1
|
Ma Z, Liu J, Zhang L. JAK and STAT5B mediate olfactory response of migratory locusts to their own volatiles. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 173:104164. [PMID: 39068995 DOI: 10.1016/j.ibmb.2024.104164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Janus kinase (JAK) and signal transducer and activator of transcription (STAT) signaling affect social aggregation, mood and psychiatric disorders, nociceptive and depressive behaviors. Olfactory dysfunction is one of the distinct symptoms of these behaviors, but function and mechanism of JAK and STAT in modulating olfaction remain largely unknown. Migratory locusts show olfactory preference for their own volatiles. We thus use this animal model to explore functions and mechanisms of JAK and STAT5B in mediating olfaction response to their own volatiles. Tissue distribution study shows that JAK and STAT5B express in antennae and brains, especially in antennal lobes and mushroom bodies in locust brains, and knockdown of these two genes by RNA interference (RNAi) in antennae and brains results in the loss of olfactory preference for locust volatiles, including chemical odorants indole and β-ionone. RNA-seq analysis reveals that JAK and STAT5B RNAi knockdown downregulates a functional class of transcripts in nucleoprotein complex, including heterogeneous nuclear ribonucleoprotein C (hnRNPC) and small nuclear ribonucleoprotein polypeptide F (SNRPF). HnRNPC and SNRPF mRNAs and proteins are also expressed in antennae and brains, and RNAi knockdown of these two genes reduces the percentage of locusts preferring volatiles, including chemical odorants indole and β-ionone. Furthermore, RNAi knockdown of dopamine receptor 1 (DopR1) results in the decrease of JAK mRNA level in antennae, and JAK/STAT5B, hnRNPC and SNRPF are required for dopamine receptor 1 (DopR1) to modulate olfactory preference for their own volatiles. This study confirms that JAK/STAT5B signaling modulates olfaction by affecting expression levels of hnRNPC and SNRPF, and this pathway is also required for DopR1 to modulate olfactory preference for their own volatiles. These findings highlight novel roles of JAK and STAT5B in modulating olfactory preference. This study provides novel insights into functional links among JAK/STAT5B signaling, RNA binding proteins and DopR1 underlying the modulation of olfactory behaviors.
Collapse
Affiliation(s)
- Zongyuan Ma
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.
| | - Jipeng Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Lichen Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Zhang M, Jia F, Wang Q, Yang C, Wang X, Liu T, Tang Q, Yang Z, Wang H. Kapβ2 Inhibits Perioperative Neurocognitive Disorders in Rats with Mild Cognitive Impairment by Reversing the Nuclear-Cytoplasmic Mislocalization of hnRNPA2/B1. Mol Neurobiol 2024; 61:4488-4507. [PMID: 38102516 DOI: 10.1007/s12035-023-03789-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023]
Abstract
Harmful stimuli trigger mutations lead to uncontrolled accumulation of hnRNPA2/B1 in the cytoplasm, exacerbating neuronal damage. Kapβ2 mediates the bidirectional transport of most substances between the cytoplasm and the nucleus. Kapβ2 guides hnRNPA2/B1 back into the nucleus and restores its function, alleviating related protein toxicity. Here, we aim to explore the involvement of Kapβ2 in neurodegeneration in rats with MCI following sevoflurane anesthesia and surgery. Firstly, novel object recognition test and Barnes maze were conducted to assess behavioral performances, and we found Kapβ2 positively regulated the recovery of memory and cognitive function. In vivo electrophysiological experiments revealed that the hippocampal theta rhythm energy distribution was disrupted, coherence was reduced, and long-term potentiation was attenuated in MCI rats. LTP was greatly improved with positive modulation of Kapβ2. Next, functional MRI and BOLD imaging will be employed to examine the AFLL and FC values of dynamic connectivity between the cortex and hippocampus of the brain. The findings show that regulating Kapβ2 in the hippocampus region enhances functional activity and connections between brain regions in MCI rats. WB results showed that increasing Kapβ2 expression improved the expression and recovery of cognitive-related proteins in the hippocampus of MCI rats. Finally, WB and immunofluorescence were used to examine the changes in hnRNPA2/B1 expression in the nucleus and cytoplasm after overexpression of Kapβ2, and it was found that nucleocytoplasmic mis location was alleviated. Overall, these data show that Kapβ2 reverses the nucleoplasmic misalignment of hnRNPA2/B1, which slows neurodegeneration towards dementia in MCI after sevoflurane anesthesia and surgery. Our findings may lead to new approaches for perioperative neuroprotection of MCI patients.
