1
|
Saywell I, Foreman L, Child B, Phillips-Hughes AL, Collins-Praino L, Baetu I. Influence of cognitive reserve on cognitive and motor function in α-synucleinopathies: A systematic review and multilevel meta-analysis. Neurosci Biobehav Rev 2024; 161:105672. [PMID: 38608829 DOI: 10.1016/j.neubiorev.2024.105672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Cognitive reserve has shown promise as a justification for neuropathologically unexplainable clinical outcomes in Alzheimer's disease. Recent evidence suggests this effect may be replicated in conditions like Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. However, the relationships between cognitive reserve and different cognitive abilities, as well as motor outcomes, are still poorly understood in these conditions. Additionally, it is unclear whether the reported effects are confounded by medication. This review analysed studies investigating the relationship between cognitive reserve and clinical outcomes in these α-synucleinopathy cohorts, identified from MEDLINE, Scopus, psycINFO, CINAHL, and Web of Science. 85 records, containing 176 cognition and 31 motor function effect sizes, were pooled using multilevel meta-analysis. There was a significant, positive association between higher cognitive reserve and both better cognition and motor function. Cognition effect sizes differed by disease subtype, cognitive reserve measure, and outcome type; however, no moderators significantly impacted motor function. Review findings highlight the clinical implications of cognitive reserve and importance of engaging in reserve-building behaviours.
Collapse
Affiliation(s)
- Isaac Saywell
- School of Psychology, University of Adelaide, Adelaide 5005, Australia.
| | - Lauren Foreman
- School of Psychology, University of Adelaide, Adelaide 5005, Australia
| | - Brittany Child
- School of Psychology, University of Adelaide, Adelaide 5005, Australia
| | | | | | - Irina Baetu
- School of Psychology, University of Adelaide, Adelaide 5005, Australia.
| |
Collapse
|
2
|
Doskas T, Vadikolias K, Ntoskas K, Vavougios GD, Tsiptsios D, Stamati P, Liampas I, Siokas V, Messinis L, Nasios G, Dardiotis E. Neurocognitive Impairment and Social Cognition in Parkinson's Disease Patients. Neurol Int 2024; 16:432-449. [PMID: 38668129 PMCID: PMC11054167 DOI: 10.3390/neurolint16020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
In addition to motor symptoms, neurocognitive impairment (NCI) affects patients with prodromal Parkinson's disease (PD). NCI in PD ranges from subjective cognitive complaints to dementia. The purpose of this review is to present the available evidence of NCI in PD and highlight the heterogeneity of NCI phenotypes as well as the range of factors that contribute to NCI onset and progression. A review of publications related to NCI in PD up to March 2023 was performed using PubMed/Medline. There is an interconnection between the neurocognitive and motor symptoms of the disease, suggesting a common underlying pathophysiology as well as an interconnection between NCI and non-motor symptoms, such as mood disorders, which may contribute to confounding NCI. Motor and non-motor symptom evaluation could be used prognostically for NCI onset and progression in combination with imaging, laboratory, and genetic data. Additionally, the implications of NCI on the social cognition of afflicted patients warrant its prompt management. The etiology of NCI onset and its progression in PD is multifactorial and its effects are equally grave as the motor effects. This review highlights the importance of the prompt identification of subjective cognitive complaints in PD patients and NCI management.
Collapse
Affiliation(s)
- Triantafyllos Doskas
- Department of Neurology, Athens Naval Hospital, 11521 Athens, Greece;
- Department of Neurology, General University Hospital of Alexandroupoli, 68100 Alexandroupoli, Greece; (K.V.); (D.T.)
| | - Konstantinos Vadikolias
- Department of Neurology, General University Hospital of Alexandroupoli, 68100 Alexandroupoli, Greece; (K.V.); (D.T.)
| | | | - George D. Vavougios
- Department of Neurology, Athens Naval Hospital, 11521 Athens, Greece;
- Department of Neurology, Faculty of Medicine, University of Cyprus, 1678 Lefkosia, Cyprus
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| | - Dimitrios Tsiptsios
- Department of Neurology, General University Hospital of Alexandroupoli, 68100 Alexandroupoli, Greece; (K.V.); (D.T.)
