1
|
Echeverria-Villalobos M, Fabian CA, Mitchell JG, Mazzota E, Fiorda Diaz JC, Noon K, Weaver TE. Cannabinoids and General Anesthetics: Revisiting Molecular Mechanisms of Their Pharmacological Interactions. Anesth Analg 2024:00000539-990000000-01027. [PMID: 39504269 DOI: 10.1213/ane.0000000000007313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Cannabis has been used for recreation and medical purposes for more than a millennium across the world; however, its use's consequences remain poorly understood. Although a growing number of surgical patients are regular cannabis consumers, little is known regarding the pharmacological interactions between cannabis and general anesthetics; consequently, there is not a solid consensus among anesthesiologists on the perioperative management of these patients. The existing evidence about the molecular mechanisms underlying pharmacological interactions between cannabinoids and anesthetic agents, both in animal models and in humans, shows divergent results. While some animal studies have demonstrated that phytocannabinoids (tetrahydrocannabinol [THC], cannabidiol [CBD], and cannabinol [CBN]) potentiate the anesthetic effects of inhalation and intravenous anesthetics, while others have found effects comparable with what has been described in humans so far. Clinical studies and case reports have consistently shown increased requirements of GABAergic anesthetic drugs (isoflurane, sevoflurane, propofol, midazolam) to achieve adequate levels of clinical anesthesia. Several potential molecular mechanisms have been proposed to explain the effects of these interactions. However, it is interesting to mention that in humans, it has been observed that the ingestion of THC enhances the hypnotic effect of ketamine. Animal studies have reported that cannabinoids enhance the analgesic effect of opioids due to a synergistic interaction of the endogenous cannabinoid system (ECS) with the endogenous opioid system (EOS) at the spinal cord level and in the central nervous system. However, human data reveals that cannabis users show higher scores of postoperative pain intensity as well as increased requirements of opioid medication for analgesia. This review aims to improve understanding of the molecular mechanisms and pharmacological interactions between cannabis and anesthetic drugs and the clinical outcomes that occur when these substances are used together.
Collapse
Affiliation(s)
| | - Catherine A Fabian
- Department of Anesthesiology. University of Michigan Hospital, Ann Arbor, Michigan
| | - Justin G Mitchell
- Department of Anesthesiology & Perioperative Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Elvio Mazzota
- From the Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Juan C Fiorda Diaz
- From the Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Kristen Noon
- From the Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Tristan E Weaver
- From the Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
2
|
Bao H, Wang C, Xue X, Hu B, Guo Q. CB1 receptor mediates anesthetic drug ketamine‑induced neuroprotection against glutamate in HT22 cells. Exp Ther Med 2024; 27:268. [PMID: 38756904 PMCID: PMC11097274 DOI: 10.3892/etm.2024.12556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/02/2024] [Indexed: 05/18/2024] Open
Abstract
The anesthetic drug, ketamine (KTM) has been shown to induce therapeutic effects against major depressive disorder (MDD), however the related underlying mechanisms remain unclear. In the present study, HT22 neuronal cells were treated with glutamate to imitate oxidative stress injury in MDD, and it was hypothesized that the cannabinoid type 1 (CB1) receptor mediates KTM-induced neuroprotection via ameliorating mitochondrial function in glutamate-treated neuronal cells. Compared with the control, glutamate decreased cell viability and intracellular antioxidants, including glutathione (GSH), catalase and superoxide dismutase 2 levels, and inhibited mitochondrial function simultaneously. Moreover, glutamate increased lactate dehydrogenase release, cellular apoptosis level, cleaved caspase-3 expression and intracellular oxidants, such as reactive oxygen species, oxidized GSH and mitochondrial superoxide in the cells. The presence of KTM, however, significantly decreased the glutamate-induced oxidative stress injury, ameliorated the antioxidant/oxidant levels in the cells, enhanced mitochondrial function and upregulated CB1 receptor expression (P<0.05). Co-administration of the CB1 receptor antagonist AM251 markedly abolished the KTM-induced cytoprotective effects and ameliorations of antioxidant/oxidant levels and mitochondrial function, and also reversed CB1 upregulation (P<0.05). These observations indicated that KTM decreases the oxidative stress injury caused by glutamate in HT22 neuronal cells, and the neuroprotective effects may be mediated by the CB1 receptor.
