to the activated state without stimulation by platelet agonists. Treatment of platelets with ligands for LXR and FXR converted platelets to the procoagulant state, with increases in phosphatidylserine exposure, platelet swelling, reduced membrane integrity, depolarization of the mitochondrial membrane, and microparticle release observed. Additionally, platelets also displayed features associated with coated platelets such as P-selectin exposure, fibrinogen binding, fibrin generation that is supported by increased serine protease activity, and inhibition of integrin αIIbβ3. LXR and FXR ligand-induced formation of coated platelets was found to be dependent on both reactive oxygen species and intracellular calcium mobilization, and for FXR ligands, this process was found to be dependent on cyclophilin D. CONCLUSIONS We conclude that treatment with LXR and FXR ligands initiates coated platelet formation, which is thought to support coagulation but results in desensitization to platelet stimuli through inhibition of αIIbβ3 consistent with their ability to inhibit platelet function and stable thrombus formation in vivo.
Collapse
Affiliation(s)
- Amanda J Unsworth
- From the Institute of Cardiovascular and Metabolic Research, School of Biological Sciences (A.J.U., A.P.B., N.K., T.S., M.C., C.I.J., J.M.G.) and Department of Food and Nutritional Sciences (D.S.T., P.Y.), University of Reading, United Kingdom; Oxford Haemophilia and Thrombosis Centre, Oxford Biomedical Research Centre, Churchill Hospital, United Kingdom (M.J.R.D.); Nuffield Division of Clinical Laboratory Sciences, University of Oxford, United Kingdom (M.J.R.D.); and Blizard Institute, Barts & the London School of Medicine & Dentistry, United Kingdom (H.E.A., M.C., T.D.W.)
| | - Alexander P Bye
- From the Institute of Cardiovascular and Metabolic Research, School of Biological Sciences (A.J.U., A.P.B., N.K., T.S., M.C., C.I.J., J.M.G.) and Department of Food and Nutritional Sciences (D.S.T., P.Y.), University of Reading, United Kingdom; Oxford Haemophilia and Thrombosis Centre, Oxford Biomedical Research Centre, Churchill Hospital, United Kingdom (M.J.R.D.); Nuffield Division of Clinical Laboratory Sciences, University of Oxford, United Kingdom (M.J.R.D.); and Blizard Institute, Barts & the London School of Medicine & Dentistry, United Kingdom (H.E.A., M.C., T.D.W.)
| | - Dionne S Tannetta
- From the Institute of Cardiovascular and Metabolic Research, School of Biological Sciences (A.J.U., A.P.B., N.K., T.S., M.C., C.I.J., J.M.G.) and Department of Food and Nutritional Sciences (D.S.T., P.Y.), University of Reading, United Kingdom; Oxford Haemophilia and Thrombosis Centre, Oxford Biomedical Research Centre, Churchill Hospital, United Kingdom (M.J.R.D.); Nuffield Division of Clinical Laboratory Sciences, University of Oxford, United Kingdom (M.J.R.D.); and Blizard Institute, Barts & the London School of Medicine & Dentistry, United Kingdom (H.E.A., M.C., T.D.W.)
| | - Michael J R Desborough
- From the Institute of Cardiovascular and Metabolic Research, School of Biological Sciences (A.J.U., A.P.B., N.K., T.S., M.C., C.I.J., J.M.G.) and Department of Food and Nutritional Sciences (D.S.T., P.Y.), University of Reading, United Kingdom; Oxford Haemophilia and Thrombosis Centre, Oxford Biomedical Research Centre, Churchill Hospital, United Kingdom (M.J.R.D.); Nuffield Division of Clinical Laboratory Sciences, University of Oxford, United Kingdom (M.J.R.D.); and Blizard Institute, Barts & the London School of Medicine & Dentistry, United Kingdom (H.E.A., M.C., T.D.W.)