| | - Polyxeni Stamati
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (P.S.); (I.L.); (V.S.); (E.D.)
| | - Ioannis Liampas
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (P.S.); (I.L.); (V.S.); (E.D.)
| | - Vasileios Siokas
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (P.S.); (I.L.); (V.S.); (E.D.)
| | - Lambros Messinis
- School of Psychology, Laboratory of Neuropsychology and Behavioural Neuroscience, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Grigorios Nasios
- Department of Speech and Language Therapy, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece;
| | - Efthimios Dardiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (P.S.); (I.L.); (V.S.); (E.D.)
| |
Collapse
|
3
|
Gomez Limia C, Baird M, Schwartz M, Saxena S, Meyer K, Wein N. Emerging Perspectives on Gene Therapy Delivery for Neurodegenerative and Neuromuscular Disorders. J Pers Med 2022; 12:1979. [PMID: 36556200 PMCID: PMC9788053 DOI: 10.3390/jpm12121979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Neurodegenerative disorders (NDDs), such as Alzheimer's disease (AD) and Parkinson's Disease (PD), are a group of heterogeneous diseases that mainly affect central nervous system (CNS) functions. A subset of NDDs exhibit CNS dysfunction and muscle degeneration, as observed in Gangliosidosis 1 (GM1) and late stages of PD. Neuromuscular disorders (NMDs) are a group of diseases in which patients show primary progressive muscle weaknesses, including Duchenne Muscular Dystrophy (DMD), Pompe disease, and Spinal Muscular Atrophy (SMA). NDDs and NMDs typically have a genetic component, which affects the physiological functioning of critical cellular processes, leading to pathogenesis. Currently, there is no cure or efficient treatment for most of these diseases. More than 200 clinical trials have been completed or are currently underway in order to establish safety, tolerability, and efficacy of promising gene therapy approaches. Thus, gene therapy-based therapeutics, including viral or non-viral delivery, are very appealing for the treatment of NDDs and NMDs. In particular, adeno-associated viral vectors (AAV) are an attractive option for gene therapy for NDDs and NMDs. However, limitations have been identified after systemic delivery, including the suboptimal capacity of these therapies to traverse the blood-brain barrier (BBB), degradation of the particles during the delivery, high reactivity of the patient's immune system during the treatment, and the potential need for redosing. To circumvent these limitations, several preclinical and clinical studies have suggested intrathecal (IT) delivery to target the CNS and peripheral organs via cerebrospinal fluid (CSF). CSF administration can vastly improve the delivery of small molecules and drugs to the brain and spinal cord as compared to systemic delivery. Here, we review AAV biology and vector design elements, different therapeutic routes of administration, and highlight CSF delivery as an attractive route of administration. We discuss the different aspects of neuromuscular and neurodegenerative diseases, such as pathogenesis, the landscape of mutations, and the biological processes associated with the disease. We also describe the hallmarks of NDDs and NMDs as well as discuss current therapeutic approaches and clinical progress in viral and non-viral gene therapy and enzyme replacement strategies for those diseases.
