1
|
Martinez B, Peplow PV. MicroRNAs as potential diagnostic biomarkers for bipolar disorder. Neural Regen Res 2025; 20:1681-1695. [PMID: 39104098 PMCID: PMC11688563 DOI: 10.4103/nrr.nrr-d-23-01588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/04/2023] [Accepted: 12/23/2023] [Indexed: 08/07/2024] Open
Abstract
Abnormal expression of microRNAs is connected to brain development and disease and could provide novel biomarkers for the diagnosis and prognosis of bipolar disorder. We performed a PubMed search for microRNA biomarkers in bipolar disorder and found 18 original research articles on studies performed with human patients and published from January 2011 to June 2023. These studies included microRNA profiling in blood- and brain-based materials. From the studies that had validated the preliminary findings, potential candidate biomarkers for bipolar disorder in adults could be miR-140-3p, -30d-5p, -330-5p, -378a-5p, -21-3p, -330-3p, -345-5p in whole blood, miR-19b-3p, -1180-3p, -125a-5p, let-7e-5p in blood plasma, and miR-7-5p, -23b-5p, -142-3p, -221-5p, -370-3p in the blood serum. Two of the studies had investigated the changes in microRNA expression of patients with bipolar disorder receiving treatment. One showed a significant increase in plasma miR-134 compared to baseline after 4 weeks of treatment which included typical antipsychotics, atypical antipsychotics, and benzodiazepines. The other study had assessed the effects of prescribed medications which included neurotransmitter receptor-site binders (drug class B) and sedatives, hypnotics, anticonvulsants, and analgesics (drug class C) on microRNA results. The combined effects of the two drug classes increased the significance of the results for miR-219 and -29c with miR-30e-3p and -526b* acquiring significance. MicroRNAs were tested to see if they could serve as biomarkers of bipolar disorder at different clinical states of mania, depression, and euthymia. One study showed that upregulation in whole blood of miR-9-5p, -29a-3p, -106a-5p, -106b-5p, -107, -125a-3p, -125b-5p and of miR-107, -125a-3p occurred in manic and euthymic patients compared to controls, respectively, and that upregulation of miR-106a-5p, -107 was found for manic compared to euthymic patients. In two other studies using blood plasma, downregulation of miR-134 was observed in manic patients compared to controls, and dysregulation of miR-134, -152, -607, -633, -652, -155 occurred in euthymic patients compared to controls. Finally, microRNAs such as miR-34a, -34b, -34c, -137, and -140-3p, -21-3p, -30d-5p, -330-5p, -378a-5p, -134, -19b-3p were shown to have diagnostic potential in distinguishing bipolar disorder patients from schizophrenia or major depressive disorder patients, respectively. Further studies are warranted with adolescents and young adults having bipolar disorder and consideration should be given to using animal models of the disorder to investigate the effects of suppressing or overexpressing specific microRNAs.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Pharmacology, University of Nevada-Reno, Reno, NV, USA
- Department of Medicine, University of Nevada-Reno, Reno, NV, USA
| | - Philip V. Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Martella F, Caporali A, Macellaro M, Cafaro R, De Pasquale F, Dell'Osso B, D'Addario C. Biomarker identification in bipolar disorder. Pharmacol Ther 2025; 268:108823. [PMID: 39965667 DOI: 10.1016/j.pharmthera.2025.108823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 02/04/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Bipolar disorder (BD) is a severe psychiatric condition whose pathophysiology is complex and multifactorial. Genetic, environmental and social risk factors play a role in its development as well as in its progressive course. Research is currently focusing on the identification of the biological basis underlying these processes in order to suggest novel biomarkers capable to predict BD etiopathogenesis and staging. Staging has been recognized as of great value for the treatment and management of many illnesses and might also be suitable for mental health issues, particularly in disorders like BD, which progress from an initial mild phase to a more severe and thus difficult-to-treat situation. Thus, it would be of great help the characterization of to suggest better treatment requirements and improve prognosis across the different stages of the illness. Here, we summarize current research on the biological hypotheses of BD and the biomarkers associated with its progression, reviewing clinical studies available in the literature.
Collapse
Affiliation(s)
- Francesca Martella
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Andrea Caporali
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; International School of Advanced Studies, University of Camerino, Camerino, Italy
| | - Monica Macellaro
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy; CRC "Aldo Ravelli" for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
| | - Rita Cafaro
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Francesco De Pasquale
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy; IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy; CRC "Aldo Ravelli" for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy; Department of Psychiatry and Behavioural Sciences, Stanford University, Stanford, CA, USA
| | - Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Balan AI, Scridon A. MicroRNAs in atrial fibrillation - have we discovered the Holy Grail or opened a Pandora's box? Front Pharmacol 2025; 16:1535621. [PMID: 40012622 PMCID: PMC11861496 DOI: 10.3389/fphar.2025.1535621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/24/2025] [Indexed: 02/28/2025] Open
Abstract
Atrial fibrillation (AF) causes a heavy socio-economic burden on healthcare systems around the globe. Identification of new preventive, diagnostic, and treatment methods is imperative. In recent years, special attention has been paid to microRNAs (miRNAs) as potential regulators of AF pathogenesis. Through post-transcriptional regulation of genes, miRNAs have been shown to play crucial roles in AF-related structural and electrical atrial remodeling. Altered expression of different miRNAs has been related to proarrhythmic changes in the duration of action potentials and atrial fibrosis. In clinical studies, miRNA changes have been associated with AF, whereas in experimental studies miRNA manipulation has emerged as a potential therapeutic approach. It would appear that, with the advent of miRNAs, we may have found the Holy Grail, and that efficient and personalized AF therapy may be one step away. Yet, the clinical relevance of miRNA evaluation and manipulation remains questionable. Studies have identified numerous miRNAs associated with AF, but none of them have shown sufficient specificity for AF. MicroRNAs are not gene-specific but regulate the expression of a myriad of genes. Cardiac and non-cardiac off-target effects may thus occur following miRNA manipulation. A Pandora's box might thus have opened with the advent of these sophisticated molecules. In this paper, we provide a critical analysis of the clinical and experimental, epidemiological and mechanistic data linking miRNAs to AF, we discuss the most promising miRNA therapeutic approaches, we emphasize a number of questions that remain to be answered, and we identify hotspots for future research.
Collapse
Affiliation(s)
| | - Alina Scridon
- Physiology Department and Center for Advanced Medical and Pharmaceutical Research, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, University of Medicine, Târgu Mures, Romania
| |
Collapse
|
4
|
Vattathil SM, Gerasimov ES, Canon SM, Lori A, Tan SSM, Kim PJ, Liu Y, Lai EC, Bennett DA, Wingo TS, Wingo AP. Mapping the microRNA landscape in the older adult brain and its genetic contribution to neuropsychiatric conditions. NATURE AGING 2025; 5:306-319. [PMID: 39643657 PMCID: PMC11839474 DOI: 10.1038/s43587-024-00778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024]
Abstract
MicroRNAs (miRNAs) play a crucial role in regulating gene expression and influence many biological processes. Despite their importance, understanding of how genetic variation affects miRNA expression in the brain and how this relates to brain disorders remains limited. Here we investigated these questions by identifying microRNA expression quantitative trait loci (miR-QTLs), or genetic variants associated with brain miRNA levels, using genome-wide small RNA sequencing profiles from dorsolateral prefrontal cortex samples of 604 older adult donors of European ancestry. Here we show that nearly half (224 of 470) of the analyzed miRNAs have associated miR-QTLs, many of which fall in regulatory regions such as brain promoters and enhancers. We also demonstrate that intragenic miRNAs often have genetic regulation independent from their host genes. Furthermore, by integrating our findings with 16 genome-wide association studies of psychiatric and neurodegenerative disorders, we identified miRNAs that likely contribute to bipolar disorder, depression, schizophrenia and Parkinson's disease. These findings advance understanding of the genetic regulation of miRNAs and their role in brain health and disease.
