1
|
Suginoma H, Owada R, Katano-Toki A, Mori A, Fujioka J, Nakamura K. Non-fibril form but not fibril form of human islet amyloid polypeptide 8-20 changes brain functions in mice. PLoS One 2024; 19:e0296750. [PMID: 38181010 PMCID: PMC10769099 DOI: 10.1371/journal.pone.0296750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
Whether fibril formation increases or decreases cytotoxicity remains unclear. Aggregation of human islet amyloid polypeptide (hIAPP), a pivotal regulator of glucose homeostasis, impairs the function and viability of pancreatic β cells. Evidence suggests that low-order oligomers of hIAPP are more toxic to β cells than fibril. However, it remains unclear whether non-fibril form of hIAPP specifically alters brain functions. This study produced fibril and non-fibril forms from a single hIAPP 8-20 peptide. The non-fibril form-injected mice showed changes in spontaneous motor activities, preference for location in the open field and social behavior. In contrast, the fibril-injected mice showed no changes in these behavioral tests. In line with the behavioral changes, the non-fibril form led to impaired neurite outgrowth of cultured neuron-like cells and the loss of neurons in the mouse hippocampus. These findings suggest that non-fibril form but not fibril form of hIAPP changes brain functions.
Collapse
Affiliation(s)
- Hinaho Suginoma
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Gunma, Japan
| | - Ryuji Owada
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Gunma, Japan
| | - Akiko Katano-Toki
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Gunma, Japan
| | - Ayaka Mori
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Gunma, Japan
| | - Jun Fujioka
- Department of Chemistry, Faculty of Science Division I, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Kazuhiro Nakamura
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Gunma, Japan
| |
Collapse
|
2
|
Okumura H, Kawasaki T, Nakamura K. Probing protein misfolding and dissociation with an infrared free-electron laser. Methods Enzymol 2022; 679:65-96. [PMID: 36682873 DOI: 10.1016/bs.mie.2022.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Misfolding is observed in the mutant proteins that are causative for neurodegenerative disorders such as polyglutamine diseases. These proteins are prone to aggregate in the cytoplasm and nucleus of cells. To reproduce cells with the aggregated proteins, gene expression system is usually applied, in which the expression construct having the mutated DNA sequence of the interest is transfected into cells. The transfected DNA is finally converted into the mutant protein, which is gradually aggregated in the cells. In addition, a simple method to prepare the cells having aggregates inside has been recently applied. Peptides were first aggregated by incubating them in water. The aggregates are spontaneously taken up by cells because aggregated proteins generally transfer between cells. Peptides with different degrees of aggregation can be made by changing the incubation times and temperatures, which enables to examine contribution of aggregation to the toxicity to the recipient cells. Moreover, such cells can be used for therapeutic researches of diseases in which aggregates are involved. In this chapter, we show methods to induce aggregation of peptides. The functional analyses of the cells with aggregates are also described. Then, experimental dissociation of the aggregates produced using this method by mid infrared free electron laser irradiation and its theoretical support by molecular dynamics simulation are introduced as the therapeutic research for neurodegenerative disorders.
Collapse
Affiliation(s)
- Hisashi Okumura
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Takayasu Kawasaki
- Accelerator Laboratory, High Energy Accelerator Research Organization, Tsukuba, Ibaraki, Japan
| | - Kazuhiro Nakamura
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Gunma, Japan.
| |
Collapse
|
3
|
Owada R, Kakuta Y, Yoshida K, Mitsui S, Nakamura K. Conditioned medium from BV2 microglial cells having polyleucine specifically alters startle response in mice. Sci Rep 2022; 12:18718. [PMID: 36333586 PMCID: PMC9636192 DOI: 10.1038/s41598-022-23571-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Repeat-associated non-AUG translation (RAN translation) is observed in transcripts that are causative for polyglutamine (polyQ) diseases and generates proteins with mono amino acid tracts such as polyalanine (polyA), polyleucine (polyL) and polyserine (polyS) in neurons, astrocytes and microglia. We have previously shown that microglia with aggregated polyQ led to defective differentiation and degeneration of neuron-like cells. However, it has not been determined whether only microglia containing a specific RAN product, but not other RAN products, is harmful in vitro and in vivo. Here we show that polyL-incorporating microglia specifically led to altered startle response in mice. Aggregated polyA, polyS and polyL induced aberrant differentiation of microglia-like BV2 cells. Differentiated PC12 cells treated with conditioned medium (CM) of polyS- and polyL- but not polyA-incorporating microglia-like BV2 cells showed retraction of neurites and loss of branch of neurites. Injection of the polyL-CM, but not polyA-CM and polyS-CM, into the lateral ventricle lowered startle response in mice. Consistently, polyL induced the highest expression of CD68 in BV2 cells. The lowered startle response was replicated in mice given the polyL-CM in the caudal pontine reticular nucleus (PnC), the key region of startle response. Thus, endogenous RAN proteins having polyL derived from polyQ diseases-causative genes in microglia might specifically impair startle response.