Collapse
Affiliation(s)
- He Bao
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Chen Wang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiaorong Xue
- Department of Pharmacy, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi 710004, P.R. China
| | - Bin Hu
- Department of Pharmacy, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi 710004, P.R. China
| | - Qi Guo
- Department of Pharmacy, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
3
|
Abstract
The cannabis plant has been used for centuries to manage the symptoms of various ailments including pain. Hundreds of chemical compounds have been identified and isolated from the plant and elicit a variety of physiological responses by binding to specific receptors and interacting with numerous other proteins. In addition, the body makes its own cannabinoid-like compounds that are integrally involved in modulating normal and pathophysiological processes. As the legal cannabis landscape continues to evolve within the United States and throughout the world, it is important to understand the rich science behind the effects of the plant and the implications for providers and patients. This narrative review aims to provide an overview of the basic science of the cannabinoids by describing the discovery and function of the endocannabinoid system, pharmacology of cannabinoids, and areas for future research and therapeutic development as they relate to perioperative and chronic pain medicine.
Collapse
Affiliation(s)
- Alexandra Sideris
- Department of Anesthesiology, Critical Care and Pain Medicine, Hospital for Special Surgery, New York, New York
- Department of Anesthesiology, Weill Cornell Medicine, New York, New York
- HSS Research Institute, New York, New York
| | | | - Martin Kaczocha
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
4
|
Lee BH, Sideris A, Ladha KS, Johnson RL, Wu CL. Cannabis and Cannabinoids in the Perioperative Period. Anesth Analg 2024; 138:16-30. [PMID: 35551150 DOI: 10.1213/ane.0000000000006070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cannabis use is increasingly common, and with a growing number of jurisdictions implementing legalization frameworks, it is likely that providers will encounter more patients who use cannabis. Therefore, it is important for providers to understand the implications of cannabis use and practical considerations for the perioperative period. Cannabis affects multiple organ systems and may influence intraoperative anesthesia, as well as postoperative pain management. The effects of cannabis and key anesthetic considerations are reviewed here.
Collapse
Affiliation(s)
- Bradley H Lee
- From the Department of Anesthesiology, Critical Care & Pain Management, Hospital for Special Surgery, New York, New York
- Department of Anesthesiology, Weill Cornell Medicine, New York, New York
| | - Alexandra Sideris
- From the Department of Anesthesiology, Critical Care & Pain Management, Hospital for Special Surgery, New York, New York
- Department of Anesthesiology, Weill Cornell Medicine, New York, New York
| | - Karim S Ladha
- Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada
| | - Rebecca L Johnson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Christopher L Wu
- From the Department of Anesthesiology, Critical Care & Pain Management, Hospital for Special Surgery, New York, New York
- Department of Anesthesiology, Weill Cornell Medicine, New York, New York
| |
Collapse
|
5
|
Alijanpour S, Rezayof A. Activation of ventral hippocampal CB1 receptors inhibits ketamine-induced anxiogenic-like behavior: Alteration of BDNF/c-Fos levels in the mouse hippocampus. Brain Res 2023; 1810:148378. [PMID: 37121426 DOI: 10.1016/j.brainres.2023.148378] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/15/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
Considering the increasing usage of ketamine as a recreational drug with hallucinogenic properties and also scarce studies about receptor systems responsible for its effects, in the present study we aimed to investigate whether the activation of the ventral hippocampal (VH) CB1 cannabinoid receptors affects the anxiety-like behaviors induced by ketamine. Also, the levels of BDNF and c-Fos proteins in the mouse hippocampus were measured following the treatments. For this purpose, male NMRI mice were cannulated bilaterally in the VH with a stereotaxic apparatus. Anxiety properties and protein changes were measured using elevated plus-maze (EPM) and western blotting respectively. The results revealed that intraperitoneal (i.p.) administration of ketamine (5-20 mg/kg) significantly decreased the percentage of open arm time (%OAT) and open arm entry (%OAE) in the EPM with no alteration in the locomotor activity suggesting an anxiogenic-like behavior to ketamine. Furthermore, ketamine administration (10 mg/kg, i.p.) increased BDNF and c-Fos levels in the hippocampus. Interestingly, activation of the VH CB1 receptors by ACPA (0.5-4 ng/mouse) inhibited the anxiogenic-like behaviors produced by ketamine, whereas the microinjection of the same doses of ACPA into VH by itself had no effect on the EPM parameters. Hippocampal levels of BDNF and c-Fos decreased after treatment with combined ketamine with ACPA. These results suggest the therapeutic potency of cannabinoid receptor agonists for ketamine-induced anxiogenic-related responses. This effect might be at least partially mediated by the alteration of BDNF and c-Fos signaling in the hippocampus.
