1
|
May AC, Hendrickson RC, Pagulayan KF, Schindler AG. An observational cohort study of alcohol use and cognitive difficulties among post-9/11 veterans with and without TBI and PTSD. Drug Alcohol Depend 2024; 263:112419. [PMID: 39173220 DOI: 10.1016/j.drugalcdep.2024.112419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI), posttraumatic stress disorder (PTSD), and alcohol use are highly prevalent among military Veterans and independently associated with cognitive difficulties; less is known about the combined effects. This study aimed to investigate the association between alcohol use patterns and cognitive diagnoses in Veterans with TBI and/or PTSD. METHODS Using electronic health record data,193,663 Veterans were classified into three alcohol use trajectory groups (consistently low, initially high transitioning to low, initially moderate transitioning to high) based on self-reported Alcohol Use Disorders Identification Test-C (AUDIT-C) scores. Cox proportional hazards models were used to examine the association between alcohol use patterns, TBI, PTSD, and the risk of cognitive diagnosis, while adjusting for demographic factors and comorbidities. RESULTS Veterans with initially high transitioning to low (HR = 1.21, 95 % CI: 1.11-1.31) and initially moderate transitioning to high (HR = 1.42, 95 % CI: 1.33-1.51) alcohol use patterns had a significantly greater risk of cognitive diagnosis compared to those with consistently low alcohol use when accounting for TBI, PTSD, and comorbidities. TBI (HR = 5.40, 95 % CI: 5.06-5.76) and PTSD (HR = 2.42, 95 % CI: 2.25-2.61) were also independently associated with an elevated risk of cognitive diagnosis. CONCLUSIONS Findings suggest that Higher levels of alcohol consumption, even if decreasing over time, may confer an increased risk of cognitive diagnosis for Veterans with TBI and/or PTSD. Long-term alcohol use patterns should be considered in clinical assessments and interventions to identify individuals at greater risk for experiencing cognitive difficulties.
Collapse
Affiliation(s)
- April C May
- Sierra Pacific Mental Illness Research and Education Clinical Center (MIRECC), Palo Alto Veterans Affairs Health Care System, Palo Alto, CA 94304, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rebecca C Hendrickson
- Veterans Affairs Northwest Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, WA, USA
| | - Kathleen F Pagulayan
- Veterans Affairs Northwest Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, WA, USA; Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA
| | - Abigail G Schindler
- Veterans Affairs Northwest Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, WA, USA; Veterans Affairs Northwest Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
2
|
Zhang M, Duan Y, Gan H, Jiang N, Qin L, Luo Y, Palahati A, He Y, Li C, Zhai X. TYROBP serve as potential immune-related signature genes in the acute phase of intracerebral hemorrhage. Sci Rep 2024; 14:20158. [PMID: 39215129 PMCID: PMC11364555 DOI: 10.1038/s41598-024-71132-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
The development of intracerebral hemorrhage (ICH) is a dynamic process and intervention during the acute phase of ICH is critical for subsequent recovery. Therefore, it is crucial to screen potential signature genes and therapeutic target genes in the acute phase of ICH. In this study, based on the results of mRNA sequencing in mouse ICH and mRNA sequencing of human ICH from online databases, top five potential signature genes after ICH, Tyrobp, Itgb2, Tlr2, Ptprc and Itgam, were screened. Quantitative PCR results showed higher mRNA expression of Tyrobp, Itgb2, Tlr2, Ptprc, and Itgam in the 1-, 3- and 5-day mouse ICH groups compared to the sham-operated group. Immune infiltration correlation analysis shows that the top-ranked signature gene, Tyrobp, is negatively correlated with M2 macrophages and plasma cells, and Western blot analysis shows higher expression of the Tyrobp protein in the 1-, 3-, and 5-day mouse ICH groups compared to the sham-operated group. Furthermore, immunohistochemistry revealed that TYROBP protein expression was significantly higher in human ICH tissues than in normal brain tissues. Our results suggest that Tyrobp is a signature gene in the acute phase of ICH and may be a potential target for the treatment of the acute phase of ICH.
Collapse
Affiliation(s)
- Mi Zhang
- Department of Neurosurgery, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, China
- Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yuhao Duan
- Department of Neurosurgery, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, China
- Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hui Gan
- Department of Neurosurgery, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, China
- Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China
| | - Le Qin
- Department of Neurosurgery, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, China
- Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yujia Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ailiyaer Palahati
- Department of Neurosurgery, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, China
- Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yaying He
- Department of Neurosurgery, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, China
- Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Chenyang Li
- Department of Neurosurgery, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, China
- Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xuan Zhai
- Department of Neurosurgery, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, China.
| |
Collapse
|
3
|
Rowe CJ, Nwaolu U, Martin L, Huang BJ, Mang J, Salinas D, Schlaff CD, Ghenbot S, Lansford JL, Potter BK, Schobel SA, Gann ER, Davis TA. Systemic inflammation following traumatic injury and its impact on neuroinflammatory gene expression in the rodent brain. J Neuroinflammation 2024; 21:211. [PMID: 39198925 PMCID: PMC11360339 DOI: 10.1186/s12974-024-03205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Trauma can result in systemic inflammation that leads to organ dysfunction, but the impact on the brain, particularly following extracranial insults, has been largely overlooked. METHODS Building upon our prior findings, we aimed to understand the impact of systemic inflammation on neuroinflammatory gene transcripts in eight brain regions in rats exposed to (1) blast overpressure exposure [BOP], (2) cutaneous thermal injury [BU], (3) complex extremity injury, 3 hours (h) of tourniquet-induced ischemia, and hind limb amputation [CEI+tI+HLA], (4) BOP+BU or (5) BOP+CEI and delayed HLA [BOP+CEI+dHLA] at 6, 24, and 168 h post-injury (hpi). RESULTS Globally, the number and magnitude of differentially expressed genes (DEGs) correlated with injury severity, systemic inflammation markers, and end-organ damage, driven by several chemokines/cytokines (Csf3, Cxcr2, Il16, and Tgfb2), neurosteroids/prostaglandins (Cyp19a1, Ptger2, and Ptger3), and markers of neurodegeneration (Gfap, Grin2b, and Homer1). Regional neuroinflammatory activity was least impacted following BOP. Non-blast trauma (in the BU and CEI+tI+HLA groups) contributed to an earlier, robust and diverse neuroinflammatory response across brain regions (up to 2-50-fold greater than that in the BOP group), while combined trauma (in the BOP+CEI+dHLA group) significantly advanced neuroinflammation in all regions except for the cerebellum. In contrast, BOP+BU resulted in differential activity of several critical neuroinflammatory-neurodegenerative markers compared to BU. t-SNE plots of DEGs demonstrated that the onset, extent, and duration of the inflammatory response are brain region dependent. Regardless of injury type, the thalamus and hypothalamus, which are critical for maintaining homeostasis, had the most DEGs. Our results indicate that neuroinflammation in all groups progressively increased or remained at peak levels over the study duration, while markers of end-organ dysfunction decreased or otherwise resolved. CONCLUSIONS Collectively, these findings emphasize the brain's sensitivity to mediators of systemic inflammation and provide an example of immune-brain crosstalk. Follow-on molecular and behavioral investigations are warranted to understand the short- to long-term pathophysiological consequences on the brain, particularly the mechanism of blood-brain barrier breakdown, immune cell penetration-activation, and microglial activation.
Collapse
Affiliation(s)
- Cassie J Rowe
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA.
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA.
| | - Uloma Nwaolu
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Laura Martin
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA
- F. Edward Hébert School of Medicine, Uniformed Service University, Bethesda, MD, USA
| | - Benjamin J Huang
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA
- F. Edward Hébert School of Medicine, Uniformed Service University, Bethesda, MD, USA
| | - Josef Mang
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA
- F. Edward Hébert School of Medicine, Uniformed Service University, Bethesda, MD, USA
| | - Daniela Salinas
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Cody D Schlaff
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA
| | - Sennay Ghenbot
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA
| | - Jefferson L Lansford
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA
| | - Benjamin K Potter
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA
- F. Edward Hébert School of Medicine, Uniformed Service University, Bethesda, MD, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University, Bethesda, MD, USA
| | - Seth A Schobel
- Surgical Critical Care Initiative (SC2i), Uniformed Services University, Bethesda, MD, USA
| | - Eric R Gann
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
- Surgical Critical Care Initiative (SC2i), Uniformed Services University, Bethesda, MD, USA
| | - Thomas A Davis
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, 4301 Jones Bridge Road, Building A Room 3009E, Bethesda, MD, 20814, USA
- F. Edward Hébert School of Medicine, Uniformed Service University, Bethesda, MD, USA
| |
Collapse
|
4
|
Zhang X, Pan Y, Wu T, Zhao W, Zhang H, Ding J, Ji Q, Jia X, Li X, Lee Z, Zhang J, Bai L. Brain age prediction using interpretable multi-feature-based convolutional neural network in mild traumatic brain injury. Neuroimage 2024; 297:120751. [PMID: 39048043 DOI: 10.1016/j.neuroimage.2024.120751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Convolutional neural network (CNN) can capture the structural features changes of brain aging based on MRI, thus predict brain age in healthy individuals accurately. However, most studies use single feature to predict brain age in healthy individuals, ignoring adding information from multiple sources and the changes in brain aging patterns after mild traumatic brain injury (mTBI) were still unclear. METHODS Here, we leveraged the structural data from a large, heterogeneous dataset (N = 1464) to implement an interpretable 3D combined CNN model for brain-age prediction. In addition, we also built an atlas-based occlusion analysis scheme with a fine-grained human Brainnetome Atlas to reveal the age-sstratified contributed brain regions for brain-age prediction in healthy controls (HCs) and mTBI patients. The correlations between brain predicted age gaps (brain-PAG) following mTBI and individual's cognitive impairment, as well as the level of plasma neurofilament light were also examined. RESULTS Our model utilized multiple 3D features derived from T1w data as inputs, and reduced the mean absolute error (MAE) of age prediction to 3.08 years and improved Pearson's r to 0.97 on 154 HCs. The strong generalizability of our model was also validated across different centers. Regions contributing the most significantly to brain age prediction were the caudate and thalamus for HCs and patients with mTBI, and the contributive regions were mostly located in the subcortical areas throughout the adult lifespan. The left hemisphere was confirmed to contribute more in brain age prediction throughout the adult lifespan. Our research showed that brain-PAG in mTBI patients was significantly higher than that in HCs in both acute and chronic phases. The increased brain-PAG in mTBI patients was also highly correlated with cognitive impairment and a higher level of plasma neurofilament light, a marker of neurodegeneration. The higher brain-PAG and its correlation with severe cognitive impairment showed a longitudinal and persistent nature in patients with follow-up examinations. CONCLUSION We proposed an interpretable deep learning framework on a relatively large dataset to accurately predict brain age in both healthy individuals and mTBI patients. The interpretable analysis revealed that the caudate and thalamus became the most contributive role across the adult lifespan in both HCs and patients with mTBI. The left hemisphere contributed significantly to brain age prediction may enlighten us to be concerned about the lateralization of brain abnormality in neurological diseases in the future. The proposed interpretable deep learning framework might also provide hope for testing the performance of related drugs and treatments in the future.
Collapse
Affiliation(s)
- Xiang Zhang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yizhen Pan
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tingting Wu
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wenpu Zhao
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Haonan Zhang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jierui Ding
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qiuyu Ji
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaoyan Jia
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xuan Li
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhiqi Lee
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jie Zhang
- Department of Radiation Medicine, School of Preventive Medicine, Air Force Medical University, Xi'an 710032, China.
| | - Lijun Bai
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
5
|
Banderwal R, Kadian M, Garg S, Kumar A. 'Comprehensive review of emerging drug targets in traumatic brain injury (TBI): challenges and future scope. Inflammopharmacology 2024:10.1007/s10787-024-01524-w. [PMID: 39023681 DOI: 10.1007/s10787-024-01524-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/12/2024] [Indexed: 07/20/2024]
Abstract
Traumatic brain injury (TBI) is a complex brain problem that causes significant morbidity and mortality among people of all age groups. The complex pathophysiology, varied symptoms, and inadequate treatment further precipitate the problem. Further, TBI produces several psychiatric problems and other related complications in post-TBI survival patients, which are often treated symptomatically or inadequately. Several approaches, including neuroprotective agents targeting several pathways of oxidative stress, neuroinflammation, cytokines, immune system GABA, glutamatergic, microglia, and astrocytes, are being tried by researchers to develop effective treatments or magic bullets to manage the condition effectively. The problem of TBI is therefore treated as a challenge among pharmaceutical scientists or researchers to develop drugs for the effective management of this problem. The goal of the present comprehensive review is to provide an overview of the several pharmacological targets, processes, and cellular pathways that researchers are focusing on, along with an update on their current state.
