1
|
Kim S, Kang SJ, Nguyen HS, Jeong SW. Store-operated calcium entry in the satellite glial cells of rat sympathetic ganglia. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:93-103. [PMID: 38154968 PMCID: PMC10762485 DOI: 10.4196/kjpp.2024.28.1.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
Satellite glial cells (SGCs), a major type of glial cell in the autonomic ganglia, closely envelop the cell body and even the synaptic regions of a single neuron with a very narrow gap. This structurally unique organization suggests that autonomic neurons and SGCs may communicate reciprocally. Glial Ca2+ signaling is critical for controlling neural activity. Here, for the first time we identified the machinery of store-operated Ca2+ entry (SOCE) which is critical for cellular Ca2+ homeostasis in rat sympathetic ganglia under normal and pathological states. Quantitative realtime PCR and immunostaining analyses showed that Orai1 and stromal interaction molecules 1 (STIM1) proteins are the primary components of SOCE machinery in the sympathetic ganglia. When the internal Ca2+ stores were depleted in the absence of extracellular Ca2+, the number of plasmalemmal Orai1 puncta was increased in neurons and SGCs, suggesting activation of the Ca2+ entry channels. Intracellular Ca2+ imaging revealed that SOCE was present in SGCs and neurons; however, the magnitude of SOCE was much larger in the SGCs than in the neurons. The SOCE was significantly suppressed by GSK7975A, a selective Orai1 blocker, and Pyr6, a SOCE blocker. Lipopolysaccharide (LPS) upregulated the glial fibrillary acidic protein and Toll-like receptor 4 in the sympathetic ganglia. Importantly, LPS attenuated SOCE via downregulating Orai1 and STIM1 expression. In conclusion, sympathetic SGCs functionally express the SOCE machinery, which is indispensable for intracellular Ca2+ signaling. The SOCE is highly susceptible to inflammation, which may affect sympathetic neuronal activity and thereby autonomic output.
Collapse
Affiliation(s)
- Sohyun Kim
- Department of Physiology, Laboratory of Molecular Neurophysiology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Seong Jun Kang
- Department of Physiology, Laboratory of Molecular Neurophysiology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Huu Son Nguyen
- Department of Physiology, Laboratory of Molecular Neurophysiology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Seong-Woo Jeong
- Department of Physiology, Laboratory of Molecular Neurophysiology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| |
Collapse
|
2
|
Mapps AA, Boehm E, Beier C, Keenan WT, Langel J, Liu M, Thomsen MB, Hattar S, Zhao H, Tampakakis E, Kuruvilla R. Satellite glia modulate sympathetic neuron survival, activity, and autonomic function. eLife 2022; 11:74295. [PMID: 35997251 PMCID: PMC9433091 DOI: 10.7554/elife.74295] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Satellite glia are the major glial cells in sympathetic ganglia, enveloping neuronal cell bodies. Despite this intimate association, the extent to which sympathetic functions are influenced by satellite glia in vivo remains unclear. Here, we show that satellite glia are critical for metabolism, survival, and activity of sympathetic neurons and modulate autonomic behaviors in mice. Adult ablation of satellite glia results in impaired mTOR signaling, soma atrophy, reduced noradrenergic enzymes, and loss of sympathetic neurons. However, persisting neurons have elevated activity, and satellite glia-ablated mice show increased pupil dilation and heart rate, indicative of enhanced sympathetic tone. Satellite glia-specific deletion of Kir4.1, an inward-rectifying potassium channel, largely recapitulates the cellular defects observed in glia-ablated mice, suggesting that satellite glia act in part via K+-dependent mechanisms. These findings highlight neuron–satellite glia as functional units in regulating sympathetic output, with implications for disorders linked to sympathetic hyper-activity such as cardiovascular disease and hypertension.