Collapse
Affiliation(s)
- Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran.
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
6
|
Rapid treatments for depression: Endocannabinoid system as a therapeutic target. Neurosci Biobehav Rev 2022; 137:104635. [PMID: 35351488 DOI: 10.1016/j.neubiorev.2022.104635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 12/16/2022]
Abstract
Current first-line treatments for major depressive disorder (MDD), i.e., antidepressant drugs and psychotherapy, show delayed onset of therapeutic effect as late as 2-3 weeks or more. In the clinic, the speed of beginning of the actions of antidepressant drugs or other interventions is vital for many reasons. Late-onset means that depression, its related disability, and the potential danger of suicide remain a threat for some patients. There are some rapid-acting antidepressant interventions, such as sleep deprivation, ketamine, acute exercise, which induce a significant response, ranging from a few hours to maximally one week, and most of them share a common characteristic that is the activation of the endocannabinoid (eCB) system. Activation of this system, i.e., augmentation of eCB signaling, appears to have anti-depressant-like actions. This article puts the idea forward that the activation of eCB signaling represents a critical mechanism of rapid-acting therapeutic interventions in MDD, and this system might contribute to the development of novel rapid-acting treatments for MDD.
Collapse
|
7
|
Lavender E, Hirasawa-Fujita M, Domino EF. Ketamine's dose related multiple mechanisms of actions: Dissociative anesthetic to rapid antidepressant. Behav Brain Res 2020; 390:112631. [PMID: 32437885 DOI: 10.1016/j.bbr.2020.112631] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/19/2020] [Accepted: 03/29/2020] [Indexed: 01/15/2023]
Abstract
Ketamine induces safe and effective anesthesia and displays unusual cataleptic properties that gave rise to the term dissociative anesthesia. Since 1970, clinicians only utilized the drug as an anesthetic or analgesic for decades, but ketamine was found to have rapid acting antidepressant effects in 1990s. Accumulated evidence exhibits NMDAR antagonism may not be the only mechanism of ketamine. The contributions of AMPA receptor, mTor signal pathway, monoaminergic system, sigma-1 receptor, cholinergic, opioid and cannabinoid systems, as well as voltage-gated calcium channels and hyperpolarization cyclic nucleotide gated channels are discussed for the antidepressant effects. Also the effects of ketamine's enantiomers and metabolites are reviewed. Furthermore ketamine's anesthetic and analgesic mechanisms are briefly revisited. Overall, pharmacology of ketamine, its enantiomers and metabolites is very unique. Insight into multiple mechanisms of action will provide further development and desirable clinical effects of ketamine.