Collapse
Affiliation(s)
- Rittu Banderwal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC- Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Monika Kadian
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC- Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Sukant Garg
- Department of General Pathology, Dr HS Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, 160014, India
| | - Anil Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC- Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
6
|
Zuckerman A, Siedhoff HR, Balderrama A, Li R, Sun GY, Cifu DX, Cernak I, Cui J, Gu Z. Individualized high-resolution analysis to categorize diverse learning and memory deficits in tau rTg4510 mice exposed to low-intensity blast. Front Cell Neurosci 2024; 18:1397046. [PMID: 38948027 PMCID: PMC11212475 DOI: 10.3389/fncel.2024.1397046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/09/2024] [Indexed: 07/02/2024] Open
Abstract
Mild traumatic brain injury (mTBI) resulting from low-intensity blast (LIB) exposure in military and civilian individuals is linked to enduring behavioral and cognitive abnormalities. These injuries can serve as confounding risk factors for the development of neurodegenerative disorders, including Alzheimer's disease-related dementias (ADRD). Recent animal studies have demonstrated LIB-induced brain damage at the molecular and nanoscale levels. Nevertheless, the mechanisms linking these damages to cognitive abnormalities are unresolved. Challenges preventing the translation of preclinical studies into meaningful findings in "real-world clinics" encompass the heterogeneity observed between different species and strains, variable time durations of the tests, quantification of dosing effects and differing approaches to data analysis. Moreover, while behavioral tests in most pre-clinical studies are conducted at the group level, clinical tests are predominantly assessed on an individual basis. In this investigation, we advanced a high-resolution and sensitive method utilizing the CognitionWall test system and applying reversal learning data to the Boltzmann fitting curves. A flow chart was developed that enable categorizing individual mouse to different levels of learning deficits and patterns. In this study, rTg4510 mice, which represent a neuropathology model due to elevated levels of tau P301L, together with the non-carrier genotype were exposed to LIB. Results revealed distinct and intricate patterns of learning deficits and patterns within each group and in relation to blast exposure. With the current findings, it is possible to establish connections between mice with specific cognitive deficits to molecular changes. This approach can enhance the translational value of preclinical findings and also allow for future development of a precision clinical treatment plan for ameliorating neurologic damage of individuals with mTBI.
Collapse
Affiliation(s)
- Amitai Zuckerman
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital Research Service, Columbia, MO, United States
| | - Heather R. Siedhoff
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital Research Service, Columbia, MO, United States
| | - Ashley Balderrama
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital Research Service, Columbia, MO, United States
| | - Runting Li
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital Research Service, Columbia, MO, United States
| | - Grace Y. Sun
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| | - David X. Cifu
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Ibolja Cernak
- Thomas F. Frist, Jr. College of Medicine, Belmont University, Nashville, TN, United States
| | - Jiankun Cui
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital Research Service, Columbia, MO, United States
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital Research Service, Columbia, MO, United States
| |
Collapse
|
7
|
Govier DJ, Gilbert TA, Jacob RL, Lafferty M, Mulcahy A, Pogoda TK, Zogas A, O’Neil ME, Pugh MJ, Carlson KF. Prevalence and Correlates of VA-Purchased Community Care Use Among Post-9/11-Era Veterans With Traumatic Brain Injury. J Head Trauma Rehabil 2024; 39:207-217. [PMID: 38709829 PMCID: PMC11074530 DOI: 10.1097/htr.0000000000000888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
OBJECTIVE Post-9/11-era veterans with traumatic brain injury (TBI) have greater health-related complexity than veterans overall, and may require coordinated care from TBI specialists such as those within the Department of Veterans Affairs (VA) healthcare system. With passage of the Choice and MISSION Acts, more veterans are using VA-purchased care delivered by community providers who may lack TBI training. We explored prevalence and correlates of VA-purchased care use among post-9/11 veterans with TBI. SETTING Nationwide VA-purchased care from 2016 through 2019. PARTICIPANTS Post-9/11-era veterans with clinician-confirmed TBI based on VA's Comprehensive TBI Evaluation (N = 65 144). DESIGN This was a retrospective, observational study. MAIN MEASURES Proportions of veterans who used VA-purchased care and both VA-purchased and VA-delivered outpatient care, overall and by study year. We employed multivariable logistic regression to assess associations between veterans' sociodemographic, military history, and clinical characteristics and their likelihood of using VA-purchased care from 2016 through 2019. RESULTS Overall, 51% of veterans with TBI used VA-purchased care during the study period. Nearly all who used VA-purchased care (99%) also used VA-delivered outpatient care. Veterans' sociodemographic, military, and clinical characteristics were associated with their likelihood of using VA-purchased care. Notably, in adjusted analyses, veterans with moderate/severe TBI (vs mild), those with higher health risk scores, and those diagnosed with posttraumatic stress disorder, depression, anxiety, substance use disorders, or pain-related conditions had increased odds of using VA-purchased care. Additionally, those flagged as high risk for suicide also had higher odds of VA-purchased care use. CONCLUSIONS Veterans with TBI with greater health-related complexity were more likely to use VA-purchased care than their less complex counterparts. The risks of potential care fragmentation across providers versus the benefits of increased access to care are unknown. Research is needed to examine health and functional outcomes among these veterans.
Collapse
Affiliation(s)
- Diana J. Govier
- Center to Improve Veteran Involvement in Care, VA Portland Healthcare System, Portland, OR
- Oregon Health & Science University – Portland State University School of Public Health, Portland, OR
| | - Tess A. Gilbert
- Center to Improve Veteran Involvement in Care, VA Portland Healthcare System, Portland, OR
| | - R. Lorie Jacob
- Center of Innovation for Complex Chronic Care, Edward Hines Jr. VA Hospital, Hines, IL
| | - Megan Lafferty
- Center to Improve Veteran Involvement in Care, VA Portland Healthcare System, Portland, OR
| | - Abby Mulcahy
- Center to Improve Veteran Involvement in Care, VA Portland Healthcare System, Portland, OR
- Oregon Health & Science University – Portland State University School of Public Health, Portland, OR
| | - Terri K. Pogoda
- Center for Healthcare Organization and Implementation Research, VA Boston Healthcare System, Boston, MA
- Boston University School of Public Health, Boston, MA
| | - Anna Zogas
- Center for Healthcare Organization and Implementation Research, VA Boston Healthcare System, Boston, MA
- Boston University Chobanian & Avedisian School of Medicine Section of General Internal Medicine, Boston, MA
| | - Maya E. O’Neil
- Center to Improve Veteran Involvement in Care, VA Portland Healthcare System, Portland, OR
- Oregon Health & Science University, Portland, OR
| | - Mary Jo Pugh
- Informatics, Decision-Enhancement and Analytic Sciences Center of Innovation, Salt Lake City, UT
- University of Utah, Salt Lake City, UT
| | - Kathleen F. Carlson
- Center to Improve Veteran Involvement in Care, VA Portland Healthcare System, Portland, OR
- Oregon Health & Science University – Portland State University School of Public Health, Portland, OR
| |
Collapse
|
8
|
Elder GA, Gama Sosa MA, De Gasperi R, Perez Garcia G, Perez GM, Abutarboush R, Kawoos U, Zhu CW, Janssen WGM, Stone JR, Hof PR, Cook DG, Ahlers ST. The Neurovascular Unit as a Locus of Injury in Low-Level Blast-Induced Neurotrauma. Int J Mol Sci 2024; 25:1150. [PMID: 38256223 PMCID: PMC10816929 DOI: 10.3390/ijms25021150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Blast-induced neurotrauma has received much attention over the past decade. Vascular injury occurs early following blast exposure. Indeed, in animal models that approximate human mild traumatic brain injury or subclinical blast exposure, vascular pathology can occur in the presence of a normal neuropil, suggesting that the vasculature is particularly vulnerable. Brain endothelial cells and their supporting glial and neuronal elements constitute a neurovascular unit (NVU). Blast injury disrupts gliovascular and neurovascular connections in addition to damaging endothelial cells, basal laminae, smooth muscle cells, and pericytes as well as causing extracellular matrix reorganization. Perivascular pathology becomes associated with phospho-tau accumulation and chronic perivascular inflammation. Disruption of the NVU should impact activity-dependent regulation of cerebral blood flow, blood-brain barrier permeability, and glymphatic flow. Here, we review work in an animal model of low-level blast injury that we have been studying for over a decade. We review work supporting the NVU as a locus of low-level blast injury. We integrate our findings with those from other laboratories studying similar models that collectively suggest that damage to astrocytes and other perivascular cells as well as chronic immune activation play a role in the persistent neurobehavioral changes that follow blast injury.
Collapse
Affiliation(s)
- Gregory A. Elder
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA;
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; (M.A.G.S.); (R.D.G.)
- Mount Sinai Alzheimer’s Disease Research Center and the Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.W.Z.); (P.R.H.)
| | - Miguel A. Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; (M.A.G.S.); (R.D.G.)
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468, USA
| | - Rita De Gasperi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; (M.A.G.S.); (R.D.G.)
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
| | - Georgina Perez Garcia
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA;
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
| | - Gissel M. Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
| | - Rania Abutarboush
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical ResearchCommand, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (R.A.); (U.K.); (S.T.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical ResearchCommand, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (R.A.); (U.K.); (S.T.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Carolyn W. Zhu
- Mount Sinai Alzheimer’s Disease Research Center and the Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.W.Z.); (P.R.H.)
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - William G. M. Janssen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James R. Stone
- Department of Radiology and Medical Imaging, University of Virginia, 480 Ray C Hunt Drive, Charlottesville, VA 22903, USA;
| | - Patrick R. Hof
- Mount Sinai Alzheimer’s Disease Research Center and the Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.W.Z.); (P.R.H.)
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David G. Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, 1660 S Columbian Way, Seattle, WA 98108, USA;
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Stephen T. Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical ResearchCommand, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (R.A.); (U.K.); (S.T.A.)
| |
Collapse
|
9
|
Stromberg KM, Martindale SL, Walker WC, Ou Z, Pogoda TK, Miles SR, Dismuke-Greer CE, Carlson KF, Rowland JA, O’Neil ME, Pugh MJ. Mild traumatic brain injury, PTSD symptom severity, and behavioral dyscontrol: a LIMBIC-CENC study. Front Neurol 2024; 14:1286961. [PMID: 38274880 PMCID: PMC10808394 DOI: 10.3389/fneur.2023.1286961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/23/2023] [Indexed: 01/27/2024] Open
Abstract
Background Behavioral dyscontrol occurs commonly in the general population and in United States service members and Veterans (SM/V). This condition merits special attention in SM/V, particularly in the aftermath of deployments. Military deployments frequently give rise to posttraumatic stress disorder (PTSD) and deployment-related mild TBI traumatic brain injury (TBI), potentially leading to manifestations of behavioral dyscontrol. Objective Examine associations among PTSD symptom severity, deployment-related mild traumatic brain injury, and behavioral dyscontrol among SM/V. Design Secondary cross-sectional data analysis from the Long-Term Impact of Military-Relevant Brain Injury Consortium - Chronic Effects of Neurotrauma Consortium prospective longitudinal study among SM/V (N = 1,808). Methods Univariable and multivariable linear regression models assessed the association and interaction effects between PTSD symptom severity, as assessed by the PTSD Checklist for the Diagnostic and Statistical Manual, 5th edition (PCL-5), and deployment-related mild TBI on behavioral dyscontrol, adjusting for demographics, pain, social support, resilience, and general self-efficacy. Results Among the 1,808 individuals in our sample, PTSD symptom severity (B = 0.23, 95% CI: 0.22, 0.25, p < 0.001) and deployment-related mild TBI (B = 3.27, 95% CI: 2.63, 3.90, p < 0.001) were significantly associated with behavioral dyscontrol in univariable analysis. Interaction effects were significant between PTSD symptom severity and deployment mild TBI (B = -0.03, 95% CI: -0.06, -0.01, p = 0.029) in multivariable analysis, indicating that the effect of mild TBI on behavioral dyscontrol is no longer significant among those with a PCL-5 score > 22.96. Conclusion Results indicated an association between PTSD symptom severity, deployment-related mild TBI, and behavioral dyscontrol among SM/V. Notably, the effect of deployment-related mild TBI was pronounced for individuals with lower PTSD symptom severity. Higher social support scores were associated with lower dyscontrol, emphasizing the potential for social support to be a protective factor. General self-efficacy was also associated with reduced behavioral dyscontrol.