Collapse
Affiliation(s)
- Selina M Vattathil
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | | | - Se Min Canon
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Adriana Lori
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah Sze Min Tan
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Paul J Kim
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA
| | - Yue Liu
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Thomas S Wingo
- Department of Neurology, University of California, Davis, Sacramento, CA, USA.
- Alzheimer's Disease Research Center, University of California, Davis, Sacramento, CA, USA.
| | - Aliza P Wingo
- Department of Psychiatry, University of California, Davis, Sacramento, CA, USA.
- Veterans Affairs Northern California Health Care System, Sacramento, CA, USA.
| |
Collapse
|
5
|
Choudhary A, Kumar A, Jindal M, Rhuthuparna M, Munshi A. MicroRNA signatures in neuroplasticity, neuroinflammation and neurotransmission in association with depression. J Physiol Biochem 2024:10.1007/s13105-024-01065-4. [PMID: 39695016 DOI: 10.1007/s13105-024-01065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
Depression is a multifactorial disorder that occurs mainly on account of the dysregulation of neuroplasticity, neurotransmission and neuroinflammation in the brain. In addition to environmental /lifestyle factors, the pathogenesis of disease has been associated with genetic and epigenetic factors that affect the reprogramming of normal brain function. MicroRNA (miRNAs), a type of non-coding RNAs, are emerging as significant players that play a vital role in the regulation of gene expression and have been extensively explored in neurodegenerative disorders. Recent studies have also shown the role of gut microbiota that forms a complex bidirectional network with gut brain axis, impacting neuroinflammation in case of Parkinson's disease and depression. Translating targeted miRNA-based therapies for the treatment of neurological disorders including depression, into clinical practice remains challenging due to the ineffective delivery of the therapeutic molecules and off-target effects of the specific miRNAs. This review provides significant insights into how miRNAs are emerging as vital players in the development of depression, especially the ones involved in three important processes including neuroplasticity, neurotransmission and neuroinflammation. In this review, the current status of miRNAs as biomarkers for therapeutic interventions in the case of depression has been discussed along with an overview of future perspectives, like use of nanotechnology and gene editing, keeping in view other multifactorial disorders where such interventions by mimics and inhibitors have already reached clinical trials. The challenges for targeting the specific miRNAs for therapeutic outcomes have also been highlighted.
Collapse
Affiliation(s)
- Anita Choudhary
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anil Kumar
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Manav Jindal
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Bathinda, India
| | - M Rhuthuparna
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India.
| |
Collapse
|
6
|
Khoodoruth MAS, Khoodoruth WNCK, Uroos M, Al-Abdulla M, Khan YS, Mohammad F. Diagnostic and mechanistic roles of MicroRNAs in neurodevelopmental & neurodegenerative disorders. Neurobiol Dis 2024; 202:106717. [PMID: 39461569 DOI: 10.1016/j.nbd.2024.106717] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/15/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024] Open
Abstract
MicroRNAs (miRNAs) are emerging as crucial elements in the regulation of gene expression, playing a significant role in the underlying neurobiology of a wide range of neuropsychiatric disorders. This review examines the intricate involvement of miRNAs in neuropsychiatric disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Fragile X syndrome (FXS), autism spectrum disorder (ASD), attention-deficit hyperactivity disorder (ADHD), Tourette syndrome (TS), schizophrenia (SCZ), and mood disorders. This review highlights how miRNA dysregulation can illuminate the molecular pathways of these diseases and potentially serve as biomarkers for early diagnosis and prognosis. Specifically, miRNAs' ability to target genes critical to the pathology of neurodegenerative diseases, their role in the development of trinucleotide repeat and neurodevelopmental disorders, and their distinctive patterns in SCZ and mood disorders are discussed. The review also stresses the value of miRNAs in precision neuropsychiatry, where they could predict treatment outcomes and aid in disease management. Furthermore, the study of conserved miRNAs in model organisms like Drosophila underscores their broad utility and provides deeper mechanistic insights into their biological functions. This comprehensive examination of miRNAs across various conditions advocates for their integration into clinical practice, promising advancements in personalized healthcare for neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Mohamed Adil Shah Khoodoruth
- Child and Adolescent Mental Health Service, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar
| | | | | | - Majid Al-Abdulla
- Mental Health Service, Hamad Medical Corporation, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar
| | - Yasser Saeed Khan
- Child and Adolescent Mental Health Service, Hamad Medical Corporation, Doha, Qatar
| | - Farhan Mohammad
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar.
| |
Collapse
|
7
|
Zafrilla-López M, Acosta-Díez M, Mitjans M, Giménez-Palomo A, Saiz PA, Barrot-Feixat C, Jiménez E, Papiol S, Ruiz V, Gavín P, García-Portilla MP, González-Blanco L, Bobes J, Schulze TG, Vieta E, Benabarre A, Arias B. Lithium response in bipolar disorder: Epigenome-wide DNA methylation signatures and epigenetic aging. Eur Neuropsychopharmacol 2024; 85:23-31. [PMID: 38669938 DOI: 10.1016/j.euroneuro.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
Lithium (Li) is the first-line treatment for bipolar disorder (BD) even though only 30 % of BD patients are considered excellent responders. The mechanisms by which Li exerts its action are not clearly understood, but it has been suggested that specific epigenetic mechanisms, such as methylation processes, may play a role. In this regard, DNA methylation patterns can be used to estimate epigenetic age (EpiAge), which is accelerated in BD patients and reversed by Li treatment. Our first aim was to compare the DNA methylation profile in peripheral blood between BD patients categorized as excellent responders to Li (Ex-Rp) and non-responders (N-Rp). Secondly, EpiAge was estimated to detect differential age acceleration between the two groups. A total of 130 differentially methylated positions (DMPs) and 16 differentially methylated regions (DMRs) between Ex-Rp (n = 26) and N-Rp (n = 37) were identified (FDR adjusted p-value < 0.05). We found 122 genes mapping the DMPs and DMRs, nine of which (HOXB6, HOXB3, HOXB-AS3, TENM2, CACNA1B, ANK3, EEF2K, CYP1A1, and SORCS2) had previously been linked to Li response. We found genes related to the GSK3β pathway to be highly represented. Using FUMA, we found enrichment in Gene Ontology Cell Component for the synapse. Gene network analysis highlighted functions related to the cell cycle, nervous system development and function, and gene expression. No significant differences in age acceleration were found between Ex-Rp and N-Rp for any of the epigenetic clocks analysed. Our findings indicate that a specific methylation pattern could determine the response to Li in BD patients. We also found that a significant portion of the differentially methylated genes are closely associated with the GSK3β pathway, reinforcing the role of this system in Li response. Future longitudinal studies with larger samples will help to elucidate the epigenetic mechanisms underlying Li response.