Collapse
Affiliation(s)
- Miao Zhang
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Nankai University Affinity the Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, China
| | - Feiyu Jia
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Nankai University Affinity the Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, China
| | - Qiang Wang
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Nankai University Affinity the Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, China
| | - Chenyi Yang
- Nankai University Affinity the Third Central Hospital, Tianjin, China
| | - Xinyi Wang
- Nankai University Affinity the Third Central Hospital, Tianjin, China
| | - Tianyue Liu
- Nankai University Affinity the Third Central Hospital, Tianjin, China
| | - Qingkai Tang
- Nankai University Affinity the Third Central Hospital, Tianjin, China
| | - Zhuo Yang
- College of Medicine, Nankai University, Tianjin, China.
| | - Haiyun Wang
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China.
- Nankai University Affinity the Third Central Hospital, Tianjin, China.
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, China.
| |
Collapse
|
3
|
Wardman R, Keles M, Pachkiv I, Hemanna S, Grein S, Schwarz J, Stein F, Ola R, Dobreva G, Hentze MW, Heineke J. RNA-Binding Proteins Regulate Post-Transcriptional Responses to TGF-β to Coordinate Function and Mesenchymal Activation of Murine Endothelial Cells. Arterioscler Thromb Vasc Biol 2023; 43:1967-1989. [PMID: 37650327 PMCID: PMC10521797 DOI: 10.1161/atvbaha.123.319925] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Endothelial cells (ECs) are primed to respond to various signaling cues. For example, TGF (transforming growth factor)-β has major effects on EC function and phenotype by driving ECs towards a more mesenchymal state (ie, triggering endothelial to mesenchymal activation), a dynamic process associated with cardiovascular diseases. Although transcriptional regulation triggered by TGF-β in ECs is well characterized, post-transcriptional regulatory mechanisms induced by TGF-β remain largely unknown. METHODS Using RNA interactome capture, we identified global TGF-β driven changes in RNA-binding proteins in ECs. We investigated specific changes in the RNA-binding patterns of hnRNP H1 (heterogeneous nuclear ribonucleoprotein H1) and Csde1 (cold shock domain containing E1) using RNA immunoprecipitation and overlapped this with RNA-sequencing data after knockdown of either protein for functional insight. Using a modified proximity ligation assay, we visualized the specific interactions between hnRNP H1 and Csde1 and target RNAs in situ both in vitro and in mouse heart sections. RESULTS Characterization of TGF-β-regulated RBPs (RNA-binding proteins) revealed hnRNP H1 and Csde1 as key regulators of the cellular response to TGF-β at the post-transcriptional level, with loss of either protein-promoting mesenchymal activation in ECs. We found that TGF-β drives an increase in binding of hnRNP H1 to its target RNAs, offsetting mesenchymal activation, but a decrease in Csde1 RNA-binding, facilitating this process. Both, hnRNP H1 and Csde1, dynamically bind and regulate specific subsets of mRNAs related to mesenchymal activation and endothelial function. CONCLUSIONS Together, we show that RBPs play a key role in the endothelial response to TGF-β stimulation at the post-transcriptional level and that the RBPs hnRNP H1 and Csde1 serve to maintain EC function and counteract mesenchymal activation. We propose that TGF-β profoundly modifies RNA-protein interaction entailing feedback and feed-forward control at the post-transcriptional level, to fine-tune mesenchymal activation in ECs.