Collapse
Affiliation(s)
- Kelsee M. Stromberg
- Informatics, Decision-Enhancement, and Analytic Sciences (IDEAS) Center, VA Salt Lake City Health Care System, Salt Lake City, UT, United States
- Department of Internal Medicine, Division of Epidemiology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Sarah L. Martindale
- Research and Academic Affairs Service Line, W. G. (Bill) Hefner VA Healthcare System, Salisbury, NC, United States
- Veterans Integrated Service Networks (VISN)-6 Mid-Atlantic Mental Illness, Research Education and Clinical Center (MIRECC), Durham, NC, United States
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - William C. Walker
- Department of Physical Medicine and Rehabilitation (PM&R), School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
- Department of PM&R, Central Virginia VA Health Care System, Richmond, VA, United States
| | - Zhining Ou
- Department of Internal Medicine, Division of Epidemiology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Terri K. Pogoda
- Center for Healthcare Organization and Implementation Research, VA Boston Healthcare System, Boston, MA, United States
- Department of Health Law, Policy and Management, Boston University School of Public Health, Boston, MA, United States
| | - Shannon R. Miles
- Mental Health and Behavioral Sciences Services, James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Clara E. Dismuke-Greer
- Health Economics Resource Center (HERC), Ci2i, VA Palo Alto Health Care System, Menlo Park, CA, United States
| | - Kathleen F. Carlson
- VA HSR&D Center to Improve Veteran Involvement in Care (CIVIC) and RR&D National Center for Rehabilitative Auditory Research (NCRAR), Veterans Affairs Portland Health Care System, Portland, OR, United States
- Oregon Health and Science University – Portland State University School of Public Health, Oregon Health & Science University, Portland, OR, United States
| | - Jared A. Rowland
- Research and Academic Affairs Service Line, W. G. (Bill) Hefner VA Healthcare System, Salisbury, NC, United States
- Veterans Integrated Service Networks (VISN)-6 Mid-Atlantic Mental Illness, Research Education and Clinical Center (MIRECC), Durham, NC, United States
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Maya E. O’Neil
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
- Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, United States
| | - Mary Jo Pugh
- Informatics, Decision-Enhancement, and Analytic Sciences (IDEAS) Center, VA Salt Lake City Health Care System, Salt Lake City, UT, United States
- Department of Internal Medicine, Division of Epidemiology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
10
|
Kilgore MO, Hubbard WB. Effects of Low-Level Blast on Neurovascular Health and Cerebral Blood Flow: Current Findings and Future Opportunities in Neuroimaging. Int J Mol Sci 2024; 25:642. [PMID: 38203813 PMCID: PMC10779081 DOI: 10.3390/ijms25010642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Low-level blast (LLB) exposure can lead to alterations in neurological health, cerebral vasculature, and cerebral blood flow (CBF). The development of cognitive issues and behavioral abnormalities after LLB, or subconcussive blast exposure, is insidious due to the lack of acute symptoms. One major hallmark of LLB exposure is the initiation of neurovascular damage followed by the development of neurovascular dysfunction. Preclinical studies of LLB exposure demonstrate impairment to cerebral vasculature and the blood-brain barrier (BBB) at both early and long-term stages following LLB. Neuroimaging techniques, such as arterial spin labeling (ASL) using magnetic resonance imaging (MRI), have been utilized in clinical investigations to understand brain perfusion and CBF changes in response to cumulative LLB exposure. In this review, we summarize neuroimaging techniques that can further our understanding of the underlying mechanisms of blast-related neurotrauma, specifically after LLB. Neuroimaging related to cerebrovascular function can contribute to improved diagnostic and therapeutic strategies for LLB. As these same imaging modalities can capture the effects of LLB exposure in animal models, neuroimaging can serve as a gap-bridging diagnostic tool that permits a more extensive exploration of potential relationships between blast-induced changes in CBF and neurovascular health. Future research directions are suggested, including investigating chronic LLB effects on cerebral perfusion, exploring mechanisms of dysautoregulation after LLB, and measuring cerebrovascular reactivity (CVR) in preclinical LLB models.
Collapse
Affiliation(s)
- Madison O. Kilgore
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA;
| | - W. Brad Hubbard
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA;
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA
| |
Collapse
|
11
|
Jurick SM, McCabe CT, Watrous JR, MacGregor AJ, Walton SR, Stewart IJ, Walker LE, Galarneau MR. Associations between health-related behaviors and self-reported cognitive symptoms in U.S. military personnel injured on deployment. J Psychiatr Res 2023; 165:48-55. [PMID: 37459778 DOI: 10.1016/j.jpsychires.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 09/03/2023]
Abstract
Health behaviors may be core contributors to cognition and mental health following mild traumatic brain injury (TBI). The aims of the present study examined: (1) whether health behaviors including sleep duration, alcohol use, and physical activity differed in injured military personnel with and without deployment-related mild TBI history and (2) the relative contributions of health behaviors and deployment-related mild TBI history to self-reported cognitive, posttraumatic stress disorder (PTSD), and depressive symptoms. Participants included 3076 military personnel injured on deployment participating in the Wounded Warrior Recovery Project, an ongoing web-based study. Military personnel with deployment-related mild TBI history reported similar rates of physical activity and levels of alcohol problems as those without, but were less likely to report receiving the recommended duration of sleep. When adjusting for demographic and injury variables, all three health behaviors were associated with cognitive, PTSD, and depressive symptoms. Alcohol problems demonstrated significant but small effects across all outcomes measures (ηp2=.01) whereas physical activity was associated with slightly larger effects albeit still within the small range (ηp2=.02-0.04). Duration of sleep bordered a medium effect for cognitive symptoms (ηp2=.05) and was in the medium range for PTSD and depressive symptoms (ηp2=.06). Although deployment-related mild TBI history was significant in all models, effect sizes were small (ηp2=.01). Findings from the present study provide support that health behaviors have stronger effects with regard to cognitive, PTSD, and depressive symptoms compared to deployment-related mild TBI history in military personnel and, given their modifiable nature, may represent treatment targets in this population.
Collapse
Affiliation(s)
- Sarah M Jurick
- Leidos, 4161 Campus Point Ct, San Diego, CA, 92121, USA; Naval Health Research Center, 140 Sylvester Road, San Diego, CA, 92106, USA.
| | - Cameron T McCabe
- Leidos, 4161 Campus Point Ct, San Diego, CA, 92121, USA; Naval Health Research Center, 140 Sylvester Road, San Diego, CA, 92106, USA; Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA
| | - Jessica R Watrous
- Leidos, 4161 Campus Point Ct, San Diego, CA, 92121, USA; Naval Health Research Center, 140 Sylvester Road, San Diego, CA, 92106, USA; Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA
| | - Andrew J MacGregor
- Naval Health Research Center, 140 Sylvester Road, San Diego, CA, 92106, USA
| | - Samuel R Walton
- School of Medicine Physical Medicine and Rehabilitation, Virginia Commonwealth University, 1201 E Marshall St #4-100, Richmond, VA, 23298, USA
| | - Ian J Stewart
- Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA
| | - Lauren E Walker
- David Grant USAF Medical Center, 101 Bodin Circle, Bldg. 777, Travis AFB, CA, 94535, USA
| | | |
Collapse
|
12
|
Gama Sosa MA, De Gasperi R, Pryor D, Perez Garcia GS, Perez GM, Abutarboush R, Kawoos U, Hogg S, Ache B, Sowa A, Tetreault T, Varghese M, Cook DG, Zhu CW, Tappan SJ, Janssen WGM, Hof PR, Ahlers ST, Elder GA. Late chronic local inflammation, synaptic alterations, vascular remodeling and arteriovenous malformations in the brains of male rats exposed to repetitive low-level blast overpressures. Acta Neuropathol Commun 2023; 11:81. [PMID: 37173747 PMCID: PMC10176873 DOI: 10.1186/s40478-023-01553-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 05/15/2023] Open
Abstract
In the course of military operations in modern war theaters, blast exposures are associated with the development of a variety of mental health disorders associated with a post-traumatic stress disorder-related features, including anxiety, impulsivity, insomnia, suicidality, depression, and cognitive decline. Several lines of evidence indicate that acute and chronic cerebral vascular alterations are involved in the development of these blast-induced neuropsychiatric changes. In the present study, we investigated late occurring neuropathological events associated with cerebrovascular alterations in a rat model of repetitive low-level blast-exposures (3 × 74.5 kPa). The observed events included hippocampal hypoperfusion associated with late-onset inflammation, vascular extracellular matrix degeneration, synaptic structural changes and neuronal loss. We also demonstrate that arteriovenous malformations in exposed animals are a direct consequence of blast-induced tissue tears. Overall, our results further identify the cerebral vasculature as a main target for blast-induced damage and support the urgent need to develop early therapeutic approaches for the prevention of blast-induced late-onset neurovascular degenerative processes.
Collapse
Affiliation(s)
- Miguel A Gama Sosa
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Rita De Gasperi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Dylan Pryor
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Georgina S Perez Garcia
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
| | - Gissel M Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Seth Hogg
- Micro Photonics, Inc, 1550 Pond Road, Suite 110, Allentown, PA, 18104, USA
| | - Benjamin Ache
- Micro Photonics, Inc, 1550 Pond Road, Suite 110, Allentown, PA, 18104, USA
| | - Allison Sowa
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Merina Varghese
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - David G Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, 1660 S Columbian Way, Seattle, WA, 98108, USA
- Department of Medicine, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Carolyn W Zhu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Susan J Tappan
- MBF Bioscience LLC, 185 Allen Brook Lane, Williston, VT, 05495, USA
| | - William G M Janssen
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Patrick R Hof
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Stephen T Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Gregory A Elder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| |
Collapse
|
13
|
Sigler A, Wu J, Pfaff A, Adetunji O, Nam P, James D, Burton C, Shi H. Repeated Low-Level Blast Exposure Alters Urinary and Serum Metabolites. Metabolites 2023; 13:metabo13050638. [PMID: 37233679 DOI: 10.3390/metabo13050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Repeated exposure to low-level blast overpressures can produce biological changes and clinical sequelae that resemble mild traumatic brain injury (TBI). While recent efforts have revealed several protein biomarkers for axonal injury during repetitive blast exposure, this study aims to explore potential small molecule biomarkers of brain injury during repeated blast exposure. This study evaluated a panel of ten small molecule metabolites involved in neurotransmission, oxidative stress, and energy metabolism in the urine and serum of military personnel (n = 27) conducting breacher training with repeated exposure to low-level blasts. The metabolites were analyzed using HPLC-tandem mass spectrometry, and the Wilcoxon signed-rank test was used for statistical analysis to compare the levels of pre-blast and post-blast exposures. Urinary levels of homovanillic acid (p < 0.0001), linoleic acid (p = 0.0030), glutamate (p = 0.0027), and serum N-acetylaspartic acid (p = 0.0006) were found to be significantly altered following repeated blast exposure. Homovanillic acid concentration decreased continuously with subsequent repeat exposure. These results suggest that repeated low-level blast exposures can produce measurable changes in urine and serum metabolites that may aid in identifying individuals at increased risk of sustaining a TBI. Larger clinical studies are needed to extend the generalizability of these findings.