Collapse
Affiliation(s)
- Marina Zafrilla-López
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Miriam Acosta-Díez
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Marina Mitjans
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Spain; CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Spain.
| | - Anna Giménez-Palomo
- Bipolar and Depressive Disorders Unit, Psychiatry and Psychology Service, Clinical Institute of Neuroscience, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Pilar A Saiz
- Department of Psychiatry, Servicio de Salud del Principado de Asturias (SESPA), School of Medicine, University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain; CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Ester Jiménez
- Bipolar and Depressive Disorders Unit, Psychiatry and Psychology Service, Clinical Institute of Neuroscience, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Institut de Neurociències, Department of Medicine, University of Barcelona, Barcelona, Spain; CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Sergi Papiol
- CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany
| | - Victoria Ruiz
- Bipolar and Depressive Disorders Unit, Psychiatry and Psychology Service, Clinical Institute of Neuroscience, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Patrícia Gavín
- Bipolar and Depressive Disorders Unit, Psychiatry and Psychology Service, Clinical Institute of Neuroscience, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - María Paz García-Portilla
- Department of Psychiatry, Servicio de Salud del Principado de Asturias (SESPA), School of Medicine, University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain; CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Leticia González-Blanco
- Department of Psychiatry, Servicio de Salud del Principado de Asturias (SESPA), School of Medicine, University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain; CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Julio Bobes
- Department of Psychiatry, Servicio de Salud del Principado de Asturias (SESPA), School of Medicine, University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain; CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany; Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eduard Vieta
- Bipolar and Depressive Disorders Unit, Psychiatry and Psychology Service, Clinical Institute of Neuroscience, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Institut de Neurociències, Department of Medicine, University of Barcelona, Barcelona, Spain; CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Benabarre
- Bipolar and Depressive Disorders Unit, Psychiatry and Psychology Service, Clinical Institute of Neuroscience, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Institut de Neurociències, Department of Medicine, University of Barcelona, Barcelona, Spain; CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Bárbara Arias
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Spain; CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Pisanu C, Squassina A. RNA Biomarkers in Bipolar Disorder and Response to Mood Stabilizers. Int J Mol Sci 2023; 24:10067. [PMID: 37373213 DOI: 10.3390/ijms241210067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Bipolar disorder (BD) is a severe chronic disorder that represents one of the main causes of disability among young people. To date, no reliable biomarkers are available to inform the diagnosis of BD or clinical response to pharmacological treatment. Studies focused on coding and noncoding transcripts may provide information complementary to genome-wide association studies, allowing to correlate the dynamic evolution of different types of RNAs based on specific cell types and developmental stage with disease development or clinical course. In this narrative review, we summarize findings from human studies that evaluated the potential utility of messenger RNAs and noncoding transcripts, such as microRNAs, circular RNAs and long noncoding RNAs, as peripheral markers of BD and/or response to lithium and other mood stabilizers. The majority of available studies investigated specific targets or pathways, with large heterogeneity in the included type of cells or biofluids. However, a growing number of studies are using hypothesis-free designs, with some studies also integrating data on coding and noncoding RNAs measured in the same participants. Finally, studies conducted in neurons derived from induced-pluripotent stem cells or in brain organoids provide promising preliminary findings supporting the power and utility of these cellular models to investigate the molecular determinants of BD and clinical response.
Collapse
Affiliation(s)
- Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy
- Department of Psychiatry, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 2E2, Canada
| |
Collapse
|
9
|
Tielke A, Martins H, Pelzl MA, Maaser-Hecker A, David FS, Reinbold CS, Streit F, Sirignano L, Schwarz M, Vedder H, Kammerer-Ciernioch J, Albus M, Borrmann-Hassenbach M, Hautzinger M, Hünten K, Degenhardt F, Fischer SB, Beins EC, Herms S, Hoffmann P, Schulze TG, Witt SH, Rietschel M, Cichon S, Nöthen MM, Schratt G, Forstner AJ. Genetic and functional analyses implicate microRNA 499A in bipolar disorder development. Transl Psychiatry 2022; 12:437. [PMID: 36207305 PMCID: PMC9547016 DOI: 10.1038/s41398-022-02176-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 08/10/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Bipolar disorder (BD) is a complex mood disorder with a strong genetic component. Recent studies suggest that microRNAs contribute to psychiatric disorder development. In BD, specific candidate microRNAs have been implicated, in particular miR-137, miR-499a, miR-708, miR-1908 and miR-2113. The aim of the present study was to determine the contribution of these five microRNAs to BD development. For this purpose, we performed: (i) gene-based tests of the five microRNA coding genes, using data from a large genome-wide association study of BD; (ii) gene-set analyses of predicted, brain-expressed target genes of the five microRNAs; (iii) resequencing of the five microRNA coding genes in 960 BD patients and 960 controls and (iv) in silico and functional studies for selected variants. Gene-based tests revealed a significant association with BD for MIR499A, MIR708, MIR1908 and MIR2113. Gene-set analyses revealed a significant enrichment of BD associations in the brain-expressed target genes of miR-137 and miR-499a-5p. Resequencing identified 32 distinct rare variants (minor allele frequency < 1%), all of which showed a non-significant numerical overrepresentation in BD patients compared to controls (p = 0.214). Seven rare variants were identified in the predicted stem-loop sequences of MIR499A and MIR2113. These included rs142927919 in MIR2113 (pnom = 0.331) and rs140486571 in MIR499A (pnom = 0.297). In silico analyses predicted that rs140486571 might alter the miR-499a secondary structure. Functional analyses showed that rs140486571 significantly affects miR-499a processing and expression. Our results suggest that MIR499A dysregulation might contribute to BD development. Further research is warranted to elucidate the contribution of the MIR499A regulated network to BD susceptibility.
Collapse
Affiliation(s)
- Aileen Tielke
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany ,Salus Clinic Hürth, Hürth, Germany
| | - Helena Martins
- grid.5801.c0000 0001 2156 2780Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH & Neuroscience Center Zurich (ZNZ), Zurich, Switzerland
| | - Michael A. Pelzl
- grid.10253.350000 0004 1936 9756Institute for Physiological Chemistry, Philipps-University Marburg, Marburg, Germany ,grid.10392.390000 0001 2190 1447Present Address: Clinic for Psychiatry and Psychotherapy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Anna Maaser-Hecker
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Friederike S. David
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Céline S. Reinbold
- grid.5510.10000 0004 1936 8921Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway ,grid.6612.30000 0004 1937 0642Department of Biomedicine, University of Basel, Basel, Switzerland ,grid.410567.1Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Fabian Streit
- grid.7700.00000 0001 2190 4373Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lea Sirignano
- grid.7700.00000 0001 2190 4373Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | | | | - Margot Albus
- grid.419834.30000 0001 0690 3065Isar Amper Klinikum München Ost, kbo, Haar, Germany
| | | | - Martin Hautzinger
- grid.10392.390000 0001 2190 1447Department of Psychology, Clinical Psychology and Psychotherapy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Karola Hünten
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Franziska Degenhardt
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany ,grid.410718.b0000 0001 0262 7331Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Sascha B. Fischer
- grid.6612.30000 0004 1937 0642Department of Biomedicine, University of Basel, Basel, Switzerland ,grid.410567.1Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Eva C. Beins
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Stefan Herms
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany ,grid.6612.30000 0004 1937 0642Department of Biomedicine, University of Basel, Basel, Switzerland ,grid.410567.1Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Per Hoffmann
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany ,grid.6612.30000 0004 1937 0642Department of Biomedicine, University of Basel, Basel, Switzerland ,grid.410567.1Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Thomas G. Schulze
- grid.7700.00000 0001 2190 4373Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany ,grid.5252.00000 0004 1936 973XInstitute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany ,grid.411984.10000 0001 0482 5331Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Stephanie H. Witt
- grid.7700.00000 0001 2190 4373Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany ,grid.7700.00000 0001 2190 4373Center for Innovative Psychiatry and Psychotherapy Research, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marcella Rietschel
- grid.7700.00000 0001 2190 4373Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sven Cichon