Collapse
Affiliation(s)
- Aurelia A Mapps
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Erica Boehm
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Corinne Beier
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, Bethesda, United States
| | - William T Keenan
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Jennifer Langel
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, Bethesda, United States
| | - Michael Liu
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Michael B Thomsen
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, Bethesda, United States
| | - Samer Hattar
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, Bethesda, United States
| | - Haiqing Zhao
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | | | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
3
|
Glutamine Maintains Satellite Glial Cells Growth and Survival in Culture. Neurochem Res 2022; 47:3635-3646. [PMID: 35522367 DOI: 10.1007/s11064-022-03614-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/10/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
Satellite glial cells (SGCs) tightly surround neurons and modulate sensory transmission in dorsal root ganglion (DRG). At present, the biological property of primary SGCs in culture deserves further investigation. To reveal the key factor for SGCs growth and survival, we examined the effects of different culture supplementations containing Dulbecco's Modified Eagle Medium (DMEM)/F12, DMEM high glucose (HG) or Neurobasal-A (NB). CCK-8 proliferation assay showed an increased proliferation of SGCs in DMEM/F12 and DMEM/HG, but not in NB medium. Bax, AnnexinV, and propidium iodide (PI) staining results showed that NB medium caused cell death and apoptosis. We showed that glutamine was over 2.5 mM in DMEM/F12 and DMEM/HG, whereas it was absence in NB medium. Interestingly, exogenous glutamine application significantly reversed the poor proliferation and cell death of SGCs in NB medium. These findings demonstrated that DMEM/F12 medium was optimal to get high-purity SGCs. Glutamine was the key molecule to maintain SGCs growth and survival in culture. Here, we provided a novel approach to get high-purity SGCs by changing the key component of culture medium. Our study shed a new light on understanding the biological property and modulation of glial cells of primary sensory ganglia.
Collapse
|
4
|
Mapps AA, Thomsen MB, Boehm E, Zhao H, Hattar S, Kuruvilla R. Diversity of satellite glia in sympathetic and sensory ganglia. Cell Rep 2022; 38:110328. [PMID: 35108545 DOI: 10.1016/j.celrep.2022.110328] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/15/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Satellite glia are the major glial type found in sympathetic and sensory ganglia in the peripheral nervous system, and specifically, contact neuronal cell bodies. Sympathetic and sensory neurons differ in morphological, molecular, and electrophysiological properties. However, the molecular diversity of the associated satellite glial cells remains unclear. Here, using single-cell RNA sequencing analysis, we identify five different populations of satellite glia from sympathetic and sensory ganglia. We define three shared populations of satellite glia enriched in immune-response genes, immediate-early genes, and ion channels/ECM-interactors, respectively. Sensory- and sympathetic-specific satellite glia are differentially enriched for modulators of lipid synthesis and metabolism. Sensory glia are also specifically enriched for genes involved in glutamate turnover. Furthermore, satellite glia and Schwann cells can be distinguished by unique transcriptional signatures. This study reveals the remarkable heterogeneity of satellite glia in the peripheral nervous system.
Collapse
Affiliation(s)
- Aurelia A Mapps
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, 200 Mudd Hall, Baltimore, MD 21218, USA
| | - Michael B Thomsen
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, 200 Mudd Hall, Baltimore, MD 21218, USA; Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Erica Boehm
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, 200 Mudd Hall, Baltimore, MD 21218, USA
| | - Haiqing Zhao
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, 200 Mudd Hall, Baltimore, MD 21218, USA
| | - Samer Hattar
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, 200 Mudd Hall, Baltimore, MD 21218, USA.