Collapse
Affiliation(s)
- Austin Sigler
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Jiandong Wu
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Annalise Pfaff
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Olajide Adetunji
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Paul Nam
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | | | - Casey Burton
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
- Phelps Health, Rolla, MO 65401, USA
| | - Honglan Shi
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| |
Collapse
|
14
|
Garcia GP, Perez GM, Gasperi RD, Sosa MAG, Otero-Pagan A, Abutarboush R, Kawoos U, Statz JK, Patterson J, Zhu CW, Hof PR, Cook DG, Ahlers ST, Elder GA. (2R,6R)-Hydroxynorketamine Treatment of Rats Exposed to Repetitive Low-Level Blast Injury. Neurotrauma Rep 2023; 4:197-217. [PMID: 37020715 PMCID: PMC10068674 DOI: 10.1089/neur.2022.0088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Many military veterans who experienced blast-related traumatic brain injuries (TBIs) in the conflicts in Iraq and Afghanistan suffer from chronic cognitive and mental health problems, including post-traumatic stress disorder (PTSD). Male rats subjected to repetitive low-level blast exposure develop chronic cognitive and PTSD-related traits that develop in a delayed manner. Ketamine has received attention as a treatment for refractory depression and PTSD. (2R,6R)-hydroxynorketamine [(2R,6R)-HNK] is a ketamine metabolite that exerts rapid antidepressant actions. (2R,6R)-HNK has become of clinical interest because of its favorable side-effect profile, low abuse potential, and oral route of administration. We treated three cohorts of blast-exposed rats with (2R,6R)-HNK, beginning 7-11 months after blast exposure, a time when the behavioral phenotype is established. Each cohort consisted of groups (n = 10-13/group) as follows: 1) Sham-exposed treated with saline, 2) blast-exposed treated with saline, and 3) blast-exposed treated with a single dose of 20 mg/kg of (2R,6R)-HNK. (2R,6R)-HNK rescued blast-induced deficits in novel object recognition (NOR) and anxiety-related features in the elevated zero maze (EZM) in all three cohorts. Exaggerated acoustic startle was reversed in cohort 1, but not in cohort 3. (2R,6R)-HNK effects were still present in the EZM 12 days after administration in cohort 1 and 27 days after administration in NOR testing of cohorts 2 and 3. (2R,6R)-HNK may be beneficial for the neurobehavioral syndromes that follow blast exposure in military veterans. Additional studies will be needed to determine whether higher doses or more extended treatment regimens may be more effective.
Collapse
Affiliation(s)
- Georgina Perez Garcia
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gissel M. Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rita De Gasperi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miguel A. Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Alena Otero-Pagan
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Jonathan K. Statz
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Jacob Patterson
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Carolyn W. Zhu
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David G. Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Stephen T. Ahlers
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Gregory A. Elder
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| |
Collapse
|
15
|
Gasperi RD, Gama Sosa MA, Perez Garcia GS, Perez GM, Abutarboush R, Kawoos U, Statz JK, Patterson J, Hof PR, Katsel P, Cook DG, Ahlers ST, Elder GA. Progressive Transcriptional Changes in the Amygdala Implicate Neuroinflammation in the Effects of Repetitive Low-Level Blast Exposure in Male Rats. J Neurotrauma 2023; 40:561-577. [PMID: 36262047 PMCID: PMC10040418 DOI: 10.1089/neu.2022.0282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic mental health problems are common among military veterans who sustained blast-related traumatic brain injuries. The reasons for this association remain unexplained. Male rats exposed to repetitive low-level blast overpressure (BOP) exposures exhibit chronic cognitive and post-traumatic stress disorder (PTSD)-related traits that develop in a delayed fashion. We examined blast-induced alterations on the transcriptome in four brain areas (anterior cortex, hippocampus, amygdala, and cerebellum) across the time frame over which the PTSD-related behavioral phenotype develops. When analyzed at 6 weeks or 12 months after blast exposure, relatively few differentially expressed genes (DEGs) were found. However, longitudinal analysis of amygdala, hippocampus, and anterior cortex between 6 weeks and 12 months revealed blast-specific DEG patterns. Six DEGs (hyaluronan and proteoglycan link protein 1 [Hapln1], glutamate metabotropic receptor 2 [Grm2], purinergic receptor P2y12 [P2ry12], C-C chemokine receptor type 5 [Ccr5], phenazine biosynthesis-like protein domain containing 1 [Pbld1], and cadherin related 23 [Cdh23]) were found altered in all three brain regions in blast-exposed animals. Pathway enrichment analysis using all DEGs or those uniquely changed revealed different transcription patterns in blast versus sham. In particular, the amygdala in blast-exposed animals had a unique set of enriched pathways related to stress responses, oxidative phosphorylation, and mitochondrial dysfunction. Upstream analysis implicated tumor necrosis factor (TNF)α signaling in blast-related effects in amygdala and anterior cortex. Eukaryotic initiating factor eIF4E (EIF4e), an upstream regulator of P2ry12 and Ccr5, was predicted to be activated in the amygdala. Quantitative polymerase chain reaction (qPCR) validated longitudinal changes in two TNFα regulated genes (cathepsin B [Ctsb], Hapln1), P2ry12, and Grm2. These studies have implications for understanding how blast injury damages the brain and implicates inflammation as a potential therapeutic target.
Collapse
Affiliation(s)
- Rita De Gasperi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miguel A. Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Georgina S. Perez Garcia
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gissel M. Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Jonathan K. Statz
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Jacob Patterson
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Parsons Corporation, Centreville, Virginia, USA
| | - Patrick R. Hof
- Department of Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Pavel Katsel
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David G. Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Stephen T. Ahlers
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Gregory A. Elder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| |
Collapse
|
16
|
Gharahi H, Garimella HT, Chen ZJ, Gupta RK, Przekwas A. Mathematical model of mechanobiology of acute and repeated synaptic injury and systemic biomarker kinetics. Front Cell Neurosci 2023; 17:1007062. [PMID: 36814869 PMCID: PMC9939777 DOI: 10.3389/fncel.2023.1007062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/10/2023] [Indexed: 02/09/2023] Open
Abstract
Background Blast induced Traumatic Brain Injury (bTBI) has become a signature casualty of military operations. Recently, military medics observed neurocognitive deficits in servicemen exposed to repeated low level blast (LLB) waves during military heavy weapons training. In spite of significant clinical and preclinical TBI research, current understanding of injury mechanisms and short- and long-term outcomes is limited. Mathematical models of bTBI biomechanics and mechanobiology of sensitive neuro-structures such as synapses may help in better understanding of injury mechanisms and in the development of improved diagnostics and neuroprotective strategies. Methods and results In this work, we formulated a model of a single synaptic structure integrating the dynamics of the synaptic cell adhesion molecules (CAMs) with the deformation mechanics of the synaptic cleft. The model can resolve time scales ranging from milliseconds during the hyperacute phase of mechanical loading to minutes-hours acute/chronic phase of injury progression/repair. The model was used to simulate the synaptic injury responses caused by repeated blast loads. Conclusion Our simulations demonstrated the importance of the number of exposures compared to the duration of recovery period between repeated loads on the synaptic injury responses. The paper recognizes current limitations of the model and identifies potential improvements.
Collapse
Affiliation(s)
- Hamidreza Gharahi
- Biomedical and Data Sciences Division, CFD Research Corporation, Huntsville, AL, United States,Hamidreza Gharahi,
| | - Harsha T. Garimella
- Biomedical and Data Sciences Division, CFD Research Corporation, Huntsville, AL, United States
| | - Zhijian J. Chen
- Biomedical and Data Sciences Division, CFD Research Corporation, Huntsville, AL, United States
| | - Raj K. Gupta
- Department of Defense Blast Injury Research Program Coordinating Office, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
| | - Andrzej Przekwas
- Biomedical and Data Sciences Division, CFD Research Corporation, Huntsville, AL, United States,*Correspondence: Andrzej Przekwas,
| |
Collapse
|
17
|
Yanov YK, Kuznetsov MS, Glaznikov LA, Dvoryanchikov VV, Syroezhkin FA, Golovanov AE, Gofman VR. [Lesions of the cortical part of the auditory analyzer in explosive injury]. Vestn Otorinolaringol 2022; 87:14-20. [PMID: 35274887 DOI: 10.17116/otorino20228701114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A survey of 48 victims aged 19-36 years with explosive trauma and combined damage to the auditory system was conducted to assess the level of damage to nerve structures by analyzing the bioelectric activity of the cerebral cortex. All patients underwent electroencephalography (EEG). It is established that akubarotrauma of explosive genesis almost always leads to lesions of the function of the cortical part of the auditory analyzer. Desynchronized activity on the EEG after acubarotrauma is a favorable prognostic sign, indicating only functional disorders of the cortical part of the auditory analyzer. On the contrary, EEG changes of an organic type of cortical or stem nature are an unfavorable prognostic factor, usually accompanied by sensorineural hearing loss with prolonged and incomplete hearing recovery. Promising drugs for the treatment of otoneurological disorders are antihypoxants, in particular, derivatives of triazine indole, which affect the molecular mechanisms of hypoxia development.
Collapse
Affiliation(s)
- Yu K Yanov
- S.M. Kirov Military Medical Academy of the Russian Defense Ministry, St. Petersburg, Russia
| | - M S Kuznetsov
- S.M. Kirov Military Medical Academy of the Russian Defense Ministry, St. Petersburg, Russia
| | - L A Glaznikov
- S.M. Kirov Military Medical Academy of the Russian Defense Ministry, St. Petersburg, Russia
| | - V V Dvoryanchikov
- S.M. Kirov Military Medical Academy of the Russian Defense Ministry, St. Petersburg, Russia
| | - F A Syroezhkin
- S.M. Kirov Military Medical Academy of the Russian Defense Ministry, St. Petersburg, Russia
| | - A E Golovanov
- S.M. Kirov Military Medical Academy of the Russian Defense Ministry, St. Petersburg, Russia
| | - V R Gofman
- S.M. Kirov Military Medical Academy of the Russian Defense Ministry, St. Petersburg, Russia
| |
Collapse
|
18
|
Al Yacoub ON, Awwad HO, Zhang Y, Standifer KM. Therapeutic potential of nociceptin/orphanin FQ peptide (NOP) receptor modulators for treatment of traumatic brain injury, traumatic stress, and their co-morbidities. Pharmacol Ther 2022; 231:107982. [PMID: 34480968 DOI: 10.1016/j.pharmthera.2021.107982] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/22/2022]
Abstract
The nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor is a member of the opioid receptor superfamily with N/OFQ as its endogenous agonist. Wide expression of the NOP receptor and N/OFQ, both centrally and peripherally, and their ability to modulate several biological functions has led to development of NOP receptor modulators by pharmaceutical companies as therapeutics, based upon their efficacy in preclinical models of pain, anxiety, depression, Parkinson's disease, and substance abuse. Both posttraumatic stress disorder (PTSD) and traumatic brain injury (TBI) are debilitating conditions that significantly affect the quality of life of millions of people around the world. PTSD is often a consequence of TBI, and, especially for those deployed to, working and/or living in a war zone or are first responders, they are comorbid. PTSD and TBI share common symptoms, and negatively influence outcomes as comorbidities of the other. Unfortunately, a lack of effective therapies or therapeutic agents limits the long term quality of life for either TBI or PTSD patients. Ours, and other groups, demonstrated that PTSD and TBI preclinical models elicit changes in the N/OFQ-NOP receptor system, and that administration of NOP receptor ligands alleviated some of the neurobiological and behavioral changes induced by brain injury and/or traumatic stress exposure. Here we review the past and most recent progress on understanding the role of the N/OFQ-NOP receptor system in PTSD and TBI neurological and behavioral sequelae. There is still more to understand about this neuropeptide system in both PTSD and TBI, but current findings warrant further examination of the potential utility of NOP modulators as therapeutics for these disorders and their co-morbidities. We advocate the development of standards for common data elements (CDE) reporting for preclinical PTSD studies, similar to current preclinical TBI CDEs. That would provide for more standardized data collection and reporting to improve reproducibility, interpretation and data sharing across studies.
Collapse
Affiliation(s)
- Omar N Al Yacoub
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, OUHSC, Oklahoma City, OK 73117, United States of America
| | - Hibah O Awwad
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, OUHSC, Oklahoma City, OK 73117, United States of America
| | - Yong Zhang
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, OUHSC, Oklahoma City, OK 73117, United States of America
| | - Kelly M Standifer
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, OUHSC, Oklahoma City, OK 73117, United States of America.
| |
Collapse
|
19
|
Role of Inflammation in Traumatic Brain Injury-Associated Risk for Neuropsychiatric Disorders: State of the Evidence and Where Do We Go From Here. Biol Psychiatry 2022; 91:438-448. [PMID: 34955170 DOI: 10.1016/j.biopsych.2021.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/01/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023]
Abstract
In the past decade, there has been an increasing awareness that traumatic brain injury (TBI) and concussion substantially increase the risk for developing psychiatric disorders. Even mild TBI increases the risk for depression and anxiety disorders such as posttraumatic stress disorder by two- to threefold, predisposing patients to further functional impairment. This strong epidemiological link supports examination of potential mechanisms driving neuropsychiatric symptom development after TBI. One potential mechanism for increased neuropsychiatric symptoms after TBI is via inflammatory processes, as central nervous system inflammation can last years after initial injury. There is emerging preliminary evidence that TBI patients with posttraumatic stress disorder or depression exhibit increased central and peripheral inflammatory markers compared with TBI patients without these comorbidities. Growing evidence has demonstrated that immune signaling in animals plays an integral role in depressive- and anxiety-like behaviors after severe stress or brain injury. In this review, we will 1) discuss current evidence for chronic inflammation after TBI in the development of neuropsychiatric symptoms, 2) highlight potential microglial activation and cytokine signaling contributions, and 3) discuss potential promise and pitfalls for immune-targeted interventions and biomarker strategies to identify and treat TBI patients with immune-related neuropsychiatric symptoms.