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany ,grid.6612.30000 0004 1937 0642Department of Biomedicine, University of Basel, Basel, Switzerland ,grid.410567.1Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland ,grid.8385.60000 0001 2297 375XInstitute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - Markus M. Nöthen
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Gerhard Schratt
- grid.5801.c0000 0001 2156 2780Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH & Neuroscience Center Zurich (ZNZ), Zurich, Switzerland
| | - Andreas J. Forstner
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany ,grid.8385.60000 0001 2297 375XInstitute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany ,grid.10253.350000 0004 1936 9756Centre for Human Genetics, University of Marburg, Marburg, Germany
| |
Collapse
|
10
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Samsami M. miR-1908: a microRNA with diverse functions in cancers and non-malignant conditions. Cancer Cell Int 2022; 22:281. [PMID: 36100870 PMCID: PMC9469614 DOI: 10.1186/s12935-022-02709-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
MicroRNAs (miRNAs) are small-sized transcripts with about 22 nucleotide length. They have been shown to influence almost every aspect of cellular functions through regulation of expression of target genes. miR-1908 is a miRNA with diverse roles in human disorders. This miRNA is encoded by MIR1908 gene on chr11:61,815,161-61,815,240, minus strand. Expression assays have confirmed dysregulation of miR-1908 in cancer-derived cell lines in addition to biological samples obtained from patients affected with cancer. In most assessed cell lines, miR-1908 has an oncogenic role. However, this miRNA has been shown to act as a tumor suppressor in chordoma, lung cancer and ovarian cancer. In addition, several lines of evidence have shown involvement of this miRNA in the pathoetiology of bipolar disorder, myocardial infarction, obesity, renal fibrosis, rheumatoid arthritis and scar formation. In the current review, we elucidate the results of diverse studies which evaluated participation of miR-1908 in these conditions.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Coradduzza D, Garroni G, Congiargiu A, Balzano F, Cruciani S, Sedda S, Nivoli A, Maioli M. MicroRNAs, Stem Cells in Bipolar Disorder, and Lithium Therapeutic Approach. Int J Mol Sci 2022; 23:ijms231810489. [PMID: 36142403 PMCID: PMC9502703 DOI: 10.3390/ijms231810489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Bipolar disorder (BD) is a severe, chronic, and disabling neuropsychiatric disorder characterized by recurrent mood disturbances (mania/hypomania and depression, with or without mixed features) and a constellation of cognitive, psychomotor, autonomic, and endocrine abnormalities. The etiology of BD is multifactorial, including both biological and epigenetic factors. Recently, microRNAs (miRNAs), a class of epigenetic regulators of gene expression playing a central role in brain development and plasticity, have been related to several neuropsychiatric disorders, including BD. Moreover, an alteration in the number/distribution and differentiation potential of neural stem cells has also been described, significantly affecting brain homeostasis and neuroplasticity. This review aimed to evaluate the most reliable scientific evidence on miRNAs as biomarkers for the diagnosis of BD and assess their implications in response to mood stabilizers, such as lithium. Neural stem cell distribution, regulation, and dysfunction in the etiology of BD are also dissected.
Collapse
Affiliation(s)
| | - Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | | | - Francesca Balzano
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Stefania Sedda
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Alessandra Nivoli
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
- Correspondence: (A.N.); (M.M.); Tel.: +39-079-228-277 (A.N.); +39-079-255-406-228350 (M.M.)
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
- Correspondence: (A.N.); (M.M.); Tel.: +39-079-228-277 (A.N.); +39-079-255-406-228350 (M.M.)
| |
Collapse
|
12
|
Martins HC, Gilardi C, Sungur AÖ, Winterer J, Pelzl MA, Bicker S, Gross F, Kisko TM, Malikowska‐Racia N, Braun MD, Brosch K, Nenadic I, Stein F, Meinert S, Schwarting RKW, Dannlowski U, Kircher T, Wöhr M, Schratt G. Bipolar‐associated
miR
‐499‐5p controls neuroplasticity by downregulating the Cav1.2 subunit
CACNB2. EMBO Rep 2022; 23:e54420. [PMID: 35969184 PMCID: PMC9535808 DOI: 10.15252/embr.202154420] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
Bipolar disorder (BD) is a chronic mood disorder characterized by manic and depressive episodes. Dysregulation of neuroplasticity and calcium homeostasis are frequently observed in BD patients, but the underlying molecular mechanisms are largely unknown. Here, we show that miR‐499‐5p regulates dendritogenesis and cognitive function by downregulating the BD risk gene CACNB2. miR‐499‐5p expression is increased in peripheral blood of BD patients, as well as in the hippocampus of rats which underwent juvenile social isolation. In rat hippocampal neurons, miR‐499‐5p impairs dendritogenesis and reduces surface expression and activity of the L‐type calcium channel Cav1.2. We further identified CACNB2, which encodes a regulatory β‐subunit of Cav1.2, as a direct functional target of miR‐499‐5p in neurons. miR‐499‐5p overexpression in the hippocampus in vivo induces short‐term memory impairments selectively in rats haploinsufficient for the Cav1.2 pore forming subunit Cacna1c. In humans, miR‐499‐5p expression is negatively associated with gray matter volumes of the left superior temporal gyrus, a region implicated in auditory and emotional processing. We propose that stress‐induced miR‐499‐5p overexpression contributes to dendritic impairments, deregulated calcium homeostasis, and neurocognitive dysfunction in BD.
Collapse
Affiliation(s)
- Helena C Martins
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology ETH Zurich Switzerland
| | - Carlotta Gilardi
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology ETH Zurich Switzerland
| | - A Özge Sungur
- Behavioural Neuroscience, Experimental and Biological Psychology Faculty of Psychology, Philipps‐University of Marburg Marburg Germany
- Center for Mind, Brain, and Behavior Philipps‐University of Marburg Marburg Germany
| | - Jochen Winterer
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology ETH Zurich Switzerland
| | - Michael A Pelzl
- Institute for Physiological Chemistry, Biochemical‐Pharmacological Center Marburg Philipps‐University of Marburg Marburg Germany
- Psychiatry and Psychotherapy University of Tübingen Tübingen Germany
| | - Silvia Bicker
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology ETH Zurich Switzerland
| | - Fridolin Gross
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology ETH Zurich Switzerland
| | - Theresa M Kisko
- Behavioural Neuroscience, Experimental and Biological Psychology Faculty of Psychology, Philipps‐University of Marburg Marburg Germany
| | - Natalia Malikowska‐Racia
- Behavioural Neuroscience, Experimental and Biological Psychology Faculty of Psychology, Philipps‐University of Marburg Marburg Germany
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences Krakow Poland
| | - Moria D Braun
- Behavioural Neuroscience, Experimental and Biological Psychology Faculty of Psychology, Philipps‐University of Marburg Marburg Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy University of Marburg Marburg Germany
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy University of Marburg Marburg Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy University of Marburg Marburg Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry University of Münster Münster Germany
| | - Rainer K W Schwarting
- Behavioural Neuroscience, Experimental and Biological Psychology Faculty of Psychology, Philipps‐University of Marburg Marburg Germany
- Center for Mind, Brain, and Behavior Philipps‐University of Marburg Marburg Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry University of Münster Münster Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy University of Marburg Marburg Germany
| | - Markus Wöhr
- Behavioural Neuroscience, Experimental and Biological Psychology Faculty of Psychology, Philipps‐University of Marburg Marburg Germany
- Center for Mind, Brain, and Behavior Philipps‐University of Marburg Marburg Germany
- Social and Affective Neuroscience Research Group, Laboratory of Biological Psychology, Research Unit Brain and Cognition, Faculty of Psychology and Educational Sciences KU Leuven Leuven Belgium
- Leuven Brain Institute KU Leuven Leuven Belgium
| | - Gerhard Schratt
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology ETH Zurich Switzerland
| |
Collapse
|
13
|
Shen J, Wu Y, Ruan W, Zhu F, Duan S. miR-1908 Dysregulation in Human Cancers. Front Oncol 2022; 12:857743. [PMID: 35463352 PMCID: PMC9021824 DOI: 10.3389/fonc.2022.857743] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/11/2022] [Indexed: 01/19/2023] Open
Abstract
MiR-1908 is a miRNA located in the intron of the fatty acid desaturase 1 (FADS1) gene. The expression level of miR-1908 is abnormal in many diseases such as cancer. miR-1908 can inhibit the expression of at least 27 target genes by binding to the 3’ untranslated region (3’ UTR) of target genes. miR-1908 is involved in the biological processes of cell proliferation, cell differentiation, cell apoptosis, cancer cell invasion, and metastasis. The expression of miR-1908 is regulated by 11 factors, including lncRNA HOTTIP, adipokines (TNF-α, leptin, and resistin), NF-κB, free fatty acid (FFA), cholesterol, stearoyl-CoA desaturase (SCD1), immune-related transcription factors (STAT1, RB1, and IRF1). The expression of miR-1908 is also affected by the anticancer drug OSW-1, growth hormone (GH), and the anticonvulsant drug sodium valproate. In addition, the aberrant expression of miR-1908 is also related to the prognosis of a variety of cancers, including non-small cell lung cancer (NSCLC), ovarian cancer (OC), breast cancer, cervical cancer, glioma, high-grade serous ovarian carcinoma (HGSOC), osteosarcoma, etc. This article summarizes the abnormal expression pattern of miR-1908 in various diseases and its molecular regulation mechanisms. Our work will provide potential hints and direction for future miR-1908-related research.