| |
Collapse
|
5
|
van Weperen VYH, Vos MA, Ajijola OA. Autonomic modulation of ventricular electrical activity: recent developments and clinical implications. Clin Auton Res 2021; 31:659-676. [PMID: 34591191 PMCID: PMC8629778 DOI: 10.1007/s10286-021-00823-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE This review aimed to provide a complete overview of the current stance and recent developments in antiarrhythmic neuromodulatory interventions, focusing on lifethreatening vetricular arrhythmias. METHODS Both preclinical studies and clinical studies were assessed to highlight the gaps in knowledge that remain to be answered and the necessary steps required to properly translate these strategies to the clinical setting. RESULTS Cardiac autonomic imbalance, characterized by chronic sympathoexcitation and parasympathetic withdrawal, destabilizes cardiac electrophysiology and promotes ventricular arrhythmogenesis. Therefore, neuromodulatory interventions that target the sympatho-vagal imbalance have emerged as promising antiarrhythmic strategies. These strategies are aimed at different parts of the cardiac neuraxis and directly or indirectly restore cardiac autonomic tone. These interventions include pharmacological blockade of sympathetic neurotransmitters and neuropeptides, cardiac sympathetic denervation, thoracic epidural anesthesia, and spinal cord and vagal nerve stimulation. CONCLUSION Neuromodulatory strategies have repeatedly been demonstrated to be highly effective and very promising anti-arrhythmic therapies. Nevertheless, there is still much room to gain in our understanding of neurocardiac physiology, refining the current neuromodulatory strategic options and elucidating the chronic effects of many of these strategic options.
Collapse
Affiliation(s)
- Valerie Y H van Weperen
- Department of Medical Physiology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, UCLA Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, University of California, 100 Medical Plaza, Suite 660, Westwood Blvd, Los Angeles, CA, 90095-1679, USA
| | - Marc A Vos
- Department of Medical Physiology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, UCLA Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, University of California, 100 Medical Plaza, Suite 660, Westwood Blvd, Los Angeles, CA, 90095-1679, USA.
| |
Collapse
|
6
|
Wang A, Shi X, Yu R, Qiao B, Yang R, Xu C. The P2X 7 Receptor Is Involved in Diabetic Neuropathic Pain Hypersensitivity Mediated by TRPV1 in the Rat Dorsal Root Ganglion. Front Mol Neurosci 2021; 14:663649. [PMID: 34163328 PMCID: PMC8215290 DOI: 10.3389/fnmol.2021.663649] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/05/2021] [Indexed: 12/30/2022] Open
Abstract
The purinergic 2X7 (P2X7) receptor expressed in satellite glial cells (SGCs) is involved in the inflammatory response, and transient receptor potential vanilloid 1 (TRPV1) participates in the process of neurogenic inflammation, such as that in diabetic neuropathic pain (DNP) and peripheral neuralgia. The main purpose of this study was to explore the role of the P2X7 receptor in DNP hypersensitivity mediated by TRPV1 in the rat and its possible mechanism. A rat model of type 2 diabetes mellitus-related neuropathic pain (NPP) named the DNP rat model was established in this study. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) of DNP rats were increased after intrathecal injection of the P2X7 receptor antagonist A438079, and the mRNA and protein levels of TRPV1 in the dorsal root ganglion (DRG) were decreased in DNP rats treated with A438079 compared to untreated DNP rats; in addition, A438079 also decreased the phosphorylation of p38 and extracellular signal-regulated kinase 1/2 (ERK1/2) in the DNP group. Based on these results, the P2X7 receptor might be involved in DNP mediated by TRPV1.