Collapse
Affiliation(s)
- Eli Lavender
- University of Michigan Medical School, Department of Pharmacology, 1150 W Medical Center Dr, Ann Arbor, MI 48109, USA
| | - Mika Hirasawa-Fujita
- University of Michigan Medical School, Department of Pharmacology, 1150 W Medical Center Dr, Ann Arbor, MI 48109, USA
| | - Edward F Domino
- University of Michigan Medical School, Department of Pharmacology, 1150 W Medical Center Dr, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Stasiulewicz A, Znajdek K, Grudzień M, Pawiński T, Sulkowska JI. A Guide to Targeting the Endocannabinoid System in Drug Design. Int J Mol Sci 2020; 21:ijms21082778. [PMID: 32316328 PMCID: PMC7216112 DOI: 10.3390/ijms21082778] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system (ECS) is one of the most crucial systems in the human organism, exhibiting multi-purpose regulatory character. It is engaged in a vast array of physiological processes, including nociception, mood regulation, cognitive functions, neurogenesis and neuroprotection, appetite, lipid metabolism, as well as cell growth and proliferation. Thus, ECS proteins, including cannabinoid receptors and their endogenous ligands’ synthesizing and degrading enzymes, are promising therapeutic targets. Their modulation has been employed in or extensively studied as a treatment of multiple diseases. However, due to a complex nature of ECS and its crosstalk with other biological systems, the development of novel drugs turned out to be a challenging task. In this review, we summarize potential therapeutic applications for ECS-targeting drugs, especially focusing on promising synthetic compounds and preclinical studies. We put emphasis on modulation of specific proteins of ECS in different pathophysiological areas. In addition, we stress possible difficulties and risks and highlight proposed solutions. By presenting this review, we point out information pivotal in the spotlight of ECS-targeting drug design, as well as provide an overview of the current state of knowledge on ECS-related pharmacodynamics and show possible directions for needed research.
Collapse
Affiliation(s)
- Adam Stasiulewicz
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Correspondence: (A.S.); (J.I.S.)
| | - Katarzyna Znajdek
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Monika Grudzień
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
| | - Tomasz Pawiński
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
| | - Joanna I. Sulkowska
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
- Correspondence: (A.S.); (J.I.S.)
| |
Collapse
|
9
|
Liu GL, Cui YF, Lu C, Zhao P. Ketamine a dissociative anesthetic: Neurobiology and biomolecular exploration in depression. Chem Biol Interact 2020; 319:109006. [DOI: 10.1016/j.cbi.2020.109006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/07/2020] [Accepted: 02/17/2020] [Indexed: 10/25/2022]
|
10
|
Tapley P, Kellett S. Cannabis-based medicines and the perioperative physician. Perioper Med (Lond) 2019; 8:19. [PMID: 31827774 PMCID: PMC6898917 DOI: 10.1186/s13741-019-0127-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/16/2019] [Indexed: 12/16/2022] Open
Abstract
The increasing availability of cannabis for both recreational and medicinal purposes means that anaesthetists will encounter an increasing number of patients taking cannabis-based medications. The existing evidence base is conflicted and incomplete regarding the indications, interactions and long-term effects of these substances. Globally, most doctors have had little education regarding the pharmacology of cannabis-based medicines, despite the endocannabinoid system being one of the most widespread in the human body. Much is unknown, and much is to be decided, including clarifying definitions and nomenclature, and therapeutic indications and dosing. Anaesthetists, Intensivists, Pain and Perioperative physicians will want to contribute to this evidence base and attempt to harness such therapeutic benefits in terms of pain relief and opiate-avoidance, anti-emesis and seizure control. We present a summary of the pharmacology of cannabis-based medicines including anaesthetic interactions and implications, to assist colleagues encountering these medicines in clinical practice.
Collapse
Affiliation(s)
- Patrick Tapley
- Department of Anaesthesia, Sunnybrook Health Sciences Centre, Bayview Avenue, Toronto, Canada
| | - Suzanne Kellett
- Shackleton Department of Anaesthesia, University Hospital Southampton, Tremona Road, Southampton, UK
| |
Collapse
|
11
|
Ebrahimi-Ghiri M, Shahini F, Khakpai F, Zarrindast MR. Antinociceptive and antidepressive efficacies of the combined ineffective doses of S-ketamine and URB597. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1393-1400. [PMID: 31250026 DOI: 10.1007/s00210-019-01676-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/13/2019] [Indexed: 02/03/2023]
Abstract
Clinical studies have demonstrated that the NMDA receptor antagonist ketamine produces rapid antidepressant responses. There are safety concerns and adverse effects that limit the utilization of ketamine in psychiatry. Some studies have suggested combination therapy for optimal ketamine use. In this study, we evaluated the potential for combination therapy of ineffective doses of ketamine and fatty acid amide hydrolase inhibitor URB597 for the treatment of depression and pain in male NMRI mice. Intraperitoneal administration of ketamine (10 mg/kg) at the time intervals of 115, 145, and 160 min and ketamine (5 mg/kg) at the time interval of 160 min after administration increased the tail-flick latency, indicating an antinociceptive effect. The same doses of ketamine decreased immobility time in the forced swim test (FST), showing an antidepressant-like effect. Moreover, URB597 at the doses of 0.5 and 1 mg/kg induced an antinociceptive effect, while it at the dose of 1 mg/kg produced an antidepressant-like response. Furthermore, co-administration of the ineffective doses of ketamine (2.5 mg/kg) and URB597 (0.1 mg/kg) caused antinociceptive and antidepressant-like effects, while each one of them alone did not alter the performance of mice in the FST and tail-flick tests. It should be noted that none of the treatments alter animal locomotor activity compared to the control group. Therefore, the combined administration of ineffective doses of ketamine and URB597 might be an effective strategy in the therapy of depression and pain.