Collapse
Affiliation(s)
- Jinze Shen
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
| | - Yuchen Wu
- Department of Clinical Medicine, The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Wenjing Ruan
- Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Zhu
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
| | - Shiwei Duan
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Banach E, Szczepankiewicz A, Kaczmarek L, Jaworski T, Urban-Ciećko J. Dysregulation of miRNAs levels in GSK3β overexpressing mice and the role of miR-221-5p in synaptic function. Neuroscience 2022; 490:287-295. [PMID: 35331845 DOI: 10.1016/j.neuroscience.2022.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/01/2023]
Abstract
Glycogen Synthase Kinase-3β (GSK-3β) is a highly expressed kinase in the brain, where it has an important role in synaptic plasticity. Aberrant activity of GSK-3β leads to synaptic dysfunction which results in the development of several neuropsychiatric and neurological diseases. Notably, overexpression of constitutively active form of GSK-3β (GSK-3β[S9A]) in mice recapitulates the cognitive and structural defects characteristic for neurological and psychiatric disorders. However, the mechanisms by which GSK-3β regulates synaptic functions are not clearly known. Here, we investigate the effects of GSK-3β overactivity on neuronal miRNA expression in the mouse hippocampus. We found that GSK-3β overactivity downregulates miRNA network with a potent effect on miR-221-5p (miR-221*). Next, characterization of miR-221* function in primary hippocampal cell culture transfected by miR-221* inhibitor, showed no structural changes in dendritic spine shape and density. Using electrophysiological methods, we found that downregulation of miR-221* increases excitatory synaptic transmission in hippocampal neurons, probably via postsynaptic mechanisms. Thus, our data reveal potential mechanism by which GSK-3β and miRNAs might regulate synaptic function and therefore also synaptic plasticity.
Collapse
Affiliation(s)
- Ewa Banach
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland; Laboratory of Animal Models, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland; Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | | | - Leszek Kaczmarek
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Tomasz Jaworski
- Laboratory of Animal Models, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland; Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; Research and Development Centre, Celon Pharma SA, Kazun Nowy, Poland
| | - Joanna Urban-Ciećko
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland; Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| |
Collapse
|
15
|
Abdolmaleky HM, Zhou JR, Thiagalingam S. Cataloging recent advances in epigenetic alterations in major mental disorders and autism. Epigenomics 2021; 13:1231-1245. [PMID: 34318684 PMCID: PMC8738978 DOI: 10.2217/epi-2021-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/12/2021] [Indexed: 11/21/2022] Open
Abstract
During the last two decades, diverse epigenetic modifications including DNA methylation, histone modifications, RNA editing and miRNA dysregulation have been associated with psychiatric disorders. A few years ago, in a review we outlined the most common epigenetic alterations in major psychiatric disorders (e.g., aberrant DNA methylation of DTNBP1, HTR2A, RELN, MB-COMT and PPP3CC, and increased expression of miR-34a and miR-181b). Recent follow-up studies have uncovered other DNA methylation aberrations affecting several genes in mental disorders, in addition to dysregulation of many miRNAs. Here, we provide an update on new epigenetic findings and highlight potential origin of the diversity and inconsistencies, focusing on drug effects, tissue/cell specificity of epigenetic landscape and discuss shortcomings of the current diagnostic criteria in mental disorders.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, 02118 MA, USA
- Department of Surgery, Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 02215 MA, USA
| | - Jin-Rong Zhou
- Department of Surgery, Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 02215 MA, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, 02118 MA, USA
- Genetics & Genomics Graduate Program, Boston University School of Medicine, Boston, 02118 MA, USA
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, 02218 MA, USA
| |
Collapse
|
16
|
Slouka D, Windrichova J, Rezackova H, Houfkova K, Kucera R, Cerna V, Kostlivy T, Topolcan O, Pesta M. The potential of miR-499 plasmatic level as a biomarker of obstructive sleep apnea syndrome. Biomark Med 2021; 15:1011-1019. [PMID: 34289701 DOI: 10.2217/bmm-2020-0826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Obstructive sleep apnea syndrome (OSAS) is one of the most common sleep-related breathing disorders. The aim of this study was to improve diagnostics in OSAS using blood circulating biomarkers. We consider the potential of cardiac-specific miRNAs in the diagnosis and risk assessment of cardiovascular complications. Materials & methods: Plasmatic levels of miR-1-3p, miR-133a-3p and miR-499a-5p were measured by reverse transcription-PCR and compared with the clinical status of OSAS patients and controls. Results: The level of miR-499 was higher (p = 0.0343) in OSAS patients (mean expression: 0.00561) compared with the controls (mean expression: 0.00003), using the multivariate logistic regression. Conclusion: The role of miR-499 in gene expression regulation during hypoxia and our findings indicate that miR-499 could be a new diagnostic biomarker for OSAS.
Collapse
Affiliation(s)
- David Slouka
- Department of Otorhinolaryngology, University Hospital in Pilsen & Charles University, Faculty of Medicine in Pilsen, Edvarda Benese 13, 30599, Pilsen, Czech Republic
| | - Jindra Windrichova
- Department of Immunochemistry Diagnostics, University Hospital in Pilsen & Charles University, Faculty of Medicine in Pilsen, Edvarda Benese 13, 30599, Pilsen, Czech Republic
| | - Hana Rezackova
- Department of Immunochemistry Diagnostics, University Hospital in Pilsen & Charles University, Faculty of Medicine in Pilsen, Edvarda Benese 13, 30599, Pilsen, Czech Republic
| | - Katerina Houfkova
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300, Pilsen, Czech Republic
| | - Radek Kucera
- Department of Immunochemistry Diagnostics, University Hospital in Pilsen & Charles University, Faculty of Medicine in Pilsen, Edvarda Benese 13, 30599, Pilsen, Czech Republic
| | - Vaclava Cerna
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300, Pilsen, Czech Republic
| | - Tomas Kostlivy
- Department of Otorhinolaryngology, University Hospital in Pilsen & Charles University, Faculty of Medicine in Pilsen, Edvarda Benese 13, 30599, Pilsen, Czech Republic
| | - Ondrej Topolcan
- Department of Immunochemistry Diagnostics, University Hospital in Pilsen & Charles University, Faculty of Medicine in Pilsen, Edvarda Benese 13, 30599, Pilsen, Czech Republic
| | - Martin Pesta
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300, Pilsen, Czech Republic
| |
Collapse
|
17
|
A Comprehensive Review on the Role of Non-Coding RNAs in the Pathophysiology of Bipolar Disorder. Int J Mol Sci 2021; 22:ijms22105156. [PMID: 34068138 PMCID: PMC8152970 DOI: 10.3390/ijms22105156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/02/2023] Open
Abstract
Aim: Bipolar disorder is a multifactorial disorder being linked with dysregulation of several genes. Among the recently acknowledged factors in the pathophysiology of bipolar disorder are non-coding RNAs (ncRNAs). Methods: We searched PubMed and Google Scholar databases to find studies that assessed the expression profile of miRNAs, lncRNAs and circRNAs in bipolar disorder. Results: Dysregulated ncRNAs in bipolar patients have been enriched in several neuron-related pathways such as GABAergic and glutamatergic synapses, morphine addiction pathway and redox modulation. Conclusion: Altered expression of these transcripts in bipolar disorder provides clues for identification of the pathogenesis of this disorder and design of targeted therapies for the treatment of patients.