Collapse
|
20
|
Leung KK, Carr FM, Russell MJ, Bremault-Phillips S, Triscott JAC. Traumatic brain injuries among veterans and the risk of incident dementia: A systematic review & meta-analysis. Age Ageing 2022; 51:6394990. [PMID: 34651165 DOI: 10.1093/ageing/afab194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Traumatic brain injuries (TBI) among military veterans are increasingly recognized as important causes of both short and long-term neuropsychological dysfunction. However, the association between TBI and the development of dementia is controversial. This systematic review and meta-analysis sought to quantify the risks of all-cause dementia including Alzheimer's diseases and related dementias (ADRD), and to explore whether the relationships are influenced by the severity and recurrence of head injuries. METHODS Database searches of Medline, Embase, Ovid Healthstar, PubMed and PROSPERO were undertaken from inception to December 2020 and supplemented with grey literature searches without language restrictions. Observational cohort studies examining TBI and incident dementia among veterans were analysed using Dersimonian-Laird random-effects models. RESULTS Thirteen cohort studies totalling over 7.1 million observations with veterans were included. TBI was associated with an increased risk of all-cause dementia (hazard ratio [HR] = 1.95, 95% confidence interval [CI]: 1.55-2.45), vascular dementia (HR = 2.02, 95% CI: 1.46-2.80), but not Alzheimer's disease (HR = 1.30, 95% CI: 0.88-1.91). Severe and penetrating injuries were associated with a higher risk of all-cause dementia (HR = 3.35, 95% CI: 2.47-4.55) than moderate injuries (HR = 2.82, 95% CI: 1.44-5.52) and mild injuries (HR = 1.91, 95% CI: 1.30-2.80). However, the dose-response relationship was attenuated when additional studies with sufficient data to classify trauma severity were included. CONCLUSION TBI is a significant risk factor for incident all-cause dementia and vascular dementia. These results need to be interpreted cautiously in the presence of significant heterogeneity.
Collapse
Affiliation(s)
- Karen K Leung
- Division of Care of the Elderly, Department of Family Medicine, University of Alberta, T6G 2T4
| | - Frances M Carr
- Division of Geriatric Medicine, Department of Medicine, University of Alberta, T6G 2P4
| | | | - Suzette Bremault-Phillips
- Department of Occupational Therapy, Faculty of Rehabilitation Medicine, University of Alberta, T6G 2G4
| | - Jean A C Triscott
- Division of Care of the Elderly, Department of Family Medicine, University of Alberta, T6G 2T4
| |
Collapse
|
21
|
Perez Garcia G, Perez GM, Otero-Pagan A, Abutarboush R, Kawoos U, De Gasperi R, Gama Sosa MA, Pryor D, Hof PR, Cook DG, Gandy S, Ahlers ST, Elder GA. Transcranial Laser Therapy Does Not Improve Cognitive and Post-Traumatic Stress Disorder-Related Behavioral Traits in Rats Exposed to Repetitive Low-Level Blast Injury. Neurotrauma Rep 2021; 2:548-563. [PMID: 34901948 PMCID: PMC8655798 DOI: 10.1089/neur.2021.0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many military veterans who experienced blast-related traumatic brain injuries (TBIs) in the conflicts in Iraq and Afghanistan suffer from chronic cognitive and mental health problems, including post-traumatic stress disorder (PTSD). Transcranial laser therapy (TLT) uses low-power lasers emitting light in the far- to near-infrared ranges. Beneficial effects of TLT have been reported in neurological and mental-health-related disorders in humans and animal models, including TBI. Rats exposed to repetitive low-level blast develop chronic cognitive and PTSD-related behavioral traits. We tested whether TLT treatment could reverse these traits. Rats received a 74.5-kPa blast or sham exposures delivered one per day for 3 consecutive days. Beginning at 34 weeks after blast exposure, the following groups of rats were treated with active or sham TLT: 1) Sham-exposed rats (n = 12) were treated with sham TLT; 2) blast-exposed rats (n = 13) were treated with sham TLT; and 3) blast-exposed rats (n = 14) were treated with active TLT. Rats received 5 min of TLT five times per week for 6 weeks (wavelength, 808 nm; power of irradiance, 240 mW). At the end of treatment, rats were tested in tasks found previously to be most informative (novel object recognition, novel object localization, contextual/cued fear conditioning, elevated zero maze, and light/dark emergence). TLT did not improve blast-related effects in any of these tests, and blast-exposed rats were worse after TLT in some anxiety-related measures. Based on these findings, TLT does not appear to be a promising treatment for the chronic cognitive and mental health problems that follow blast injury.
Collapse
Affiliation(s)
- Georgina Perez Garcia
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gissel M. Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Alena Otero-Pagan
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Rita De Gasperi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miguel A. Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Dylan Pryor
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David G. Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Sam Gandy
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Barbara and Maurice A. Deane Center for Wellness and Cognitive Health and the Mount Sinai NFL Neurological Care Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen T. Ahlers
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Gregory A. Elder
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| |
Collapse
|
22
|
Gama Sosa MA, De Gasperi R, Pryor D, Perez Garcia GS, Perez GM, Abutarboush R, Kawoos U, Hogg S, Ache B, Janssen WG, Sowa A, Tetreault T, Cook DG, Tappan SJ, Gandy S, Hof PR, Ahlers ST, Elder GA. Low-level blast exposure induces chronic vascular remodeling, perivascular astrocytic degeneration and vascular-associated neuroinflammation. Acta Neuropathol Commun 2021; 9:167. [PMID: 34654480 PMCID: PMC8518227 DOI: 10.1186/s40478-021-01269-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023] Open
Abstract
Cerebral vascular injury as a consequence of blast-induced traumatic brain injury is primarily the result of blast wave-induced mechanical disruptions within the neurovascular unit. In rodent models of blast-induced traumatic brain injury, chronic vascular degenerative processes are associated with the development of an age-dependent post-traumatic stress disorder-like phenotype. To investigate the evolution of blast-induced chronic vascular degenerative changes, Long-Evans rats were blast-exposed (3 × 74.5 kPa) and their brains analyzed at different times post-exposure by X-ray microcomputed tomography, immunohistochemistry and electron microscopy. On microcomputed tomography scans, regional cerebral vascular attenuation or occlusion was observed as early as 48 h post-blast, and cerebral vascular disorganization was visible at 6 weeks and more accentuated at 13 months post-blast. Progression of the late-onset pathology was characterized by detachment of the endothelial and smooth muscle cellular elements from the neuropil due to degeneration and loss of arteriolar perivascular astrocytes. Development of this pathology was associated with vascular remodeling and neuroinflammation as increased levels of matrix metalloproteinases (MMP-2 and MMP-9), collagen type IV loss, and microglial activation were observed in the affected vasculature. Blast-induced chronic alterations within the neurovascular unit should affect cerebral blood circulation, glymphatic flow and intramural periarterial drainage, all of which may contribute to development of the blast-induced behavioral phenotype. Our results also identify astrocytic degeneration as a potential target for the development of therapies to treat blast-induced brain injury.
Collapse
Affiliation(s)
- Miguel A Gama Sosa
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Rita De Gasperi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Dylan Pryor
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Georgina S Perez Garcia
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
| | - Gissel M Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc, Bethesda, MD, USA
| | - Seth Hogg
- Micro Photonics, Inc, 1550 Pond Road, Suite 110, Allentown, PA, 18104, USA
| | - Benjamin Ache
- Micro Photonics, Inc, 1550 Pond Road, Suite 110, Allentown, PA, 18104, USA
| | - William G Janssen
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Allison Sowa
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - David G Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, 1660 S Columbian Way, Seattle, WA, 98108, USA
- Department of Medicine, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Susan J Tappan
- MBF Bioscience LLC, 185 Allen Brook Lane, Williston, VT, 05495, USA
| | - Sam Gandy
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- NFL Neurological Care Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Patrick R Hof
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Stephen T Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Gregory A Elder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| |
Collapse
|
23
|
Sharma HS, Muresanu DF, Sahib S, Tian ZR, Lafuente JV, Buzoianu AD, Castellani RJ, Nozari A, Li C, Zhang Z, Wiklund L, Sharma A. Cerebrolysin restores balance between excitatory and inhibitory amino acids in brain following concussive head injury. Superior neuroprotective effects of TiO 2 nanowired drug delivery. PROGRESS IN BRAIN RESEARCH 2021; 266:211-267. [PMID: 34689860 DOI: 10.1016/bs.pbr.2021.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Concussive head injury (CHI) often associated with military personnel, soccer players and related sports personnel leads to serious clinical situation causing lifetime disabilities. About 3-4k head injury per 100k populations are recorded in the United States since 2000-2014. The annual incidence of concussion has now reached to 1.2% of population in recent years. Thus, CHI inflicts a huge financial burden on the society for rehabilitation. Thus, new efforts are needed to explore novel therapeutic strategies to treat CHI cases to enhance quality of life of the victims. CHI is well known to alter endogenous balance of excitatory and inhibitory amino acid neurotransmitters in the central nervous system (CNS) leading to brain pathology. Thus, a possibility exists that restoring the balance of amino acids in the CNS following CHI using therapeutic measures may benefit the victims in improving their quality of life. In this investigation, we used a multimodal drug Cerebrolysin (Ever NeuroPharma, Austria) that is a well-balanced composition of several neurotrophic factors and active peptide fragments in exploring its effects on CHI induced alterations in key excitatory (Glutamate, Aspartate) and inhibitory (GABA, Glycine) amino acids in the CNS in relation brain pathology in dose and time-dependent manner. CHI was produced in anesthetized rats by dropping a weight of 114.6g over the right exposed parietal skull from a distance of 20cm height (0.224N impact) and blood-brain barrier (BBB), brain edema, neuronal injuries and behavioral dysfunctions were measured 8, 24, 48 and 72h after injury. Cerebrolysin (CBL) was administered (2.5, 5 or 10mL/kg, i.v.) after 4-72h following injury. Our observations show that repeated CBL induced a dose-dependent neuroprotection in CHI (5-10mL/kg) and also improved behavioral functions. Interestingly when CBL is delivered through TiO2 nanowires superior neuroprotective effects were observed in CHI even at a lower doses (2.5-5mL/kg). These observations are the first to demonstrate that CBL is effectively capable to attenuate CHI induced brain pathology and behavioral disturbances in a dose dependent manner, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Cong Li
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Yuexiu District, Guangzhou, China
| | - Zhiquiang Zhang
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Yuexiu District, Guangzhou, China
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
24
|
Niu F, Sharma A, Wang Z, Feng L, Muresanu DF, Sahib S, Tian ZR, Lafuente JV, Buzoianu AD, Castellani RJ, Nozari A, Menon PK, Patnaik R, Wiklund L, Sharma HS. Nanodelivery of oxiracetam enhances memory, functional recovery and induces neuroprotection following concussive head injury. PROGRESS IN BRAIN RESEARCH 2021; 265:139-230. [PMID: 34560921 DOI: 10.1016/bs.pbr.2021.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Military personnel are the most susceptible to concussive head injury (CHI) caused by explosion, blast or missile or blunt head trauma. Mild to moderate CHI could induce lifetime functional and cognitive disturbances causing significant decrease in quality of life. Severe CHI leads to instant death and lifetime paralysis. Thus, further exploration of novel therapeutic agents or new features of known pharmacological agents are needed to enhance quality of life of CHI victims. Previous reports from our laboratory showed that mild CHI induced by weight drop technique causing an impact of 0.224N results in profound progressive functional deficit, memory impairment and brain pathology from 5h after trauma that continued over several weeks of injury. In this investigation we report that TiO2 nanowired delivery of oxiracetam (50mg/kg, i.p.) daily for 5 days after CHI resulted in significant improvement of functional deficit on the 8th day. This was observed using Rota Rod treadmill, memory improvement assessed by the time spent in finding hidden platform under water. The motor function improvement is seen in oxiracetam treated CHI group by placing forepaw on an inclined mesh walking and foot print analysis for stride length and distance between hind feet. TiO2-nanowired oxiracetam also induced marked improvements in the cerebral blood flow, reduction in the BBB breakdown and edema formation as well as neuroprotection of neuronal, glial and myelin damages caused by CHI at light and electron microscopy on the 7th day after 5 days TiO2 oxiracetam treatment. Adverse biochemical events such as upregulation of CSF nitrite and nitrate, IL-6, TNF-a and p-Tau are also reduced significantly in oxiracetam treated CHI group. On the other hand post treatment of 100mg/kg dose of normal oxiracetam in identical conditions after CHI is needed to show slight but significant neuroprotection together with mild recovery of memory function and functional deficits on the 8th day. These observations are the first to point out that nanowired delivery of oxiracetam has superior neuroprotective ability in CHI. These results indicate a promising clinical future of TiO2 oxiracetam in treating CHI patients for better quality of life and neurorehabilitation, not reported earlier.