Collapse
Affiliation(s)
- Rhys Wardman
- Department of Cardiovascular Physiology (R.W., M.K., I.P., S.H., S.G., J.H.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (R.W., M.K., S.H., S.G., G.D., J.H.)
| | - Merve Keles
- Department of Cardiovascular Physiology (R.W., M.K., I.P., S.H., S.G., J.H.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (R.W., M.K., S.H., S.G., G.D., J.H.)
| | - Ihor Pachkiv
- Department of Cardiovascular Physiology (R.W., M.K., I.P., S.H., S.G., J.H.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
| | - Shruthi Hemanna
- Department of Cardiovascular Physiology (R.W., M.K., I.P., S.H., S.G., J.H.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (R.W., M.K., S.H., S.G., G.D., J.H.)
| | - Steve Grein
- Department of Cardiovascular Physiology (R.W., M.K., I.P., S.H., S.G., J.H.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (R.W., M.K., S.H., S.G., G.D., J.H.)
| | - Jennifer Schwarz
- Proteomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany (J.S., F.S.)
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany (J.S., F.S.)
| | - Roxana Ola
- Cardiovascular Pharmacology (R.O.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
| | - Gergana Dobreva
- Cardiovascular Genomics and Epigenomics (G.D.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (R.W., M.K., S.H., S.G., G.D., J.H.)
| | - Matthias W. Hentze
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany (M.W.H.)
| | - Joerg Heineke
- Department of Cardiovascular Physiology (R.W., M.K., I.P., S.H., S.G., J.H.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (R.W., M.K., S.H., S.G., G.D., J.H.)
| |
Collapse
|
4
|
Xu SJ, Lombroso SI, Fischer DK, Carpenter MD, Marchione DM, Hamilton PJ, Lim CJ, Neve RL, Garcia BA, Wimmer ME, Pierce RC, Heller EA. Chromatin-mediated alternative splicing regulates cocaine-reward behavior. Neuron 2021; 109:2943-2966.e8. [PMID: 34480866 PMCID: PMC8454057 DOI: 10.1016/j.neuron.2021.08.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/14/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Neuronal alternative splicing is a key gene regulatory mechanism in the brain. However, the spliceosome machinery is insufficient to fully specify splicing complexity. In considering the role of the epigenome in activity-dependent alternative splicing, we and others find the histone modification H3K36me3 to be a putative splicing regulator. In this study, we found that mouse cocaine self-administration caused widespread differential alternative splicing, concomitant with the enrichment of H3K36me3 at differentially spliced junctions. Importantly, only targeted epigenetic editing can distinguish between a direct role of H3K36me3 in splicing and an indirect role via regulation of splice factor expression elsewhere on the genome. We targeted Srsf11, which was both alternatively spliced and H3K36me3 enriched in the brain following cocaine self-administration. Epigenetic editing of H3K36me3 at Srsf11 was sufficient to drive its alternative splicing and enhanced cocaine self-administration, establishing the direct causal relevance of H3K36me3 to alternative splicing of Srsf11 and to reward behavior.
Collapse
Affiliation(s)
- Song-Jun Xu
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sonia I Lombroso
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Delaney K Fischer
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marco D Carpenter
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dylan M Marchione
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter J Hamilton
- Department of Brain and Cognitive Sciences, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Carissa J Lim
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel L Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Cambridge, MA 02139, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mathieu E Wimmer
- Department of Psychology, Temple University, Philadelphia, PA 19121, USA
| | - R Christopher Pierce
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Elizabeth A Heller
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA,19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Fultz EK, Coelho MA, Lieberman D, Jimenez-Chavez CL, Bryant CD, Szumlinski KK. Hnrnph1 is a novel regulator of alcohol reward. Drug Alcohol Depend 2021; 220:108518. [PMID: 33454624 PMCID: PMC7899125 DOI: 10.1016/j.drugalcdep.2021.108518] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hnrnph1 is a validated quantitative trait gene for methamphetamine behavioral sensitivity that encodes for heterogeneous nuclear ribonucleoprotein H1 (hnRNP H1). This RNA-binding protein is involved in all stages of RNA metabolism that impacts mesocorticolimbic dopamine neurotransmission to influence addiction-related behavior. METHODS We characterized the alcohol behavioral phenotypes of mice heterozygous for a deletion in the first coding exon of Hnrnph1 (Hnrnph1+/-). We examined alcohol intake under both continuous- and limited-access procedures, as well as alcohol-induced place-conditioning. Follow-up studies examined genotypic differences in the psychomotor-activating and sedative-hypnotic effects of acute and repeated alcohol, and a behavioral test battery was employed to determine the effects of Hnrnph1 deletion on the manifestation of negative affect during alcohol withdrawal. RESULTS Relative to wild-type (WT) controls, Hnrnph1+/- males exhibited blunted intake of high alcohol concentrations under both drinking procedures. Hnrnph1 deletion did not impact the conditioned rewarding properties of low-dose alcohol, but reversed the conditioned place-aversion elicited by higher alcohol doses (2 and 4 g/kg), with more robust effects in male versus female mice. No genotypic differences were observed for alcohol-induced locomotor activity. Hnrnph1+/- mice exhibited a modest increase in sensitivity to alcohol's sedative-hypnotic effects, but did not differ from WT mice with regard to tolerance to alcohol's sedative-hypnotic effects or alcohol metabolism, Inconsistent effects of Hnrnph1 deletion were observed in models for withdrawal-induced negative affect. CONCLUSIONS These data identify Hnrnph1 as a novel, male-selective, driver of alcohol consumption and high-dose alcohol aversion that is potentially relevant to the neurobiology of alcohol abuse and alcoholism.