Collapse
|
18
|
Legrand A, Iftimovici A, Khayachi A, Chaumette B. Epigenetics in bipolar disorder: a critical review of the literature. Psychiatr Genet 2021; 31:1-12. [PMID: 33290382 DOI: 10.1097/ypg.0000000000000267] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Bipolar disorder (BD) is a chronic, disabling disease characterised by alternate mood episodes, switching through depressive and manic/hypomanic phases. Mood stabilizers, in particular lithium salts, constitute the cornerstone of the treatment in the acute phase as well as for the prevention of recurrences. The pathophysiology of BD and the mechanisms of action of mood stabilizers remain largely unknown but several pieces of evidence point to gene x environment interactions. Epigenetics, defined as the regulation of gene expression without genetic changes, could be the molecular substrate of these interactions. In this literature review, we summarize the main epigenetic findings associated with BD and response to mood stabilizers. METHODS We searched PubMed, and Embase databases and classified the articles depending on the epigenetic mechanisms (DNA methylation, histone modifications and non-coding RNAs). RESULTS We present the different epigenetic modifications associated with BD or with mood-stabilizers. The major reported mechanisms were DNA methylation, histone methylation and acetylation, and non-coding RNAs. Overall, the assessments are poorly harmonized and the results are more limited than in other psychiatric disorders (e.g. schizophrenia). However, the nature of BD and its treatment offer excellent opportunities for epigenetic research: clear impact of environmental factors, clinical variation between manic or depressive episodes resulting in possible identification of state and traits biomarkers, documented impact of mood-stabilizers on the epigenome. CONCLUSION Epigenetic is a growing and promising field in BD that may shed light on its pathophysiology or be useful as biomarkers of response to mood-stabilizer.
Collapse
Affiliation(s)
- Adrien Legrand
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris
| | - Anton Iftimovici
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris
- Neurospin, CEA, Gif-sur-Yvette, France
| | - Anouar Khayachi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Boris Chaumette
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
- Department of Psychiatry, McGill University, Montreal, Canada
| |
Collapse
|
19
|
Gibbons A, Sundram S, Dean B. Changes in Non-Coding RNA in Depression and Bipolar Disorder: Can They Be Used as Diagnostic or Theranostic Biomarkers? Noncoding RNA 2020; 6:E33. [PMID: 32846922 PMCID: PMC7549354 DOI: 10.3390/ncrna6030033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
The similarities between the depressive symptoms of Major Depressive Disorders (MDD) and Bipolar Disorders (BD) suggest these disorders have some commonality in their molecular pathophysiologies, which is not apparent from the risk genes shared between MDD and BD. This is significant, given the growing literature suggesting that changes in non-coding RNA may be important in both MDD and BD, because they are causing dysfunctions in the control of biochemical pathways that are affected in both disorders. Therefore, understanding the changes in non-coding RNA in MDD and BD will lead to a better understanding of how and why these disorders develop. Furthermore, as a significant number of individuals suffering with MDD and BD do not respond to medication, identifying non-coding RNA that are altered by the drugs used to treat these disorders offer the potential to identify biomarkers that could predict medication response. Such biomarkers offer the potential to quickly identify patients who are unlikely to respond to traditional medications so clinicians can refocus treatment strategies to ensure more effective outcomes for the patient. This review will focus on the evidence supporting the involvement of non-coding RNA in MDD and BD and their potential use as biomarkers for treatment response.
Collapse
Affiliation(s)
- Andrew Gibbons
- The Florey Institute for Neuroscience and Mental Health, Parkville, The University of Melbourne, Melbourne, Victoria 3052, Australia; (S.S.); (B.D.)
- The Department of Psychiatry, Monash University, 27-31 Wright Street, Clayton, Victoria 3168, Australia
| | - Suresh Sundram
- The Florey Institute for Neuroscience and Mental Health, Parkville, The University of Melbourne, Melbourne, Victoria 3052, Australia; (S.S.); (B.D.)
- The Department of Psychiatry, Monash University, 27-31 Wright Street, Clayton, Victoria 3168, Australia
| | - Brian Dean
- The Florey Institute for Neuroscience and Mental Health, Parkville, The University of Melbourne, Melbourne, Victoria 3052, Australia; (S.S.); (B.D.)
- The Centre for Mental Health, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
20
|
Naghavi-Gargari B, Zahirodin A, Ghaderian SMH, Shirvani-Farsani Z. Significant increasing of DISC2 long non-coding RNA expression as a potential biomarker in bipolar disorder. Neurosci Lett 2018; 696:206-211. [PMID: 30599263 DOI: 10.1016/j.neulet.2018.12.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/07/2018] [Accepted: 12/28/2018] [Indexed: 11/18/2022]
Abstract
Bipolar disorder (BD) is a mental disorder that is often misdiagnosed with ineffective treatment. It has strong genetic component but unknown pathophysiology. Long non-coding RNAs (lncRNAs) have been recently recognized as one of the important genetic factors and are considered as one of the regulatory mechanisms of nervous system. Given that lncRNAs may be diagnostic biomarkers for BD, we aimed to quantify the levels of DISC1 and DISC2 lncRNA transcripts. The levels of DISC1 and DISC2 lncRNA were tested in peripheral blood mononuclear cells (PBMCs) of 50 BD and 50 controls by real-time PCR. In addition, we performed ROC curve analysis as well as correlation analysis between the gene expression and some clinical features of BD cases. Computational analysis of miRNAs binding sites and CpG Islands on DISC1 and DISC2 lncRNA was performed as well. Significant down-regulation of DISC1 and up-regulation of DISC2 were observed in BD cases compared with controls. The areas under the ROC curve (AUC) for DISC1 and DISC2 lncRNA were 0.76 and 0.68 respectively. There was no significant correlation between the levels of mRNA expression in PBMCs of BD patients and clinical features. These data demonstrated that DISC1 and DISC2 lncRNA expression was potentially associated with an increased risk of bipolar disorder and might involve several molecular mechanisms. Our results revealed that the transcript levels of DISC1 and DISC2 lncRNA could be considered as a good putative biomarker for individuals with bipolar disorder.