Collapse
Affiliation(s)
- Ryuji Owada
- grid.256642.10000 0000 9269 4097Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-Machi, Maebashi, Gunma 371-8511 Japan
| | - Yohei Kakuta
- grid.256642.10000 0000 9269 4097Department of Orthopedic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-Machi, Maebashi, Gunma 371-8511 Japan
| | - Kosuke Yoshida
- grid.256642.10000 0000 9269 4097Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-Machi, Maebashi, Gunma 371-8511 Japan
| | - Shinichi Mitsui
- grid.256642.10000 0000 9269 4097Department of Rehabilitation Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-Machi, Maebashi, Gunma 371-8511 Japan
| | - Kazuhiro Nakamura
- grid.256642.10000 0000 9269 4097Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-Machi, Maebashi, Gunma 371-8511 Japan
| |
Collapse
|
4
|
Qi G, Xu C, Wang J, Tian Y, Wang B, Zhang Y, Ma K, Diao X, Jin Y. Optoplasmonic Modulation of Cell Metabolic State Promotes Rapid Cell Differentiation. Anal Chem 2022; 94:8354-8364. [PMID: 35622722 DOI: 10.1021/acs.analchem.2c00837] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell differentiation plays a vital role in mediating organ formation and tissue repair and regeneration. Although rapid and effective methods to stimulate cell differentiation for clinical purposes are highly desired, it remains a great challenge in the medical fields. Herein, a highly effective and conceptual optical method was developed based on a plasmonic chip platform (made of 2D AuNPs nanomembranes). through effective light-augmented plasmonic regulation of cellular bioenergetics (CBE) and an entropy effect at bionano interfaces, to promote rapid cell differentiation. Compared with traditional methods, the developed optoplasmonic method greatly shortens cell differentiation time from usually more than 10 days to only about 3 days. Upon the optoplasmonic treatment of cells, the conformational and vibration entropy changes of cell membranes were clearly revealed through theoretical simulation and fingerprint spectra of cell membranes. Meanwhile, during the treatment process, bioenergetics levels of cells were elevated with increasing mitochondrial membrane potential (Δψm), which accelerates cell differentiation and proliferation. The developed optoplasmonic method is highly efficient and easy to implement, provides a new perspective and avenue for cell differentiation and proliferation, and has potential application prospects in accelerating tissue repair and regeneration.
Collapse
Affiliation(s)
- Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Chen Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jiafeng Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,Department of Endodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, P.R. China
| | - Yu Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Bo Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Ying Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Kongshuo Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xingkang Diao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
5
|
Owada R, Mitsui S, Nakamura K. Exogenous polyserine and polyleucine are toxic to recipient cells. Sci Rep 2022; 12:1685. [PMID: 35102230 PMCID: PMC8803884 DOI: 10.1038/s41598-022-05720-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/11/2022] [Indexed: 12/21/2022] Open
Abstract
Repeat-associated non-AUG (RAN) translation of mRNAs/transcripts responsible for polyglutamine (polyQ) diseases may generate peptides containing different mono amino acid tracts such as polyserine (polyS) and polyleucine (polyL). The propagation of aggregated polyQ from one cell to another is also an intriguing feature of polyQ proteins. However, whether the RAN translation-related polyS and polyL have the ability to propagate remains unclear, and if they do, whether the exogenous polyS and polyL exert toxicity on the recipient cells is also not known yet. In the present study, we found that aggregated polyS and polyL peptides spontaneously enter neuron-like cells and astrocytes in vitro. Aggregated polyS led to the degeneration of the differentiated neuron-like cultured cells. Likewise, the two types of aggregates taken up by astrocytes induced aberrant differentiation and cell death in vitro. Furthermore, injection of each of the two types of aggregates into the ventricles of adult mice resulted in their behavioral changes. The polyS-injected mice showed extensive vacuolar degeneration in the brain. Thus, the RAN translation-related proteins containing polyS and polyL have the potential to propagate and the proteins generated by all polyQ diseases might exert universal toxicity in the recipient cells.