Collapse
Affiliation(s)
- Feng Niu
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, China
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Zhenguo Wang
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
25
|
Perez Garcia G, De Gasperi R, Tschiffely AE, Gama Sosa MA, Abutarboush R, Kawoos U, Statz JK, Ciarlone S, Reed EM, Jeyarajah T, Perez G, Otero Pagan A, Pryor D, Hof P, Cook D, Gandy S, Elder G, Ahlers S. Repetitive low-level blast exposure improves behavioral deficits and chronically lowers Aβ42 in an Alzheimer's disease transgenic mouse model. J Neurotrauma 2021; 38:3146-3173. [PMID: 34353119 DOI: 10.1089/neu.2021.0184] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Public awareness of traumatic brain injury (TBI) in the military increased recently because of the conflicts in Iraq and Afghanistan where blast injury was the most common mechanism of injury. Besides overt injuries, concerns also exist over the potential adverse consequences of subclinical blast exposures, which are common for many service members. TBI is a risk factor for the later development of neurodegenerative diseases, including Alzheimer's disease (AD)-like disorders. Studies of acute TBI in humans and animals have suggested that increased processing of the amyloid precursor protein (APP) towards the amyloid beta protein (Aβ) may explain the epidemiological associations with AD. However, in a prior study we found in both rat and mouse models of blast overpressure exposure (BOP), that rather than increasing, rodent brain Aβ42 levels were decreased following acute blast exposure. Here we subjected APP/presenilin 1 transgenic mice (APP/PS1 Tg) to an extended sequence of repetitive low-level blast exposures (34.5 kPa) administered three times per week over 8 weeks. If initiated at 20 weeks of age, these repetitive exposures, which were designed to mimic human subclinical blast exposures, reduced anxiety and improved cognition as well as social interactions in APP/PS1 Tg mice, returning many behavioral parameters in APP/PS1 Tg mice to levels of non-transgenic wild type mice. Repetitive low-level blast exposure was less effective at improving behavioral deficits in APP/PS1 Tg mice when begun at 36 weeks of age. While amyloid plaque loads were unchanged, Aβ42 levels and Aβ oligomers were reduced in brain of mice exposed to repetitive low-level blast exposures initiated at 20 weeks of age, although levels did not directly correlate with behavioral parameters in individual animals. These results have implications for understanding the nature of blast effects on the brain and their relationship to human neurodegenerative diseases.
Collapse
Affiliation(s)
- Georgina Perez Garcia
- Icahn School of Medicine at Mount Sinai, 5925, Neurology, 1468 Madison Avenue Annenberg Building Floor 14 Room 60, New York, New York, New York, United States, 10029-6574.,James J Peters VA Medical Center, 20071, Research, 130 W Kingsbridge Rd, The Bronx, NY 10468, Bronx, United States, 10468-3904;
| | - Rita De Gasperi
- James J. Peters VA Medical Center, Research and Development, 130 west kingsbridge road, RD 3F-20, Bronx, New York, United States, 10468;
| | - Anna E Tschiffely
- Naval Medical Research Center, 19930, Silver Spring, Maryland, United States;
| | - Miguel A Gama Sosa
- James J. Peters VA Medical Center, Research and Development, 130 W Kingsbridge Rd, Bronx, New York, United States, 10468;
| | - Rania Abutarboush
- Naval Medical Research Center, 19930, Neurotrauma, 503 Robert Grant Ave, Silver Spring, Maryland, United States, 20910;
| | - Usmah Kawoos
- Naval Medical Research Center, 19930, Neurotrauma, 503 Robert Grant Ave, Silver Spring, Maryland, United States, 20910.,Henry M Jackson Foundation for the Advancement of Military Medicine Inc, 44069, Bethesda, Maryland, United States;
| | | | - Stephanie Ciarlone
- Naval Medical Research Center, 19930, Silver Spring, Maryland, United States;
| | - Eileen M Reed
- Naval Medical Research Center, 19930, Silver Spring, Maryland, United States;
| | - Theepica Jeyarajah
- Naval Medical Research Center, 19930, Silver Spring, Maryland, United States;
| | - Gissel Perez
- James J Peters VA Medical Center, 20071, Research and Development, Bronx, New York, United States;
| | - Alena Otero Pagan
- James J Peters VA Medical Center, 20071, Research and Development, Bronx, New York, United States;
| | - Dylan Pryor
- James J Peters VA Medical Center, 20071, Research, 130 W. Kingsbridge Rd., Bronx, New York, United States, 10468;
| | - Patrick Hof
- Icahn School of Medicine at Mount Sinai, 5925, New York, New York, United States;
| | - David Cook
- VA Puget Sound Health Care System, 20128, Geriatric Research, Education, and Clinical Center, 1660 S Columbian Way, Seattle, Washington, United States, 98108.,University of Washington, 7284, Division of Gerontology and Geriatric Medicine, Seattle, Washington, United States;
| | - Samuel Gandy
- 88 Mercer AvenueHartsdaleHartsdale, New York, United States, 10530.,Sam Gandy, 88 Mercer Avenue, United States;
| | - Gregory Elder
- James J. Peters VAMC, Research and Development 3F22, 130 West Kingsbridge Road, Bronx, New York, United States, 10468;
| | - Stephen Ahlers
- Naval Medical Research Center, OUMD, 503 Robert Grant Ave, Silver Spring, Maryland, United States, 20910;
| |
Collapse
|
26
|
Animal models of traumatic brain injury: a review of pathophysiology to biomarkers and treatments. Exp Brain Res 2021; 239:2939-2950. [PMID: 34324019 DOI: 10.1007/s00221-021-06178-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Traumatic brain injury (TBI) is one of the main causes of death and disability in both civilian and military population. TBI may occur via a variety of etiologies, all of which involve trauma to the head. However, the neuroprotective drugs which were found to be very effective in animal TBI models failed in phase II or phase III clinical trials, emphasizing a compelling need to review the current status of animal TBI models and therapeutic strategies. No single animal model can adequately mimic all aspects of human TBI owing to the heterogeneity of clinical TBI. However, due to the ethical limitations, it is difficult to precisely emulate the TBI mechanisms that occur in humans. Therefore, many animal models with varying severity and mechanisms of brain injury have been developed, and each model has its own pros and cons in its implementation for TBI research. These challenges pose a need for study of continued TBI mechanisms, brain injury severity, duration, treatment strategies, and optimization of animal models across the neurotrauma research community. The aim of this review is to discuss (1) causes of TBI, (2) its prevalence in military and civilian population, (3) classification and pathophysiology of TBI, (4) biomarkers and detection methods, (5) animal models of TBI, and (6) the advantages and disadvantages of each model and the species used, as well as possible treatments.
Collapse
|
27
|
Schwerin SC, Chatterjee M, Hutchinson EB, Djankpa FT, Armstrong RC, McCabe JT, Perl DP, Juliano SL. Expression of GFAP and Tau Following Blast Exposure in the Cerebral Cortex of Ferrets. J Neuropathol Exp Neurol 2021; 80:112-128. [PMID: 33421075 DOI: 10.1093/jnen/nlaa157] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Blast exposures are a hallmark of contemporary military conflicts. We need improved preclinical models of blast traumatic brain injury for translation of pharmaceutical and therapeutic protocols. Compared with rodents, the ferret brain is larger, has substantial sulci, gyri, a higher white to gray matter ratio, and the hippocampus in a ventral position; these attributes facilitate comparison with the human brain. In this study, ferrets received compressed air shock waves and subsequent evaluation of glia and forms of tau following survival of up to 12 weeks. Immunohistochemistry and Western blot demonstrated altered distributions of astrogliosis and tau expression after blast exposure. Many aspects of the astrogliosis corresponded to human pathology: increased subpial reactivity, gliosis at gray-white matter interfaces, and extensive outlining of blood vessels. MRI analysis showed numerous hypointensities occurring in the 12-week survival animals, appearing to correspond to luminal expansions of blood vessels. Changes in forms of tau, including phosphorylated tau, and the isoforms 3R and 4R were noted using immunohistochemistry and Western blot in specific regions of the cerebral cortex. Of particular interest were the 3R and 4R isoforms, which modified their ratio after blast. Our data strongly support the ferret as an animal model with highly translational features to study blast injury.
Collapse
Affiliation(s)
- Susan C Schwerin
- From the Department of Anatomy Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | | | - Elizabeth B Hutchinson
- Quantitative Medical Imaging Section, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Francis T Djankpa
- From the Department of Anatomy Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Program in Neuroscience, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Department of Physiology, School of Medical Sciences, University of Cape Coast, Ghana
| | - Regina C Armstrong
- From the Department of Anatomy Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Program in Neuroscience, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Joseph T McCabe
- From the Department of Anatomy Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Program in Neuroscience, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Daniel P Perl
- Program in Neuroscience, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Sharon L Juliano
- From the Department of Anatomy Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Program in Neuroscience, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
28
|
Lynch CE, Eisenbaum M, Algamal M, Balbi M, Ferguson S, Mouzon B, Saltiel N, Ojo J, Diaz-Arrastia R, Mullan M, Crawford F, Bachmeier C. Impairment of cerebrovascular reactivity in response to hypercapnic challenge in a mouse model of repetitive mild traumatic brain injury. J Cereb Blood Flow Metab 2021; 41:1362-1378. [PMID: 33050825 PMCID: PMC8142124 DOI: 10.1177/0271678x20954015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Incidences of repetitive mild TBI (r-mTBI), like those sustained by contact sports athletes and military personnel, are thought to be a risk factor for development of neurodegenerative disorders. Those suffering from chronic TBI-related illness demonstrate deficits in cerebrovascular reactivity (CVR), the ability of the cerebral vasculature to respond to a vasoactive stimulus. CVR is thus an important measure of traumatic cerebral vascular injury (TCVI), and a possible in vivo endophenotype of TBI-related neuropathogenesis. We combined laser speckle imaging of CVR in response to hypercapnic challenge with neurobehavioral assessment of learning and memory, to investigate if decreased cerebrovascular responsiveness underlies impaired cognitive function in our mouse model of chronic r-mTBI. We demonstrate a profile of blunted hypercapnia-evoked CVR in the cortices of r-mTBI mice like that of human TBI, alongside sustained memory and learning impairment, without biochemical or immunohistopathological signs of cerebral vessel laminar or endothelium constituent loss. Transient decreased expression of alpha smooth muscle actin and platelet-derived growth factor receptor β, indicative of TCVI, is obvious only at the time of the most pronounced CVR deficit. These findings implicate CVR as a valid preclinical measure of TCVI, perhaps useful for developing therapies targeting TCVI after recurrent mild head trauma.
Collapse
Affiliation(s)
- Cillian E Lynch
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK.,James A. Haley Veteran's Administration, Tampa, FL, USA.,Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Maxwell Eisenbaum
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK
| | - Moustafa Algamal
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK
| | - Matilde Balbi
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott Ferguson
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK
| | - Benoit Mouzon
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK.,James A. Haley Veteran's Administration, Tampa, FL, USA
| | | | - Joseph Ojo
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK.,James A. Haley Veteran's Administration, Tampa, FL, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mike Mullan
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK
| | - Fiona Crawford
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK.,James A. Haley Veteran's Administration, Tampa, FL, USA
| | - Corbin Bachmeier
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK.,Bay Pines VA Healthcare System, Bay Pines, FL, USA
| |
Collapse
|
29
|
Microglia: A Potential Drug Target for Traumatic Axonal Injury. Neural Plast 2021; 2021:5554824. [PMID: 34093701 PMCID: PMC8163545 DOI: 10.1155/2021/5554824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Traumatic axonal injury (TAI) is a major cause of death and disability among patients with severe traumatic brain injury (TBI); however, no effective therapies have been developed to treat this disorder. Neuroinflammation accompanying microglial activation after TBI is likely to be an important factor in TAI. In this review, we summarize the current research in this field, and recent studies suggest that microglial activation plays an important role in TAI development. We discuss several drugs and therapies that may aid TAI recovery by modulating the microglial phenotype following TBI. Based on the findings of recent studies, we conclude that the promotion of active microglia to the M2 phenotype is a potential drug target for the treatment of TAI.