| | - Neline Kriek
- From the Institute of Cardiovascular and Metabolic Research, School of Biological Sciences (A.J.U., A.P.B., N.K., T.S., M.C., C.I.J., J.M.G.) and Department of Food and Nutritional Sciences (D.S.T., P.Y.), University of Reading, United Kingdom; Oxford Haemophilia and Thrombosis Centre, Oxford Biomedical Research Centre, Churchill Hospital, United Kingdom (M.J.R.D.); Nuffield Division of Clinical Laboratory Sciences, University of Oxford, United Kingdom (M.J.R.D.); and Blizard Institute, Barts & the London School of Medicine & Dentistry, United Kingdom (H.E.A., M.C., T.D.W.)
| | - Tanya Sage
- From the Institute of Cardiovascular and Metabolic Research, School of Biological Sciences (A.J.U., A.P.B., N.K., T.S., M.C., C.I.J., J.M.G.) and Department of Food and Nutritional Sciences (D.S.T., P.Y.), University of Reading, United Kingdom; Oxford Haemophilia and Thrombosis Centre, Oxford Biomedical Research Centre, Churchill Hospital, United Kingdom (M.J.R.D.); Nuffield Division of Clinical Laboratory Sciences, University of Oxford, United Kingdom (M.J.R.D.); and Blizard Institute, Barts & the London School of Medicine & Dentistry, United Kingdom (H.E.A., M.C., T.D.W.)
| | - Harriet E Allan
- From the Institute of Cardiovascular and Metabolic Research, School of Biological Sciences (A.J.U., A.P.B., N.K., T.S., M.C., C.I.J., J.M.G.) and Department of Food and Nutritional Sciences (D.S.T., P.Y.), University of Reading, United Kingdom; Oxford Haemophilia and Thrombosis Centre, Oxford Biomedical Research Centre, Churchill Hospital, United Kingdom (M.J.R.D.); Nuffield Division of Clinical Laboratory Sciences, University of Oxford, United Kingdom (M.J.R.D.); and Blizard Institute, Barts & the London School of Medicine & Dentistry, United Kingdom (H.E.A., M.C., T.D.W.)
| | - Marilena Crescente
- From the Institute of Cardiovascular and Metabolic Research, School of Biological Sciences (A.J.U., A.P.B., N.K., T.S., M.C., C.I.J., J.M.G.) and Department of Food and Nutritional Sciences (D.S.T., P.Y.), University of Reading, United Kingdom; Oxford Haemophilia and Thrombosis Centre, Oxford Biomedical Research Centre, Churchill Hospital, United Kingdom (M.J.R.D.); Nuffield Division of Clinical Laboratory Sciences, University of Oxford, United Kingdom (M.J.R.D.); and Blizard Institute, Barts & the London School of Medicine & Dentistry, United Kingdom (H.E.A., M.C., T.D.W.)
| | - Parveen Yaqoob
- From the Institute of Cardiovascular and Metabolic Research, School of Biological Sciences (A.J.U., A.P.B., N.K., T.S., M.C., C.I.J., J.M.G.) and Department of Food and Nutritional Sciences (D.S.T., P.Y.), University of Reading, United Kingdom; Oxford Haemophilia and Thrombosis Centre, Oxford Biomedical Research Centre, Churchill Hospital, United Kingdom (M.J.R.D.); Nuffield Division of Clinical Laboratory Sciences, University of Oxford, United Kingdom (M.J.R.D.); and Blizard Institute, Barts & the London School of Medicine & Dentistry, United Kingdom (H.E.A., M.C., T.D.W.)
| | - Timothy D Warner
- From the Institute of Cardiovascular and Metabolic Research, School of Biological Sciences (A.J.U., A.P.B., N.K., T.S., M.C., C.I.J., J.M.G.) and Department of Food and Nutritional Sciences (D.S.T., P.Y.), University of Reading, United Kingdom; Oxford Haemophilia and Thrombosis Centre, Oxford Biomedical Research Centre, Churchill Hospital, United Kingdom (M.J.R.D.); Nuffield Division of Clinical Laboratory Sciences, University of Oxford, United Kingdom (M.J.R.D.); and Blizard Institute, Barts & the London School of Medicine & Dentistry, United Kingdom (H.E.A., M.C., T.D.W.)