Collapse
Affiliation(s)
- Bahar Naghavi-Gargari
- Department of Basic Science, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Alireza Zahirodin
- Behavioral Science Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | | | - Zeinab Shirvani-Farsani
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, Islamic Republic of Iran.
| |
Collapse
|
21
|
MicroRNAs and exosomes in depression: Potential diagnostic biomarkers. J Cell Biochem 2018; 119:3783-3797. [DOI: 10.1002/jcb.26599] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/04/2017] [Indexed: 12/18/2022]
|
22
|
Reinbold CS, Forstner AJ, Hecker J, Fullerton JM, Hoffmann P, Hou L, Heilbronner U, Degenhardt F, Adli M, Akiyama K, Akula N, Ardau R, Arias B, Backlund L, Benabarre A, Bengesser S, Bhattacharjee AK, Biernacka JM, Birner A, Marie-Claire C, Cervantes P, Chen GB, Chen HC, Chillotti C, Clark SR, Colom F, Cousins DA, Cruceanu C, Czerski PM, Dayer A, Étain B, Falkai P, Frisén L, Gard S, Garnham JS, Goes FS, Grof P, Gruber O, Hashimoto R, Hauser J, Herms S, Jamain S, Jiménez E, Kahn JP, Kassem L, Kittel-Schneider S, Kliwicki S, König B, Kusumi I, Lackner N, Laje G, Landén M, Lavebratt C, Leboyer M, Leckband SG, López Jaramillo CA, MacQueen G, Manchia M, Martinsson L, Mattheisen M, McCarthy MJ, McElroy SL, Mitjans M, Mondimore FM, Monteleone P, Nievergelt CM, Ösby U, Ozaki N, Perlis RH, Pfennig A, Reich-Erkelenz D, Rouleau GA, Schofield PR, Schubert KO, Schweizer BW, Seemüller F, Severino G, Shekhtman T, Shilling PD, Shimoda K, Simhandl C, Slaney CM, Smoller JW, Squassina A, Stamm TJ, Stopkova P, Tighe SK, Tortorella A, Turecki G, Volkert J, Witt SH, Wright AJ, Young LT, Zandi PP, Potash JB, DePaulo JR, Bauer M, Reininghaus E, Novák T, Aubry JM, Maj M, Baune BT, Mitchell PB, Vieta E, Frye MA, Rybakowski JK, Kuo PH, Kato T, Grigoroiu-Serbanescu M, Reif A, Del Zompo M, Bellivier F, Schalling M, Wray NR, Kelsoe JR, Alda M, McMahon FJ, Schulze TG, Rietschel M, Nöthen MM, Cichon S. Analysis of the Influence of microRNAs in Lithium Response in Bipolar Disorder. Front Psychiatry 2018; 9:207. [PMID: 29904359 PMCID: PMC5991073 DOI: 10.3389/fpsyt.2018.00207] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/03/2018] [Indexed: 12/30/2022] Open
Abstract
Bipolar disorder (BD) is a common, highly heritable neuropsychiatric disease characterized by recurrent episodes of mania and depression. Lithium is the best-established long-term treatment for BD, even though individual response is highly variable. Evidence suggests that some of this variability has a genetic basis. This is supported by the largest genome-wide association study (GWAS) of lithium response to date conducted by the International Consortium on Lithium Genetics (ConLiGen). Recently, we performed the first genome-wide analysis of the involvement of miRNAs in BD and identified nine BD-associated miRNAs. However, it is unknown whether these miRNAs are also associated with lithium response in BD. In the present study, we therefore tested whether common variants at these nine candidate miRNAs contribute to the variance in lithium response in BD. Furthermore, we systematically analyzed whether any other miRNA in the genome is implicated in the response to lithium. For this purpose, we performed gene-based tests for all known miRNA coding genes in the ConLiGen GWAS dataset (n = 2,563 patients) using a set-based testing approach adapted from the versatile gene-based test for GWAS (VEGAS2). In the candidate approach, miR-499a showed a nominally significant association with lithium response, providing some evidence for involvement in both development and treatment of BD. In the genome-wide miRNA analysis, 71 miRNAs showed nominally significant associations with the dichotomous phenotype and 106 with the continuous trait for treatment response. A total of 15 miRNAs revealed nominal significance in both phenotypes with miR-633 showing the strongest association with the continuous trait (p = 9.80E-04) and miR-607 with the dichotomous phenotype (p = 5.79E-04). No association between miRNAs and treatment response to lithium in BD in either of the tested conditions withstood multiple testing correction. Given the limited power of our study, the investigation of miRNAs in larger GWAS samples of BD and lithium response is warranted.
Collapse
Affiliation(s)
- Céline S Reinbold
- Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland.,Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Andreas J Forstner
- Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland.,Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.,Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany.,Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Julian Hecker
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Janice M Fullerton
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Per Hoffmann
- Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland.,Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.,Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Liping Hou
- Intramural Research Program, US Department of Health & Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Urs Heilbronner
- Department Psychiatry and Psychotherapy, Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Munich, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Mazda Adli
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany
| | - Kazufumi Akiyama
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, Mibu, Japan
| | - Nirmala Akula
- Intramural Research Program, US Department of Health & Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Raffaella Ardau
- Unit of Clinical Pharmacology, University Hospital of Cagliari, Cagliari, Italy
| | - Bárbara Arias
- Zoology and Biological Anthropology Section (Department of Evolutive Biology, Ecology and Environmental Sciences), Facultat de Biologia and Institut de Biomedicina, CIBERSAM, Universitat de Barcelona, Barcelona, Spain
| | - Lena Backlund
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Antonio Benabarre
- Bipolar Disorder Program, Institute of Neuroscience, Hospital Clinic, CIBERSAM, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Susanne Bengesser
- Special Outpatient Center for Bipolar Affective Disorder, Medical University of Graz, Graz, Austria
| | | | - Joanna M Biernacka
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States.,Institut National de la Santé et de la Recherche Médicale, U1144, Paris, France
| | - Armin Birner
- Special Outpatient Center for Bipolar Affective Disorder, Medical University of Graz, Graz, Austria
| | - Cynthia Marie-Claire
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S 1144, Paris, France.,Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Pablo Cervantes
- The Neuromodulation Unit, McGill University Health Centre, Montreal, QC, Canada
| | - Guo-Bo Chen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Hsi-Chung Chen
- Department of Psychiatry & Center of Sleep Disorders, National Taiwan University Hospital, Taipei, Taiwan
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, University Hospital of Cagliari, Cagliari, Italy
| | - Scott R Clark
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
| | - Francesc Colom
- Mental Health Research Group, IMIM-Hospital del Mar, Barcelona, Spain
| | - David A Cousins
- Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Cristiana Cruceanu
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Piotr M Czerski
- Psychiatric Genetic Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Alexandre Dayer
- Mood Disorders Unit, HUG - Geneva University Hospitals, Geneva, Switzerland
| | - Bruno Étain
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S 1144, Paris, France.,Department of Psychiatry, University of California, San Diego, San Diego, CA, United States.,AP-HP, GH Saint-Louis - Lariboisière - F. Widal, Département de Psychiatrie et de Médecine Addictologique, Paris, France
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Louise Frisén
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Sébastien Gard
- Service de Psychiatrie, Hôpital Charles Perrens, Bordeaux, France
| | - Julie S Garnham
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Paul Grof
- Mood Disorders Center of Ottawa, Ottawa, ON, Canada
| | - Oliver Gruber
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August University Göttingen, Göttingen, Germany
| | - Ryota Hashimoto
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Joanna Hauser
- Psychiatric Genetic Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Stefan Herms
- Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland.,Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.,Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Stéphane Jamain
- Institut National de la Santé et de la Recherche Médicale U955, Psychiatrie Translationnelle, Créteil, France
| | - Esther Jiménez
- Bipolar Disorder Program, Institute of Neuroscience, Hospital Clinic, CIBERSAM, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Jean-Pierre Kahn
- Service de Psychiatrie et Psychologie Clinique, Centre Psychothérapique de Nancy - Université de Lorraine, Nancy, France
| | - Layla Kassem
- Intramural Research Program, US Department of Health & Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Sebastian Kliwicki
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Barbara König
- Department of Psychiatry and Psychotherapeuthic Medicine, Landesklinikum Neunkirchen, Neunkirchen, Austria
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Nina Lackner