Collapse
Affiliation(s)
- Anhui Wang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, China
| | - Xiangchao Shi
- Medical Department, Queen Mary School, Nanchang University, Nanchang, China
| | - Ruoyang Yu
- Medical Department, Queen Mary School, Nanchang University, Nanchang, China
| | - Bao Qiao
- Medical Department, Queen Mary School, Nanchang University, Nanchang, China
| | - Runan Yang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, China
| | - Changshui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| |
Collapse
|
7
|
Tedoldi A, Argent L, Montgomery JM. The role of the tripartite synapse in the heart: how glial cells may contribute to the physiology and pathophysiology of the intracardiac nervous system. Am J Physiol Cell Physiol 2020; 320:C1-C14. [PMID: 33085497 DOI: 10.1152/ajpcell.00363.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the major roles of the intracardiac nervous system (ICNS) is to act as the final site of signal integration for efferent information destined for the myocardium to enable local control of heart rate and rhythm. Multiple subtypes of neurons exist in the ICNS where they are organized into clusters termed ganglionated plexi (GP). The majority of cells in the ICNS are actually glial cells; however, despite this, ICNS glial cells have received little attention to date. In the central nervous system, where glial cell function has been widely studied, glia are no longer viewed simply as supportive cells but rather have been shown to play an active role in modulating neuronal excitability and synaptic plasticity. Pioneering studies have demonstrated that in addition to glia within the brain stem, glial cells within multiple autonomic ganglia in the peripheral nervous system, including the ICNS, can also act to modulate cardiovascular function. Clinically, patients with atrial fibrillation (AF) undergoing catheter ablation show high plasma levels of S100B, a protein produced by cardiac glial cells, correlated with decreased AF recurrence. Interestingly, S100B also alters GP neuron excitability and neurite outgrowth in the ICNS. These studies highlight the importance of understanding how glial cells can affect the heart by modulating GP neuron activity or synaptic inputs. Here, we review studies investigating glia both in the central and peripheral nervous systems to discuss the potential role of glia in controlling cardiac function in health and disease, paying particular attention to the glial cells of the ICNS.
Collapse
Affiliation(s)
- Angelo Tedoldi
- Department of Physiology, University of Auckland, Auckland, New Zealand.,Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Liam Argent
- Department of Physiology, University of Auckland, Auckland, New Zealand.,Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology, University of Auckland, Auckland, New Zealand.,Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Hanani M, Spray DC. Emerging importance of satellite glia in nervous system function and dysfunction. Nat Rev Neurosci 2020; 21:485-498. [PMID: 32699292 PMCID: PMC7374656 DOI: 10.1038/s41583-020-0333-z] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 02/08/2023]
Abstract
Satellite glial cells (SGCs) closely envelop cell bodies of neurons in sensory, sympathetic and parasympathetic ganglia. This unique organization is not found elsewhere in the nervous system. SGCs in sensory ganglia are activated by numerous types of nerve injury and inflammation. The activation includes upregulation of glial fibrillary acidic protein, stronger gap junction-mediated SGC-SGC and neuron-SGC coupling, increased sensitivity to ATP, downregulation of Kir4.1 potassium channels and increased cytokine synthesis and release. There is evidence that these changes in SGCs contribute to chronic pain by augmenting neuronal activity and that these changes are consistent in various rodent pain models and likely also in human pain. Therefore, understanding these changes and the resulting abnormal interactions of SGCs with sensory neurons could provide a mechanistic approach that might be exploited therapeutically in alleviation and prevention of pain. We describe how SGCs are altered in rodent models of four common types of pain: systemic inflammation (sickness behaviour), post-surgical pain, diabetic neuropathic pain and post-herpetic pain.
Collapse
Affiliation(s)
- Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - David C Spray
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
9
|
Enes J, Haburčák M, Sona S, Gerard N, Mitchell AC, Fu W, Birren SJ. Satellite glial cells modulate cholinergic transmission between sympathetic neurons. PLoS One 2020; 15:e0218643. [PMID: 32017764 PMCID: PMC6999876 DOI: 10.1371/journal.pone.0218643] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 01/15/2020] [Indexed: 02/07/2023] Open
Abstract
Postganglionic sympathetic neurons and satellite glial cells are the two major cell types of the peripheral sympathetic ganglia. Sympathetic neurons project to and provide neural control of peripheral organs and have been implicated in human disorders ranging from cardiovascular disease to peripheral neuropathies. Here we show that satellite glia regulate synaptic activity of cultured postnatal sympathetic neurons, providing evidence for local ganglionic control of sympathetic drive. In addition to modulating neuron-to-neuron cholinergic neurotransmission, satellite glia promote synapse formation and contribute to neuronal survival. Examination of the cellular architecture of the rat sympathetic ganglia in vivo shows this regulation of neuronal properties takes place during a developmental period in which neuronal morphology and density are actively changing and satellite glia enwrap sympathetic neuronal somata. Cultured satellite glia make and release factors that promote neuronal activity and that can partially rescue the neurons from cell death following nerve growth factor deprivation. Thus, satellite glia play an early and ongoing role within the postnatal sympathetic ganglia, expanding our understanding of the contributions of local and target-derived factors in the regulation of sympathetic neuron function.