| | - Chris I Jones
- From the Institute of Cardiovascular and Metabolic Research, School of Biological Sciences (A.J.U., A.P.B., N.K., T.S., M.C., C.I.J., J.M.G.) and Department of Food and Nutritional Sciences (D.S.T., P.Y.), University of Reading, United Kingdom; Oxford Haemophilia and Thrombosis Centre, Oxford Biomedical Research Centre, Churchill Hospital, United Kingdom (M.J.R.D.); Nuffield Division of Clinical Laboratory Sciences, University of Oxford, United Kingdom (M.J.R.D.); and Blizard Institute, Barts & the London School of Medicine & Dentistry, United Kingdom (H.E.A., M.C., T.D.W.)
| | - Jonathan M Gibbins
- From the Institute of Cardiovascular and Metabolic Research, School of Biological Sciences (A.J.U., A.P.B., N.K., T.S., M.C., C.I.J., J.M.G.) and Department of Food and Nutritional Sciences (D.S.T., P.Y.), University of Reading, United Kingdom; Oxford Haemophilia and Thrombosis Centre, Oxford Biomedical Research Centre, Churchill Hospital, United Kingdom (M.J.R.D.); Nuffield Division of Clinical Laboratory Sciences, University of Oxford, United Kingdom (M.J.R.D.); and Blizard Institute, Barts & the London School of Medicine & Dentistry, United Kingdom (H.E.A., M.C., T.D.W.).
| |
Collapse
|
9
|
Liu J, Liu Y, Chen J, Hu C, Teng M, Jiao K, Shen Z, Zhu D, Yue J, Li Z, Li Y. The ROS-mediated activation of IL-6/STAT3 signaling pathway is involved in the 27-hydroxycholesterol-induced cellular senescence in nerve cells. Toxicol In Vitro 2017; 45:10-18. [PMID: 28739487 DOI: 10.1016/j.tiv.2017.07.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/28/2017] [Accepted: 07/18/2017] [Indexed: 12/22/2022]
Abstract
The oxysterol 27-hydroxycholesterol (27HC) is a selective estrogen receptor modulator (SERMs), which like endogenous estrogen 17β-estradiol (E2) induces the proliferation of ER-positive breast cancer cells in vitro. Interestingly, the observation that 27HC induces adverse effects in neural system, distinguishing it from E2. It has been suggested that high levels of circulating cholesterol increase the entry of 27HC into the brain, which may induce learning and memory impairment. Based on this evidence, 27HC may be associated with neurodegenerative processes and interrupted cholesterol homeostasis in the brain. However, the biological events that participate in this process remain largely elusive. In the present study, we demonstrated that 27HC induced apparent cellular senescence in nerve cells. Senescence-associated β-galactosidase (SA-β-Gal) assay revealed that 27HC induced senescence in both BV2 cells and PC12 cells. Furthermore, we demonstrated that 27HC promoted the accumulation of cellular reactive oxygen species (ROS) in nerve cells and subsequently activation of IL-6/STAT3 signaling pathway. Notably, treatment with the ROS scavenger N-acetylcysteine (NAC) markedly blocked 27HC-induced ROS production and activation of IL-6/STAT3 signaling pathway. Either blocking the generation of ROS or inhibition of IL-6/STAT3 both attenuated 27HC-induced cellular senescence. In sum, these findings not only suggested a mechanism whereby 27HC induced cellular senescence in nerve cells, but also helped to recognize the 27HC as a novel harmful factor in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiao Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yun Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Juan Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chunyan Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mengying Teng
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Kailin Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhaoxia Shen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Dongmei Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jia Yue
- Department of Nutrition and Food Hygiene, School of Public Health, Gansu University of Chinese Medical, Lanzhou 730000, China
| | - Zhong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Yuan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
10
|
Marwarha G, Raza S, Hammer K, Ghribi O. 27-hydroxycholesterol: A novel player in molecular carcinogenesis of breast and prostate cancer. Chem Phys Lipids 2017; 207:108-126. [PMID: 28583434 DOI: 10.1016/j.chemphyslip.2017.05.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022]
Abstract
Several studies have suggested an etiological role for hypercholesterolemia in the pathogenesis of breast cancer and prostate cancer (PCa). However, the molecular mechanisms that underlie and mediate the hypercholesterolemia-fostered increased risk for breast cancer and PCa are yet to be determined. The discovery that the most abundant cholesterol oxidized metabolite in the plasma, 27 hydroxycholesterol (27-OHC), is a selective estrogen receptor modulator (SERM) and an agonist of Liver X receptors (LXR) partially fills the void in our understanding and knowledge of the mechanisms that may link hypercholesterolemia to development and progression of breast cancer and PCa. The wide spectrum and repertoire of SERM and LXR-dependent effects of 27-OHC in the context of all facets and aspects of breast cancer and prostate cancer biology are reviewed in this manuscript in a very comprehensive manner. This review highlights recent findings pertaining to the role of 27-OHC in breast cancer and PCa and delineates the signaling mechanisms involved in the governing of different facets of tumor biology, that include tumor cell proliferation, epithelial-mesenchymal transition (EMT), as well as tumor cell invasion, migration, and metastasis. We also discuss the limitations of contemporary studies and lack of our comprehension of the entire gamut of effects exerted by 27-OHC that may be relevant to the pathogenesis of breast cancer and PCa. We unveil and propose potential future directions of research that may further our understanding of the role of 27-OHC in breast cancer and PCa and help design therapeutic interventions against endocrine therapy-resistant breast cancer and PCa.