Collapse
|
30
|
Molina B, Mastroianni J, Suarez E, Soni B, Forsberg E, Finley K. Treatment with Bacterial Biologics Promotes Healthy Aging and Traumatic Brain Injury Responses in Adult Drosophila, Modeling the Gut-Brain Axis and Inflammation Responses. Cells 2021; 10:900. [PMID: 33919883 PMCID: PMC8070821 DOI: 10.3390/cells10040900] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 12/29/2022] Open
Abstract
Drosophila are widely used to study neural development, immunity, and inflammatory pathways and processes associated with the gut-brain axis. Here, we examine the response of adult Drosophila given an inactive bacteriologic (IAB; proprietary lysate preparation of Lactobacillus bulgaricus, ReseT®) and a probiotic (Lactobacillus rhamnosus, LGG). In vitro, the IAB activates a subset of conserved Toll-like receptor (TLR) and nucleotide-binding, oligomerization domain-containing protein (NOD) receptors in human cells, and oral administration slowed the age-related decline of adult Drosophila locomotor behaviors. On average, IAB-treated flies lived significantly longer (+23%) and had lower neural aggregate profiles. Different IAB dosages also improved locomotor function and longevity profiles after traumatic brain injury (TBI) exposure. Mechanistically, short-term IAB and LGG treatment altered baseline nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κβ) signaling profiles in neural and abdominal tissues. Overall, at select dosages, IAB and LGG exposure has a positive impact on Drosophila longevity, neural aging, and mild traumatic brain injury (TBI)-related responses, with IAB showing greater benefit. This includes severe TBI (sTBI) responses, where IAB treatment was protective and LGG increased acute mortality profiles. This work shows that Drosophila are an effective model for testing bacterial-based biologics, that IAB and probiotic treatments promote neuronal health and influence inflammatory pathways in neural and immune tissues. Therefore, targeted IAB treatments are a novel strategy to promote the appropriate function of the gut-brain axis.
Collapse
Affiliation(s)
- Brandon Molina
- Department of Biology, Shiley BioScience Center, San Diego State University, San Diego, CA 92182, USA; (B.M.); (J.M.); (E.S.)
| | - Jessica Mastroianni
- Department of Biology, Shiley BioScience Center, San Diego State University, San Diego, CA 92182, USA; (B.M.); (J.M.); (E.S.)
| | - Ema Suarez
- Department of Biology, Shiley BioScience Center, San Diego State University, San Diego, CA 92182, USA; (B.M.); (J.M.); (E.S.)
| | - Brijinder Soni
- Department Chemistry and Biohemistry, San Diego State University, San Diego, CA 92182, USA; (B.S.); (E.F.)
| | - Erica Forsberg
- Department Chemistry and Biohemistry, San Diego State University, San Diego, CA 92182, USA; (B.S.); (E.F.)
| | - Kim Finley
- Department of Biology, Shiley BioScience Center, San Diego State University, San Diego, CA 92182, USA; (B.M.); (J.M.); (E.S.)
| |
Collapse
|
31
|
Miyai K, Kawauchi S, Kato T, Yamamoto T, Mukai Y, Yamamoto T, Sato S. Axonal damage and behavioral deficits in rats with repetitive exposure of the brain to laser-induced shock waves: Effects of inter-exposure time. Neurosci Lett 2021; 749:135722. [PMID: 33592306 DOI: 10.1016/j.neulet.2021.135722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
Abstract
Much attention has been given to effects of repeated exposure to a shock wave as a possible factor causing severe higher brain dysfunction and post-traumatic stress disorder (PTSD)-like symptoms in patients with mild to moderate blast-induced traumatic brain injury (bTBI). However, it is unclear how the repeated exposure and the inter-exposure time affect the brain. In this study, we topically applied low-impulse (∼54 Pa·s) laser-induced shock waves (LISWs; peak pressure, ∼75.7 MPa) to the rat brain once or twice with the different inter-exposure times (15 min, 1 h, 3 h, 24 h and 7 days) and examined anxiety-related behavior and motor dysfunction in the rats as well as expression of β-amyloid precursor protein (APP) as an axonal damage marker in the brains of the rats. The averaged APP expression scores for the rat brains doubly-exposed to LISWs with inter-exposure times from 15 min to 24 h were significantly higher than those for rats with a single exposure (P < 0.0001). The rats with double exposure to LISWs showed significantly more frequent anxiety-related behavior (P < 0.05) and poorer motor function (P < 0.01) than those of rats with a single exposure. When the inter-exposure time was extended to 7 days, however, the rats showed no significant differences either in axonal damage score or level of motor dysfunction. The results suggest that the cumulative effects of shock wave-related brain injury can be avoided with an appropriate inter-exposure time. However, clinical bTBI occurs in much more complex environments than those in our model. Further study considering other factors, such as the effects of acceleration, is needed to know the clinically-relevant, necessary inter-exposure time.
Collapse
Affiliation(s)
- Kosuke Miyai
- Military Medicine Research Unit, Japan Ground Self Defense Force, Setagaya, Tokyo, Japan
| | - Satoko Kawauchi
- Division of Biomedical Information Sciences, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| | - Tamaki Kato
- Military Medicine Research Unit, Japan Ground Self Defense Force, Setagaya, Tokyo, Japan
| | - Tetsuo Yamamoto
- Military Medicine Research Unit, Japan Ground Self Defense Force, Setagaya, Tokyo, Japan
| | - Yasuo Mukai
- Military Medicine Research Unit, Japan Ground Self Defense Force, Setagaya, Tokyo, Japan
| | - Taisuke Yamamoto
- Military Medicine Research Unit, Japan Ground Self Defense Force, Setagaya, Tokyo, Japan
| | - Shunichi Sato
- Division of Biomedical Information Sciences, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan.
| |
Collapse
|
32
|
Hynes C, Scullion L, Lawler C, Steel R, Boland P. The impact of in-service physical injury or illness on the mental health of military veterans. BMJ Mil Health 2021; 169:e51-e54. [PMID: 33664089 DOI: 10.1136/bmjmilitary-2020-001759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Each year approximately 2000 UK service personnel are medically discharged with physical and/or psychological injury or illness. While there is much research on both psychological injury and physical injury, the challenges of transition relating to the intersection between the two has received less attention. This article reports on the first phase of a 2-year funded study with the aim to understand the lived experiences of veterans who have been discharged from service with a physical injury or illness and the impacts of this on their mental health. METHODS Using a qualitative methodology, 22 veterans who had been discharged from service within the last 8 years were interviewed to identify key aspects of their experience of the transition process. RESULTS The article highlights two key themes: how some veterans adjusted to life with a physical injury or condition; and, the intersections that became apparent between physical injury and mental health. The challenges that veterans faced were shaped by the transition process and by the way in which the medical discharge process was conducted. CONCLUSIONS Consideration of improvements to the medical discharge process could influence better outcomes for those who have left with a physical injury or illness and later find themselves struggling with mental health issues.
Collapse
Affiliation(s)
- Celia Hynes
- School of Community Health & Midwifery, University of Central Lancashire, Preston, UK
| | - L Scullion
- Professor of Social Policy, Sustainable Housing & Urban Studies Unit (SHUSU), School of Health & Society, University of Salford, Salford, Greater Manchester, UK
| | - C Lawler
- Salford Social Prescribing Hub, SHUSU, School of Health & Society, University of Salford, Salford, Greater Manchester, UK
| | - R Steel
- School of Community Health & Midwifery, University of Central Lancashire, Preston, UK
| | - P Boland
- School of Community Health & Midwifery, University of Central Lancashire, Preston, UK
| |
Collapse
|
33
|
Perez Garcia G, De Gasperi R, Gama Sosa MA, Perez GM, Otero-Pagan A, Pryor D, Abutarboush R, Kawoos U, Hof PR, Dickstein DL, Cook DG, Gandy S, Ahlers ST, Elder GA. Laterality and region-specific tau phosphorylation correlate with PTSD-related behavioral traits in rats exposed to repetitive low-level blast. Acta Neuropathol Commun 2021; 9:33. [PMID: 33648608 PMCID: PMC7923605 DOI: 10.1186/s40478-021-01128-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/07/2021] [Indexed: 12/14/2022] Open
Abstract
Military veterans who experience blast-related traumatic brain injuries often suffer from chronic cognitive and neurobehavioral syndromes. Reports of abnormal tau processing following blast injury have raised concerns that some cases may have a neurodegenerative basis. Rats exposed to repetitive low-level blast exhibit chronic neurobehavioral traits and accumulate tau phosphorylated at threonine 181 (Thr181). Using data previously reported in separate studies we tested the hypothesis that region-specific patterns of Thr181 phosphorylation correlate with behavioral measures also previously determined and reported in the same animals. Elevated p-tau Thr181 in anterior neocortical regions and right hippocampus correlated with anxiety as well as fear learning and novel object localization. There were no correlations with levels in amygdala or posterior neocortical regions. Particularly striking were asymmetrical effects on the right and left hippocampus. No systematic variation in head orientation toward the blast wave seems to explain the laterality. Levels did not correlate with behavioral measures of hyperarousal. Results were specific to Thr181 in that no correlations were observed for three other phospho-acceptor sites (threonine 231, serine 396, and serine 404). No consistent correlations were linked with total tau. These correlations are significant in suggesting that p-tau accumulation in anterior neocortical regions and the hippocampus may lead to disinhibited amygdala function without p-tau elevation in the amygdala itself. They also suggest an association linking blast injury with tauopathy, which has implications for understanding the relationship of chronic blast-related neurobehavioral syndromes in humans to neurodegenerative diseases.
Collapse
|
34
|
Perez Garcia G, Perez GM, De Gasperi R, Gama Sosa MA, Otero-Pagan A, Pryor D, Abutarboush R, Kawoos U, Hof PR, Cook DG, Gandy S, Ahlers ST, Elder GA. Progressive Cognitive and Post-Traumatic Stress Disorder-Related Behavioral Traits in Rats Exposed to Repetitive Low-Level Blast. J Neurotrauma 2021; 38:2030-2045. [PMID: 33115338 DOI: 10.1089/neu.2020.7398] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many military veterans who experienced blast-related traumatic brain injuries (TBI) in the conflicts in Iraq and Afghanistan currently have chronic cognitive and mental health problems including post-traumatic stress disorder (PTSD). Besides static symptoms, new symptoms may emerge or existing symptoms may worsen. TBI is also a risk factor for later development of neurodegenerative diseases. In rats exposed to repetitive low-level blast overpressure (BOP), robust and enduring cognitive and PTSD-related behavioral traits develop that are present for at least one year after blast exposure. Here we determined the time-course of the appearance of these traits by testing rats in the immediate post-blast period. Three cohorts of rats examined within the first eight weeks exhibited no behavioral phenotype or, in one cohort, features of anxiety. None showed the altered cued fear responses or impaired novel object recognition characteristic of the fully developed phenotype. Two cohorts retested 36 to 42 weeks after blast exposure exhibited the expanded behavioral phenotype including anxiety as well as altered cued fear learning and impaired novel object recognition. Combined with previous work, the chronic behavioral phenotype has been observed in six cohorts of blast-exposed rats studied at 3-4 months or longer after blast injury, and the three cohorts studied here document the progressive nature of the cognitive/behavioral phenotype. These studies suggest the existence of a latent, delayed emerging and progressive blast-induced cognitive and behavioral phenotype. The delayed onset has implications for the evolution of post-blast neurobehavioral syndromes in military veterans and its modeling in experimental animals.