Collapse
Affiliation(s)
- Joana Enes
- Department of Biology, Brandeis University, Waltham, MA, United States of America
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
| | - Marián Haburčák
- Department of Biology, Brandeis University, Waltham, MA, United States of America
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
| | - Surbhi Sona
- Department of Biology, Brandeis University, Waltham, MA, United States of America
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
| | - Nega Gerard
- Department of Biology, Brandeis University, Waltham, MA, United States of America
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
| | - Alexander C. Mitchell
- Department of Biology, Brandeis University, Waltham, MA, United States of America
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
| | - Wenqi Fu
- Department of Biology, Brandeis University, Waltham, MA, United States of America
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
| | - Susan J. Birren
- Department of Biology, Brandeis University, Waltham, MA, United States of America
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
- * E-mail:
| |
Collapse
|
10
|
Feldman-Goriachnik R, Hanani M. The effects of sympathetic nerve damage on satellite glial cells in the mouse superior cervical ganglion. Auton Neurosci 2019; 221:102584. [PMID: 31494528 DOI: 10.1016/j.autneu.2019.102584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022]
Abstract
Neurons in sensory, sympathetic, and parasympathetic ganglia are surrounded by satellite glial cell (SGCs). There is little information on the effects of nerve damage on SGCs in autonomic ganglia. We studied the consequences of damage to sympathetic nerve terminals by 6-hydroxydopamine (6-OHDA) on SGCs in the mouse superior cervical ganglia (Sup-CG). Immunostaining revealed that at 1-30 d post-6-OHDA injection, SGCs in Sup-CG were activated, as assayed by upregulation of glial fibrillary acidic protein. Intracellular labeling showed that dye coupling between SGCs around different neurons increased 4-6-fold 1-14 d after 6-OHDA injection. Behavioral testing 1-7 d post-6-OHDA showed that withdrawal threshold to tactile stimulation of the hind paws was reduced by 65-85%, consistent with hypersensitivity. A single intraperitoneal injection of the gap junction blocker carbenoxolone restored normal tactile thresholds in 6-OHDA-treated mice, suggesting a contribution of SGC gap junctions to pain. Using calcium imaging we found that after 6-OHDA treatment responses of SGCs to ATP were increased by about 30% compared with controls, but responses to ACh were reduced by 48%. The same experiments for SGCs in trigeminal ganglia from 6-OHDA injected mice showed no difference from controls, confirming that 6-OHDA acted selectively on sympathetic nerves. However, systemic inflammation induced by lipopolysaccharide did not affect SGCs of Sup-CG, but did influence SGCs in trigeminal ganglia in the same manner as 6-OHDA did on SGCs in Sup-CG. We conclude that even though SGCs in sympathetic and sensory ganglia are morphologically similar, they are quite different functionally, particularly after damage.