Collapse
Affiliation(s)
- Cintia Gomez Limia
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Megan Baird
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Maura Schwartz
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Smita Saxena
- Department of Neurology, Inselspital, 3010 Bern, Switzerland
| | - Kathrin Meyer
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| | - Nicolas Wein
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
4
|
Real R, Martinez-Carrasco A, Reynolds RH, Lawton MA, Tan MMX, Shoai M, Corvol JC, Ryten M, Bresner C, Hubbard L, Brice A, Lesage S, Faouzi J, Elbaz A, Artaud F, Williams N, Hu MTM, Ben-Shlomo Y, Grosset DG, Hardy J, Morris HR. Association between the LRP1B and APOE loci in the development of Parkinson's disease dementia. Brain 2022; 146:1873-1887. [PMID: 36348503 PMCID: PMC10151192 DOI: 10.1093/brain/awac414] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/04/2022] [Accepted: 10/16/2022] [Indexed: 11/11/2022] Open
Abstract
Parkinson's disease is one of the most common age-related neurodegenerative disorders. Although predominantly a motor disorder, cognitive impairment and dementia are important features of Parkinson's disease, particularly in the later stages of the disease. However, the rate of cognitive decline varies among Parkinson's disease patients, and the genetic basis for this heterogeneity is incompletely understood. To explore the genetic factors associated with rate of progression to Parkinson's disease dementia, we performed a genome-wide survival meta-analysis of 3,923 clinically diagnosed Parkinson's disease cases of European ancestry from four longitudinal cohorts. In total, 6.7% of individuals with Parkinson's disease developed dementia during study follow-up, on average 4.4 ± 2.4 years from disease diagnosis. We have identified the APOE ε4 allele as a major risk factor for the conversion to Parkinson's disease dementia [hazards ratio = 2.41 (1.94-3.00), P = 2.32 × 10-15], as well as a new locus within the ApoE and APP receptor LRP1B gene [hazards ratio = 3.23 (2.17-4.81), P = 7.07 × 10-09]. In a candidate gene analysis, GBA variants were also identified to be associated with higher risk of progression to dementia [hazards ratio = 2.02 (1.21-3.32), P = 0.007]. CSF biomarker analysis also implicated the amyloid pathway in Parkinson's disease dementia, with significantly reduced levels of amyloid β42 (P = 0.0012) in Parkinson's disease dementia compared to Parkinson's disease without dementia. These results identify a new candidate gene associated with faster conversion to dementia in Parkinson's disease and suggest that amyloid-targeting therapy may have a role in preventing Parkinson's disease dementia.
Collapse
Affiliation(s)
- Raquel Real
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Alejandro Martinez-Carrasco
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Regina H Reynolds
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Michael A Lawton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Manuela M X Tan
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| | - Maryam Shoai
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Jean-Christophe Corvol
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Mina Ryten
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Catherine Bresner
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Leon Hubbard
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Alexis Brice
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Suzanne Lesage
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Johann Faouzi
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France
- Centre Inria de Paris, 75012 Paris, France
| | - Alexis Elbaz
- Centre for Research in Epidemiology and Population Health, INSERM U1018, Team "Exposome, heredity, cancer, and health", 94807 Villejuif, France
| | - Fanny Artaud
- Centre for Research in Epidemiology and Population Health, INSERM U1018, Team "Exposome, heredity, cancer, and health", 94807 Villejuif, France
| | - Nigel Williams
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Michele T M Hu
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford OX3 9DU, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford OX1 3QU, UK
| | - Yoav Ben-Shlomo
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Donald G Grosset
- School of Neuroscience and Psychology, University of Glasgow, Glasgow G51 4TF, UK
| | - John Hardy
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre, London W1T 7DN, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
5
|
Pedersen CC, Lange J, Førland MGG, Macleod AD, Alves G, Maple-Grødem J. A systematic review of associations between common SNCA variants and clinical heterogeneity in Parkinson's disease. NPJ PARKINSONS DISEASE 2021; 7:54. [PMID: 34210990 PMCID: PMC8249472 DOI: 10.1038/s41531-021-00196-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/02/2021] [Indexed: 11/09/2022]
Abstract
There is great heterogeneity in both the clinical presentation and rate of disease progression among patients with Parkinson’s disease (PD). This can pose prognostic difficulties in a clinical setting, and a greater understanding of the risk factors that contribute to modify disease course is of clear importance for optimizing patient care and clinical trial design. Genetic variants in SNCA are an established risk factor for PD and are candidates to modify disease presentation and progression. This systematic review aimed to summarize all available primary research reporting the association of SNCA polymorphisms with features of PD. We systematically searched PubMed and Web of Science, from inception to 1 June 2020, for studies evaluating the association of common SNCA variants with age at onset (AAO) or any clinical feature attributed to PD in patients with idiopathic PD. Fifty-eight studies were included in the review that investigated the association between SNCA polymorphisms and a broad range of outcomes, including motor and cognitive impairment, sleep disorders, mental health, hyposmia, or AAO. The most reproducible findings were with the REP1 polymorphism or rs356219 and an earlier AAO, but no clear associations were identified with an SNCA polymorphism and any individual clinical outcome. The results of this comprehensive summary suggest that, while there is evidence that genetic variance in the SNCA region may have a small impact on clinical outcomes in PD, the mechanisms underlying the association of SNCA polymorphisms with PD risk may not be a major factor driving clinical heterogeneity in PD.