Collapse
Affiliation(s)
- Georgina Perez Garcia
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gissel M Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rita De Gasperi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miguel A Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Alena Otero-Pagan
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Dylan Pryor
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Patrick R Hof
- Department of Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David G Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Sam Gandy
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Barbara and Maurice A. Deane Center for Wellness and Cognitive Health, and the Mount Sinai NFL Neurological Care Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen T Ahlers
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Gregory A Elder
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| |
Collapse
|
35
|
Moyron RB, Vallejos PA, Fuller RN, Dean N, Wall NR. Neuroimaging and advanced research techniques may lead to improved outcomes in military members suffering from traumatic brain injury. Trauma Surg Acute Care Open 2021; 6:e000608. [PMID: 33490604 PMCID: PMC7797256 DOI: 10.1136/tsaco-2020-000608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/07/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Recent military conflicts in Iraq and Afghanistan have resulted in the significant increase in blast-related traumatic brain injury (TBI), leading to increased Department of Defense interest in its potential long-term effects ranging from the mildest head injuries termed subconcussive trauma to the most debilitating termed chronic traumatic encephalopathy (CTE). Most patients with mild TBI will recover quickly while others report persistent symptoms called postconcussive syndrome. Repeated concussive and subconcussive head injuries result in neurodegenerative conditions that may hinder the injured for years. Fundamental questions about the nature of these injuries and recovery remain unanswered. Clinically, patients with CTE present with either affective changes or cognitive impairment. Genetically, there have been no clear risk factors identified. The discovery that microglia of the cerebral cortex discharged small extracellular vesicles in the injured and adjacent regions to a TBI may soon shed light on the immediate impact injury mechanisms. The combination of neuroimaging and advanced research techniques may, one day, fill critical knowledge gaps and lead to significant TBI research and treatment advancements.
Collapse
Affiliation(s)
- Ron B Moyron
- Department of Basic Sciences, Loma Linda University, Loma Linda, California, USA
| | - Paul A Vallejos
- Department of Basic Sciences, Loma Linda University, Loma Linda, California, USA
| | - Ryan N Fuller
- Department of Basic Sciences, Loma Linda University, Loma Linda, California, USA
| | - Natasha Dean
- Department of Biology, La Sierra University, Riverside, California, USA
| | - Nathan R Wall
- Department of Basic Sciences, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
36
|
Zhu CW, Sano M. Demographic, Health, and Exposure Risks Associated With Cognitive Loss, Alzheimer's Disease and Other Dementias in US Military Veterans. Front Psychiatry 2021; 12:610334. [PMID: 33716816 PMCID: PMC7947283 DOI: 10.3389/fpsyt.2021.610334] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/04/2021] [Indexed: 11/13/2022] Open
Abstract
The US military veteran population receiving care through the Veterans Health Administration (VHA) is particularly susceptible to cognitive impairment and dementias such as Alzheimer's disease and related dementias due to demographic, clinical, and economic factors. In this report we summarize the prevalence of dementia among US veterans and risks associated with AD and related dementias. We discuss the likelihood that these risks may be increasing in those about to enter the age in which dementias are common. We propose that VHA, the largest integrated health care system in the US, has shown promise in managing health risks that impact dementia prevention and propose further system wide approaches to be assessed for effective dementia prevention and care delivery.
Collapse
Affiliation(s)
- Carolyn W Zhu
- Icahn School of Medicine at Mount Sinai, New York, NY, United States.,James J. Peters VA Medical Center, Bronx, NY, United States
| | - Mary Sano
- Icahn School of Medicine at Mount Sinai, New York, NY, United States.,James J. Peters VA Medical Center, Bronx, NY, United States
| |
Collapse
|
37
|
Mejia-Lancheros C, Lachaud J, Stergiopoulos V, Matheson FI, Nisenbaum R, O'Campo P, Hwang SW. Effect of Housing First on violence-related traumatic brain injury in adults with experiences of homelessness and mental illness: findings from the At Home/Chez Soi randomised trial, Toronto site. BMJ Open 2020; 10:e038443. [PMID: 33277277 PMCID: PMC7722391 DOI: 10.1136/bmjopen-2020-038443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES People experiencing homelessness have a high prevalence and incidence of traumatic brain injury (TBI) due to violence. Little is known about the effectiveness of interventions to reduce TBI in this population. This study assessed the effect of Housing First (HF) on violence-related TBI in adults with experiences of homelessness and mental illness. DESIGN Pragmatic randomised trial. PARTICIPANTS 381 participants in the Toronto site of the At Home/Chez randomised trial. INTERVENTION HF participants were provided with scattered-site housing using rent supplements and supports from assertive community treatment or intensive case management teams (n=218, 57.2%). Control participants had access to treatment as usual (TAU) in the community (n=163, 42.8%). MAIN OUTCOME MEASURES Primary outcomes were an incident physical violence-related TBI event and the number of physical violence-related TBI events during the follow-up period (January 2014 to March 2017). Interval-censored survival time regression and zero-inflated negative binomial regression were used to assess the effect of HF on primary outcomes. RESULTS Among study participants, 9.2% (n=35) had an incident physical violence-related TBI event, and the mean physical violence-related TBI events was 0.16 (SD ±0.6). Compared with TAU participants, HF participants did not have a significantly lower risk of an incident violence-related TBI event (adjusted HR : 0.58 (95% CI, 0.29 to 1.14)), but they had a significantly lower number of physical violence-related TBI events (unadjusted incidence rate ratio (IRR): 0.22 (95% CI, 0.06 to 0.78); adjusted IRR: 0.15 (95% CI, 0.05 to 0.48)). CONCLUSION HF may be a useful intervention to reduce the burden of TBI due to physical violence among homeless individuals with mental illness. TRIAL REGISTRATION NUMBER ISRCTN42520374.
Collapse
Affiliation(s)
- Cilia Mejia-Lancheros
- MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - James Lachaud
- MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Vicky Stergiopoulos
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Flora I Matheson
- MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Centre for Criminology and Sociolegal Studies, University of Toronto, Toronto, Ontario, Canada
| | - Rosane Nisenbaum
- MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Patricia O'Campo
- MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Stephen W Hwang
- MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Division of General Internal Medicine, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Ton ST, Adamczyk NS, Gerling JP, Vaagenes IC, Wu JY, Hsu K, O’Brien TE, Tsai SY, Kartje GL. Dentate Gyrus Proliferative Responses After Traumatic Brain Injury and Binge Alcohol in Adult Rats. Neurosci Insights 2020; 15:2633105520968904. [PMID: 33241218 PMCID: PMC7672731 DOI: 10.1177/2633105520968904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/06/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Traumatic brain injury is a significant public health issue that results in serious disability in survivors. Traumatic brain injury patients are often intoxicated with alcohol when admitted to the hospital; however, it is not clear how acute intoxication affects recovery from a traumatic brain injury. Our group has previously shown that binge alcohol prior to traumatic brain injury resulted in long-term impairment in a fine sensorimotor task that was correlated with a decreased proliferative and neuroblast response from the subventricular zone. However, whether binge alcohol prior to traumatic brain injury affects the proliferative response in the hippocampal dentate gyrus is not yet known. METHODS Male rats underwent binge alcohol (3 g/kg/day) by gastric gavage for 3 days prior to traumatic brain injury. Cell proliferation was labeled by BrdU injections following traumatic brain injury. Stereological quantification and immunofluorescence confocal analysis of BrdU+ cells in the hippocampal dorsal dentate gyrus was performed at 24 hours, 1 week and 6 weeks post traumatic brain injury. RESULTS We found that either traumatic brain injury alone or binge alcohol alone significantly increased dentate gyrus proliferation at 24 hours and 1 week. However, a combined binge alcohol and traumatic brain injury regimen resulted in decreased dentate gyrus proliferation at 24 hours post-traumatic brain injury. At the 6 week time point, binge alcohol overall reduced the number of BrdU+ cells. Furthermore, more BrdU+ cells were found in the dentate hilar region of alcohol traumatic brain injury compared to vehicle traumatic brain injury groups. The location and double-labeling of these mismigrated BrdU+ cells was consistent with hilar ectopic granule cells. CONCLUSION The results from this study showed that pre-traumatic brain injury binge alcohol impacts the injury-induced proliferative response in the dentate gyrus in the short-term and may affect the distribution of newly generated cells in the dentate gyrus in the long-term.
Collapse
Affiliation(s)
- Son T Ton
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL, USA
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Health Sciences Division, Maywood, IL, USA
| | | | - Jack P Gerling
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Ian C Vaagenes
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Joanna Y Wu
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Kevin Hsu
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Timothy E O’Brien
- Department of Mathematics and Statistics, and Institute of Environmental Sustainability, Loyola University Chicago, Chicago, IL, USA
| | - Shih-Yen Tsai
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Gwendolyn L Kartje
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL, USA
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Health Sciences Division, Maywood, IL, USA
| |
Collapse
|
39
|
Sharma A, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Sahib S, Tian ZR, Buzoianu AD, Patnaik R, Wiklund L, Sharma HS. Mild traumatic brain injury exacerbates Parkinson's disease induced hemeoxygenase-2 expression and brain pathology: Neuroprotective effects of co-administration of TiO 2 nanowired mesenchymal stem cells and cerebrolysin. PROGRESS IN BRAIN RESEARCH 2020; 258:157-231. [PMID: 33223035 DOI: 10.1016/bs.pbr.2020.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mild traumatic brain injury (mTBI) is one of the leading predisposing factors in the development of Parkinson's disease (PD). Mild or moderate TBI induces rapid production of tau protein and alpha synuclein (ASNC) in the cerebrospinal fluid (CSF) and in several brain areas. Enhanced tau-phosphorylation and ASNC alters the molecular machinery of the brain leading to PD pathology. Recent evidences show upregulation of constitutive isoform of hemeoxygenase (HO-2) in PD patients that correlates well with the brain pathology. mTBI alone induces profound upregulation of HO-2 immunoreactivity. Thus, it would be interesting to explore whether mTBI exacerbates PD pathology in relation to tau, ASNC and HO-2 expression. In addition, whether neurotrophic factors and stem cells known to reduce brain pathology in TBI could induce neuroprotection in PD following mTBI. In this review role of mesenchymal stem cells (MSCs) and cerebrolysin (CBL), a well-balanced composition of several neurotrophic factors and active peptide fragments using nanowired delivery in PD following mTBI is discussed based on our own investigation. Our results show that mTBI induces concussion exacerbates PD pathology and nanowired delivery of MSCs and CBL induces superior neuroprotection. This could be due to reduction in tau, ASNC and HO-2 expression in PD following mTBI, not reported earlier. The functional significance of our findings in relation to clinical strategies is discussed.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
40
|
Sibbitts J, Culbertson CT. Measuring stimulation and inhibition of intracellular nitric oxide production in SIM-A9 microglia using microfluidic single-cell analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4665-4673. [PMID: 32909562 DOI: 10.1039/d0ay01578d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chronic neuroinflammation has long been considered to be a central factor in accelerating the progression of neurodegenerative diseases such as Alzheimer's diseases, Parkinson's disease and chronic traumatic encephalopathy. Under pathological conditions microglia produce inflammatory signaling molecules, such as nitric oxide (NO), that can damage DNA and proteins and ultimately induce neuronal apoptosis. One strategy for treating neurodegenerative diseases is to specifically target NO production through inhibition of inducible nitric oxide synthase (iNOS). However, accurately measuring changes in microglial NO production in response to potential therapeutics is challenging due to NO's short half-life and microglial heterogeneity. In this paper we report the application of a microfluidic device for the high-throughput measurement of intracellular NO in SIM-A9 microglial cells. NO production was measured in response to treatment with lipopolysaccharides (LPS) and interferon gamma (IFN-γ) with and without a potent iNOS inhibitor (1400 W dihydrochloride). Cells were labeled with a fluorogenic NO probe, 4-amino-5-methylamino-2',7'-difluorofluoescein diacetate (DAF-FM DA), and 6-carboxyfluorescein diacetate (6-CFDA) as an internal standard. Separation and quantitation of intracellular NO was achieved using microchip electrophoresis and laser induced fluorescence detection (LIF). Statistical analysis suggests that the populations fit a lognormal distribution and are better represented by their geometric mean values. Comparison of the geometric means indicated a 1.6-fold increase in NO production between untreated and stimulated cells and a decrease by a factor of approximately 0.5 comparing stimulated and inhibited cells. Additionally, we report experimental data demonstrating the improvement in the sensitivity of our integrated optical fiber-based detection system through the use of refractive index matching gel.
Collapse
Affiliation(s)
- Jay Sibbitts
- Department of Chemistry, Kansas State University, 1212 Mid-Campus Drive, 213 CBC Building, Manhattan, KS, USA.
| | | |
Collapse
|