- Special Outpatient Center for Bipolar Affective Disorder, Medical University of Graz, Graz, Austria
| | - Gonzalo Laje
- Intramural Research Program, US Department of Health & Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Mikael Landén
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the Gothenburg University, Gothenburg, Sweden.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Marion Leboyer
- Assistance Publique-Hôpitaux de Paris, Hôpital Albert Chenevier - Henri Mondor, Pôle de Psychiatrie, Créteil, France
| | - Susan G Leckband
- Department of Pharmacy, VA San Diego Healthcare System, San Diego, CA, United States
| | | | - Glenda MacQueen
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Lina Martinsson
- Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | | | - Michael J McCarthy
- Department of Psychiatry, VA San Diego Healthcare System, San Diego, CA, United States
| | - Susan L McElroy
- Department of Psychiatry, Lindner Center of Hope/University of Cincinnati, Mason, OH, United States
| | - Marina Mitjans
- Zoology and Biological Anthropology Section (Department of Evolutive Biology, Ecology and Environmental Sciences), Facultat de Biologia and Institut de Biomedicina, CIBERSAM, Universitat de Barcelona, Barcelona, Spain
| | - Francis M Mondimore
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Palmiero Monteleone
- Neurosciences Section, Department of Medicine and Surgery, University of Salerno, Salerno, Italy.,Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Urban Ösby
- Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Roy H Perlis
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Andrea Pfennig
- Department of Psychiatry and Psychotherapy, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Daniela Reich-Erkelenz
- Department Psychiatry and Psychotherapy, Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Munich, Germany
| | - Guy A Rouleau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Peter R Schofield
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,Mental Illness, Neuroscience Research Australia, Sydney, NSW, Australia
| | - K Oliver Schubert
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
| | - Barbara W Schweizer
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Florian Seemüller
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Giovanni Severino
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | - Paul D Shilling
- Health Sciences Research, Mayo Clinic, Rochester, MN, United States
| | - Kazutaka Shimoda
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Mibu, Japan
| | - Christian Simhandl
- Medical school, Sigmund Freud University, Vienna, Austria.,Bipolar Center Wiener Neustadt, Vienna, Austria
| | - Claire M Slaney
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Jordan W Smoller
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Alessio Squassina
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Thomas J Stamm
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School Brandenburg, Neuruppin, Germany
| | - Pavla Stopkova
- Department of Psychiatry, National Institute of Mental Health, Klecany, Czechia
| | - Sarah K Tighe
- Department of Psychiatry, University of Iowa, Iowa, IA, United States
| | - Alfonso Tortorella
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gustavo Turecki
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Julia Volkert
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Adam J Wright
- School of Psychiatry, University of New South Wales, and Black Dog Institute, Sydney, NSW, Australia
| | - L Trevor Young
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Peter P Zandi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - James B Potash
- Department of Psychiatry, University of Iowa, Iowa, IA, United States
| | - J Raymond DePaulo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Eva Reininghaus
- Special Outpatient Center for Bipolar Affective Disorder, Medical University of Graz, Graz, Austria
| | - Tomáš Novák
- Department of Psychiatry, National Institute of Mental Health, Klecany, Czechia
| | - Jean-Michel Aubry
- Mood Disorders Unit, HUG - Geneva University Hospitals, Geneva, Switzerland
| | - Mario Maj
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Bernhard T Baune
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, and Black Dog Institute, Sydney, NSW, Australia
| | - Eduard Vieta
- Bipolar Disorder Program, Institute of Neuroscience, Hospital Clinic, CIBERSAM, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Mark A Frye
- Institut National de la Santé et de la Recherche Médicale, U1144, Paris, France
| | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Po-Hsiu Kuo
- Department of Public Health and Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Saitama, Japan
| | - Maria Grigoroiu-Serbanescu
- Biometric Psychiatric Genetics Research Unit, Alexandru Obregia Clinical Psychiatric Hospital, Bucharest, Romania
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Maria Del Zompo
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Frank Bellivier
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S 1144, Paris, France.,Department of Psychiatry, University of California, San Diego, San Diego, CA, United States.,AP-HP, GH Saint-Louis - Lariboisière - F. Widal, Département de Psychiatrie et de Médecine Addictologique, Paris, France
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Naomi R Wray
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - John R Kelsoe
- Health Sciences Research, Mayo Clinic, Rochester, MN, United States
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.,Department of Psychiatry, National Institute of Mental Health, Klecany, Czechia
| | - Francis J McMahon
- Intramural Research Program, US Department of Health & Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Thomas G Schulze
- Intramural Research Program, US Department of Health & Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.,Department Psychiatry and Psychotherapy, Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Munich, Germany.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, United States.,Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August University Göttingen, Göttingen, Germany.,Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Sven Cichon
- Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland.,Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.,Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany.,Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1), Jülich, Germany
| |
Collapse
|
23
|
Wyczechowska D, Lin HY, LaPlante A, Jeansonne D, Lassak A, Parsons CH, Molina PE, Peruzzi F. A miRNA Signature for Cognitive Deficits and Alcohol Use Disorder in Persons Living with HIV/AIDS. Front Mol Neurosci 2017; 10:385. [PMID: 29187813 PMCID: PMC5694774 DOI: 10.3389/fnmol.2017.00385] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/06/2017] [Indexed: 01/23/2023] Open
Abstract
HIV-associated neurocognitive disorders (HAND) affects more than half of persons living with HIV-1/AIDS (PLWHA). Identification of biomarkers representing the cognitive status of PLWHA is a critical step for implementation of successful cognitive, behavioral and pharmacological strategies to prevent onset and progression of HAND. However, the presence of co-morbidity factors in PLWHA, the most common being substance abuse, can prevent the identification of such biomarkers. We have optimized a protocol to profile plasma miRNAs using quantitative RT-qPCR and found a miRNA signature with very good discriminatory ability to distinguish PLWHA with cognitive impairment from those without cognitive impairment. Here, we have evaluated this miRNA signature in PLWHA with alcohol use disorder (AUD) at LSU Health Sciences Center (LSUHSC). The results show that AUD is a potential confounding factor for the miRNAs associated with cognitive impairment in PLWHA. Furthermore, we have investigated the miRNA signature associated with cognitive impairment in an independent cohort of PLWHA using plasma samples from the CNS HIV Antiretroviral Therapy Effects Research (CHARTER) program. Despite differences between the two cohorts in socioeconomic status, AUD, and likely misuse of illicit or prescription drugs, we validated a miRNA signature for cognitive deficits found at LSUHSC in the CHARTER samples.
Collapse
Affiliation(s)
- Dorota Wyczechowska
- Stanley S. Scott Cancer Center, Louisiana State University, New Orleans, LA, United States
| | - Hui-Yi Lin
- Biostatistics Program, School of Public Health, Louisiana State University, New Orleans, LA, United States
| | - Andrea LaPlante
- Department of Psychiatry, University Medical Center, Louisiana State University, New Orleans, LA, United States
| | - Duane Jeansonne
- Stanley S. Scott Cancer Center, Louisiana State University, New Orleans, LA, United States
| | - Adam Lassak
- Stanley S. Scott Cancer Center, Louisiana State University, New Orleans, LA, United States
| | - Christopher H Parsons
- Stanley S. Scott Cancer Center, Department of Medicine, School of Medicine, Louisiana State University, New Orleans, LA, United States
| | - Patricia E Molina
- Alcohol and Drug Abuse Center of Excellence, Department of Physiology, School of Medicine, Louisiana State University, New Orleans, LA, United States
| | - Francesca Peruzzi
- Stanley S. Scott Cancer Center, Alcohol and Drug Abuse Center of Excellence, Department of Medicine, School of Medicine, Louisiana State University, New Orleans, LA, United States
| |
Collapse
|