Collapse
Affiliation(s)
- Camilla Christina Pedersen
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Johannes Lange
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | | | - Angus D Macleod
- Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| | - Guido Alves
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway.,Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - Jodi Maple-Grødem
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway. .,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway.
| |
Collapse
|
6
|
Naushad SM, Hussain T, Alrokayan S, Kutala VK. Alpha synuclein (SNCA) rs7684318 variant contributes to Parkinson's disease risk by altering transcription factor binding related with Notch and Wnt signaling. Neurosci Lett 2021; 750:135802. [PMID: 33705925 DOI: 10.1016/j.neulet.2021.135802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 10/22/2022]
Abstract
In view of inconsistencies in the association studies of alpha synuclein (SNCA) rs7684318 (chr4: 90655003 T > C) with Parkinson's disease (PD), we conducted a meta-analysis to establish the association of this variant with PD and examined changes in transcription factor binding. SNCA rs7684318 C-allele was identified as genetic risk factor for PD in fixed (OR: 1.53, 95 % CI: 1.40-1.68, p < 0.0001) and random effect (OR: 1.65, 95 % CI: 1.30-2.09, p = 0.0003) models. Heterogeneity was observed in association (Tau2: 0.0576, H: 2.32, I2: 0.815, Q: 21.64, p = 0.0002). Egger's test showed no evidence of publication bias (p = 0.37). Subgroup analysis showed that rs7684318 is contributing to PD risk in Japanese (OR: 1.46, 95 % CI: 1.30-1.64) and Indian (OR: 2.63, 95 % CI: 1.79-3.86) populations while showing no significant association in Chinese population (OR: 1.68, 95 % CI: 0.93-3.02). Sensitivity analysis showed that exclusion of any one of the studies has no significant impact on the association, which justifies the robustness of the analysis. Tissue-specific DNase foot print analysis revealed that this variant contributes to increased transcription factor binding in midbrain, putamen and caudate nucleus. The substitution of T > C increased binding of RBPJ and GATA-family transcription factors; and decreased binding of NKX2 family, SNAI2, SNAI3, DMRT1, HOXA13, HOXB13, HOXC13, HOXD13, WT1, POU4F1, POU4F2, POU4F3 transcriptional factors. TRANSFAC and DNA curvature analyses substantiate the association of this variant with increased binding of GATA1 that contribute to intensity of DNA curvature peaks and splitting pattern. These studies along with the meta-analysis strongly suggest that the rs7684318 variant contributes to the pathophysiology of PD by modulating binding of transcription factors related to Notch and Wnt signalling pathways that are likely to impair dopmanergic transmission.
Collapse
Affiliation(s)
- Shaik Mohammad Naushad
- Department of Pharmacogenomics, Sandor Speciality Diagnostics Pvt Ltd, Banjara Hills, Road No 3, Hyderabad, India.
| | - Tajamul Hussain
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Salman Alrokayan
- Biochemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Vijay Kumar Kutala
- Department of Clinical Pharmacology and Therapeutics, Nizam's Institute of Medical Sciences, Hyderabad, India
| |
Collapse
|
7
|
Hou B, Zhang X, Liu Z, Wang J, Xie A. Association of rs356219 and rs3822086 polymorphisms with the risk of Parkinson’s disease: A meta-analysis. Neurosci Lett 2019; 709:134380. [DOI: 10.1016/j.neulet.2019.134380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/23/2019] [Accepted: 07/15/2019] [Indexed: 01/07/2023]
|