Collapse
Affiliation(s)
| | - Faezeh Shahini
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khakpai
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran.
- Department of Neuroendocrinology, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Mathew SJ, Rivas-Grajales AM. "Does the opioid system block or enhance the antidepressant effects of ketamine?". ACTA ACUST UNITED AC 2019; 3. [PMID: 31276079 PMCID: PMC6604658 DOI: 10.1177/2470547019852073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Sanjay J Mathew
- Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA.,Michael E. Debakey VA Medical Center, Houston, TX, USA
| | - Ana Maria Rivas-Grajales
- Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA.,Michael E. Debakey VA Medical Center, Houston, TX, USA
| |
Collapse
|
13
|
Zhong HY, Yang Z, Qiu Z, Lei SQ, Xia ZY. The neuroprotective mechanism of 2-arachidonoylglycerol 2-AG against non-caspase-dependent apoptosis in mice hippocampal neurons following MCAO. Neuropsychiatr Dis Treat 2019; 15:2417-2424. [PMID: 31692526 PMCID: PMC6711550 DOI: 10.2147/ndt.s208094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 07/23/2019] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE In this study, the neuroprotective mechanism of 2-arachidonoylglycerol 2-AG against non-caspase-dependent apoptosis in mice hippocampal neurons following MCAO was investigated. METHOD One hundred and fifty healthy clean male C57BL/6 mice were randomly divided into 3 groups: sham group, model group and 2-AG treatment group, 50 mice in each group. A modified Zea Longa method was used to establish a model of middle cerebral artery occlusion (MCAO) in mice. The apoptosis rate and mitochondrial membrane potential of hippocampal nerve cells were measured by flow cytometry. The mRNA expressions of AIF, Endo G and BNIP3 in hippocampal tissues were determined by qPCR. Western blot was used to determine the protein expressions of AIF, Endo G and BNIP3 in the mitochondria of hippocampal tissue. RESULTS The apoptosis rate of hippocampal neurons in the group treated with 2-AG was significantly lower than that of the model (P<0.01), which indicated that 2-AG could inhibit the apoptosis of hippocampal neurons induced by MCAO. However, the mitochondrial membrane potential of hippocampal neurons in the group treated with 2-AG was significantly higher than that of the model (P<0.01), indicating that 2-AG could improve the mitochondrial membrane potential of hippocampal neurons in MCAO mice. Real-time quantitative PCR (qPCR) showed that 2-AG could inhibit the gene expressions of AIF, Endo G and BNIP3 in hippocampal tissues. Western blot results showed that 2-AG could inhibit the secretions of AIF, Endo G and BNIP3 into cytoplasm in mitochondria. CONCLUSION Endocannabinoids 2-AG had a protective effect on neurons injury, and the mechanism was possibly associated with the protection of the brain nerve cells in the hippocampus and the integrity of the mitochondrial function. Endocannabinoids 2-AG may inhibit the non-caspase-dependent apoptosis pathway, so as to exert its nerve protective effect.
Collapse
Affiliation(s)
- He-Ying Zhong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Zhou Yang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Zhen Qiu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|