Collapse
Affiliation(s)
- Gurdeep Marwarha
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA
| | - Shaneabbas Raza
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA
| | - Kimberly Hammer
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA; Department of Veteran Affairs, Fargo VA Health Care System, Fargo, North Dakota 58102, USA
| | - Othman Ghribi
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA.
| |
Collapse
|
11
|
Sharma N, Baek K, Phan HTT, Shimokawa N, Takagi M. Glycosyl chains and 25-hydroxycholesterol contribute to the intracellular transport of amyloid beta (Aβ-42) in Jurkat T cells. FEBS Open Bio 2017; 7:865-876. [PMID: 28593141 PMCID: PMC5458452 DOI: 10.1002/2211-5463.12234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/13/2017] [Accepted: 04/13/2017] [Indexed: 01/05/2023] Open
Abstract
Amyloid beta (Aβ) is a peptide responsible for the development of Alzheimer's disease (AD). Misfolding and accumulation of endogenous Aβ can lead to neural cell apoptosis through endoplasmic reticulum (ER) stress. Added exogenous Aβ can also result in ER stress, leading to neurotoxicity and apoptosis, which is identical to that caused by the endogenous peptide. We have speculated that the endocytic transport of Aβ causes ER stress and have previously shown that the oxysterol, in particular, 7-ketocholesterol (7-keto) induces more surface interaction between Aβ-42 and Jurkat cells than cholesterol. However, the interaction was not enough to induce intracellular transfer of the peptide. In this study, we investigated the effect of another oxysterol, 25-hydroxycholesterol (25-OH) on the membrane raft-dependent transport of Aβ-42 in Jurkat cells. Interestingly, intracellular transfer of Aβ-42 was observed in the presence of 25-OH only after the inclusion of cholera toxin B subunit (CT-B), a marker used to detect the raft domain. We speculated that 25-OH can induce intracellular movement of Aβ peptides. Furthermore, CT-B together with GM1 provided negative curvature, which resulted in the intracellular transport of Aβ-42. Notably, we used a protofibrillar species of Aβ-42 in this study. We have shown that the transport was microtubule-dependent since it could not be observed in depolymerized microtubules. These results demonstrate that oxysterols and glycosyl chains are important factors affecting intracellular transport. These compounds are also associated with aging and advanced glycation are risk factors for AD. Thus, this study should further understanding of the pathology of AD.
Collapse
Affiliation(s)
- Neha Sharma
- School of Materials Science Japan Advanced Institute of Science and Technology (JAIST) Ishikawa Japan
| | - KeangOK Baek
- School of Materials Science Japan Advanced Institute of Science and Technology (JAIST) Ishikawa Japan
| | | | - Naofumi Shimokawa
- School of Materials Science Japan Advanced Institute of Science and Technology (JAIST) Ishikawa Japan
| | - Masahiro Takagi
- School of Materials Science Japan Advanced Institute of Science and Technology (JAIST) Ishikawa Japan
| |
Collapse
|