Collapse
Affiliation(s)
- Ryuji Owada
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Shinichi Mitsui
- Department of Rehabilitation Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Kazuhiro Nakamura
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
6
|
Iizuka Y, Owada R, Kawasaki T, Hayashi F, Sonoyama M, Nakamura K. Toxicity of internalized polyalanine to cells depends on aggregation. Sci Rep 2021; 11:23441. [PMID: 34873226 PMCID: PMC8648788 DOI: 10.1038/s41598-021-02889-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022] Open
Abstract
In polyalanine (PA) diseases, the disease-causing transcription factors contain an expansion of alanine repeats. While aggregated proteins that are responsible for the pathogenesis of neurodegenerative disorders show cell-to-cell propagation and thereby exert toxic effects on the recipient cells, whether this is also the case with expanded PA has not been studied. It is also not known whether the internalized PA is toxic to recipient cells based on the degree of aggregation. In this study, we therefore prepared different degrees of aggregation of a peptide having 13 alanine repeats without flanking sequences of PA disease-causative proteins (13A). The aggregated 13A was spontaneously taken up by neuron-like cultured cells. Functionally, strong aggregates but not weak aggregates displayed a deficit in neuron-like differentiation in vitro. Moreover, the injection of strong but not weak 13A aggregates into the ventricle of mice during the neonatal stage led to enhanced spontaneous motor activity later in life. Thus, PA in the extracellular space has the potential to enter adjacent cells, and may exert toxicity depending on the degree of aggregation.
Collapse
Affiliation(s)
- Yutaro Iizuka
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Ryuji Owada
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Takayasu Kawasaki
- Accelerator Laboratory, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Fumio Hayashi
- Center for Instrumental Analysis, Organization for Promotion of Research and University Industry Collaboration, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Masashi Sonoyama
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan.,Gunma University Initiative for Advanced Research (GIAR), Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan.,Gunma University Center for Food Science and Wellness (GUCFW), Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Kazuhiro Nakamura
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
7
|
Owada R, Awata S, Suzue K, Kanetaka H, Kakuta Y, Nakamura K. Polyglutamine-containing microglia leads to disturbed differentiation and neurite retraction of neuron-like cells. Heliyon 2020; 6:e04851. [PMID: 32954034 PMCID: PMC7486442 DOI: 10.1016/j.heliyon.2020.e04851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 04/13/2020] [Accepted: 09/02/2020] [Indexed: 11/17/2022] Open
Abstract
Expanded polyglutamine-containing proteins in neurons intrinsically contributes to neuronal dysfunctions and neuronal cell death in polyglutamine (polyQ) diseases. In addition, an expanded polyQ-containing protein in microglia also leads to apoptosis of neurons. However, detailed morphological analysis of neurons exposed to conditioned medium (CM) derived from polyQ-containing microglia has not been essentially carried out. Here, we introduced aggregated peptide with 69 glutamine repeat (69Q) into BV2 microglial cells. The 69Q-containing BV2 cells showed shorter branches. The CM from 69Q-containing microglia (69Q-CM) induced neurite retraction and fewer number of branch point of neurites of differentiated PC12 cells. Likewise, the 69Q-CM induces disturbed differentiation of PC12 cells with shorter total length of neurites and fewer number of branch point of neurites. Thus, the factor(s) released from polyQ-containing microglia affect both differentiation and degeneration of neuron-like cells.
Collapse
Affiliation(s)
- Ryuji Owada
- Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Saaya Awata
- Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Kazutomo Suzue
- Department of Parasitology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hiroyasu Kanetaka
- Laison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yohei Kakuta
- Department of Orthopedic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
- Corresponding author.
| | - Kazuhiro Nakamura
- Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
- Corresponding author.
| |
Collapse
|