Collapse
Affiliation(s)
- Rachel Feldman-Goriachnik
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Israel.
| |
Collapse
|
11
|
Wang XB, Ma W, Luo T, Yang JW, Wang XP, Dai YF, Guo JH, Li LY. A novel primary culture method for high-purity satellite glial cells derived from rat dorsal root ganglion. Neural Regen Res 2019; 14:339-345. [PMID: 30531018 PMCID: PMC6301172 DOI: 10.4103/1673-5374.244797] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Satellite glial cells surround neurons within dorsal root ganglia. Previous studies have focused on single-cell suspensions of cultured neurons derived from rat dorsal root ganglia. At present, the primary culture method for satellite glial cells derived from rat dorsal root ganglia requires no digestion skill. Hence, the aim of the present study was to establish a novel primary culture method for satellite glial cells derived from dorsal root ganglia. Neonatal rat spine was collected and an incision made to expose the transverse protrusion and remove dorsal root ganglia. Dorsal root ganglia were freed from nerve fibers, connective tissue, and capsule membranes, then rinsed and transferred to 6-well plates, and cultured in a humidified 5% CO2 incubator at 37°C. After 3 days in culture, some cells had migrated from dorsal root ganglia. After subculture, cells were identified by immunofluorescence labeling for three satellite glial cell-specific markers: glutamine synthetase, glial fibrillary acidic protein, and S100β. Cultured cells expressed glutamine synthetase, glial fibrillary acidic protein, and S100β, suggesting they are satellite glial cells with a purity of > 95%. Thus, we have successfully established a novel primary culture method for obtaining high-purity satellite glial cells from rat dorsal root ganglia without digestion.
Collapse
Affiliation(s)
- Xian-Bin Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Tao Luo
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province; Medical Faculty, Panzhihua University, Panzhihua, Sichuan Province, China
| | - Jin-Wei Yang
- Institute of Neuroscience, Kunming Medical University; Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Xiang-Peng Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yun-Fei Dai
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jian-Hui Guo
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Li-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| |
Collapse
|
12
|
Badanavalu MP, Srivatsan M. Nicotine is neuroprotective to neonatal neurons of sympathetic ganglion in rat. Auton Neurosci 2018; 216:25-32. [PMID: 30206032 DOI: 10.1016/j.autneu.2018.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/13/2018] [Accepted: 08/31/2018] [Indexed: 01/04/2023]
Abstract
Sympathetic neurons of SCG are dependent on availability of nerve growth factor (NGF) for their survival. SCG neurons express nicotinic receptors (nAChR) whose expression levels are modulated by nicotine. Nicotine exerts multiple effects on neurons, including neuroprotection, through nAChR binding. Although sympathetic neurons express robust levels of nAChR, a possible neuroprotective role for nicotine in these neurons is not well-understood. Therefore we determined the effect of nicotine exposure on survival of SCG neurons during NGF withdrawal in a well-established cell culture system. NGF was withdrawn in rat neonatal SCG neuron cultures which were then treated with either 10 μM nicotine alone or with nAChR antagonists 0.1 μM α-bungarotoxin (antagonist for α7 subunit bearing nAChR) and 10 μM mecamylamine (non-specific antagonist for ganglionic nAChR) for 48 h. Apoptotic death was determined by TUNEL staining. Cell survival was also determined by MTS assay. Western blot analysis of ERK1/2 was also performed. Our results showed that exposure to 10 μM nicotine significantly reduced apoptotic cell death in SCG neurons resulting from NGF withdrawal as shown by fewer TUNEL positive cells. The MTS assay results also revealed that 10 μM nicotine concentration significantly increased cell survival thus indicating neuroprotective effect of nicotine against cell death resulting from NGF withdrawal. Nicotinic receptor antagonists (bungarotoxin & mecamylamine) attenuated the effect of nicotine's action of neuroprotection. Western blot analysis showed an increased expression of ERK1/2 in nicotine treated cultures suggesting nicotine provided neuroprotection in SCG neurons by increasing the expression of ERK1/2 through nicotinic receptor dependent mechanisms.
Collapse
Affiliation(s)
- Mahadevappa P Badanavalu
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, United States
| | - Malathi Srivatsan
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, United States.
| |
Collapse
|