Collapse
Affiliation(s)
- Elissa K Fultz
- Department of Psychological Brain Sciences, University of California, Santa Barbara, United States
| | - Michal A Coelho
- Department of Psychological Brain Sciences, University of California, Santa Barbara, United States
| | - Dylan Lieberman
- Department of Psychological Brain Sciences, University of California, Santa Barbara, United States
| | | | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, United States
| | - Karen K Szumlinski
- Department of Psychological Brain Sciences, University of California, Santa Barbara, United States; Department of Molecular, Developmental and Cellular Biology and the Neuroscience Research Institute, University of California, Santa Barbara, United States.
| |
Collapse
|
6
|
Bryant CD, Healy AF, Ruan QT, Coehlo MA, Lustig E, Yazdani N, Luttik KP, Tran T, Swancy I, Brewin LW, Chen MM, Szumlinski KK. Sex‐dependent effects of an
Hnrnph1
mutation on fentanyl addiction‐relevant behaviors but not antinociception in mice. GENES BRAIN AND BEHAVIOR 2020; 20:e12711. [DOI: 10.1111/gbb.12711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Camron D. Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry Boston University School of Medicine Boston Massachusetts USA
| | - Aidan F. Healy
- Department of Psychological and Brain Sciences University of California Santa Barbara California USA
| | - Qiu T. Ruan
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry Boston University School of Medicine Boston Massachusetts USA
- T32 Biomolecular Pharmacology Ph.D. Program Boston University School of Medicine Boston Massachusetts USA
- Transformative Training Program in Addiction Science Boston University Boston Massachusetts USA
| | - Michal A. Coehlo
- Department of Psychological and Brain Sciences University of California Santa Barbara California USA
| | - Elijah Lustig
- Department of Psychological and Brain Sciences University of California Santa Barbara California USA
| | - Neema Yazdani
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry Boston University School of Medicine Boston Massachusetts USA
- T32 Biomolecular Pharmacology Ph.D. Program Boston University School of Medicine Boston Massachusetts USA
- Transformative Training Program in Addiction Science Boston University Boston Massachusetts USA
| | - Kimberly P. Luttik
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry Boston University School of Medicine Boston Massachusetts USA
- Undergraduate Research Opportunity Program (UROP) Boston University Boston Massachusetts USA
| | - Tori Tran
- Department of Psychological and Brain Sciences University of California Santa Barbara California USA
| | - Isaiah Swancy
- Department of Psychological and Brain Sciences University of California Santa Barbara California USA
| | - Lindsey W. Brewin
- Department of Psychological and Brain Sciences University of California Santa Barbara California USA
| | - Melanie M. Chen
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry Boston University School of Medicine Boston Massachusetts USA
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences University of California Santa Barbara California USA
- Department of Molecular, Developmental and Cellular Biology and the Neuroscience Research Institute University of California Santa Barbara California USA
| |
Collapse
|