1
|
Temba GS, Pecht T, Kullaya VI, Vadaq N, Mosha MV, Ulas T, Kanungo S, van Emst L, Bonaguro L, Schulte-Schrepping J, Mafuru E, Lionetti P, Mhlanga MM, van der Ven AJ, Cavalieri D, Joosten LAB, Kavishe RA, Mmbaga BT, Schultze JL, Netea MG, de Mast Q. Immune and metabolic effects of African heritage diets versus Western diets in men: a randomized controlled trial. Nat Med 2025:10.1038/s41591-025-03602-0. [PMID: 40181181 DOI: 10.1038/s41591-025-03602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 02/21/2025] [Indexed: 04/05/2025]
Abstract
African heritage diets are increasingly being replaced by Western-style dietary patterns because of urbanization, economic development, increased access to processed foods, globalization and changing social norms. The health consequences of this nutrition transition are not well understood. We conducted a randomized controlled trial in the Kilimanjaro region in Northern Tanzania to investigate the immune and metabolic effects of switching between Kilimanjaro heritage-style and Western-style diets for 2 weeks and consuming a traditional fermented banana beverage ('Mbege') for 1 week. Seventy-seven young and healthy volunteers assigned male at birth, some living in urban areas and some living in rural areas, were recruited in the trial. Primary outcomes were changes in the immune and metabolic profile before and after the intervention and at the 4-week follow-up. The switch from heritage-style to Western-style diet affected different metabolic pathways associated with noncommunicable diseases and promoted a pro-inflammatory state with impaired whole-blood cytokine responses to microbial stimulation. In contrast, the switch from Western-style to heritage-style diet or consuming the fermented beverage had a largely anti-inflammatory effect. Some of the observed changes in the immune and metabolic profiles persisted at the follow-up, suggesting a sustained impact from the short-term intervention. These findings show the metabolic and immune effects of dietary transitions and the consumption of fermented beverages, underscoring the importance of preserving indigenous dietary practices to mitigate noncommunicable disease risk factors in sub-Saharan Africa. ISRCTN trial registration: ISRCTN15619939 .
Collapse
Affiliation(s)
- Godfrey S Temba
- Department of Medical Biochemistry and Molecular Biology, KCMC University, Moshi, United Republic of Tanzania
- Department of Internal Medicine, Radboudumc Research Institute for Medical Innovation (RIMI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tal Pecht
- Department for Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Vesla I Kullaya
- Department of Medical Biochemistry and Molecular Biology, KCMC University, Moshi, United Republic of Tanzania
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, United Republic of Tanzania
| | - Nadira Vadaq
- Department of Internal Medicine, Radboudumc Research Institute for Medical Innovation (RIMI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mary V Mosha
- School of Public Health, KCMC University, Moshi, United Republic of Tanzania
| | - Thomas Ulas
- Department for Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Sneha Kanungo
- Department for Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Liesbeth van Emst
- Department of Internal Medicine, Radboudumc Research Institute for Medical Innovation (RIMI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lorenzo Bonaguro
- Department for Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases (DZNE) and University of Bonn, Bonn, Germany
| | - Jonas Schulte-Schrepping
- Department for Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases (DZNE) and University of Bonn, Bonn, Germany
| | - Elias Mafuru
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, United Republic of Tanzania
| | - Paolo Lionetti
- Department NEUROFARBA, University of Florence, Florence, Italy
- Gastroenterology and Nutrition Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Musa M Mhlanga
- Department of Cell Biology, Faculty of Science, Radboud University, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andre J van der Ven
- Department of Internal Medicine, Radboudumc Research Institute for Medical Innovation (RIMI), Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Leo A B Joosten
- Department of Internal Medicine, Radboudumc Research Institute for Medical Innovation (RIMI), Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Reginald A Kavishe
- Department of Medical Biochemistry and Molecular Biology, KCMC University, Moshi, United Republic of Tanzania
| | - Blandina T Mmbaga
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, United Republic of Tanzania
| | - Joachim L Schultze
- Department for Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases (DZNE) and University of Bonn, Bonn, Germany
| | - Mihai G Netea
- Department of Internal Medicine, Radboudumc Research Institute for Medical Innovation (RIMI), Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Immunology and Metabolism, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Quirijn de Mast
- Department of Internal Medicine, Radboudumc Research Institute for Medical Innovation (RIMI), Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
2
|
Tetteh-Quarshie S, Morrison KM, Olszewski NA, Young LE, Mensah EN, Sword MK, Henderson BJ. The influence of high-fat diet on nicotine vapor self-administration, neuronal excitability, and leptin levels in adult mice. Physiol Behav 2025; 292:114823. [PMID: 39870287 PMCID: PMC11874065 DOI: 10.1016/j.physbeh.2025.114823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/05/2024] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
With the rise in fast-food culture and the continued high numbers of tobacco-related deaths, there has been a great deal of interest in understanding the relationship between high-fat diet (HFD) and nicotine use behaviors. Using adult mice and a patch-clamp electrophysiology assay, we investigated the influence of HFD on the excitability of ventral tegmental area (VTA) dopamine neurons and pyramidal neurons in the medial prefrontal cortex (mPFC) given their role in modulating the reinforcing effects of nicotine and natural rewards. We then examined whether HFD-induced changes in peripheral markers were associated with nicotine use behaviors. Here, mice were assigned standard diet (SD) or HFD for 6 weeks and then trained to self-administer nicotine using an e-vape® self-administration (EVSA) assay. After the last session, changes in glucose, insulin, and leptin were assessed with ELISA. HFD-assigned mice displayed a decrease in intrinsic excitability of VTA dopamine neurons; but an increase in intrinsic excitability of layer VI prelimbic mPFC neurons. SD-assigned female mice demonstrated enhanced nicotine EVSA during fixed-ratio 3 relative to SD males. HFD-assigned male and female mice displayed increased nicotine EVSA during FR1. However, only HFD-assigned male mice exhibited enhanced nicotine EVSA during FR3. Finally, HFD-assigned male and female mice displayed increased leptin levels. However, we only observed a direct correlation between leptin levels and EVSA responding during FR1 in HFD-fed male mice. These results suggest that high-fat diet alter nicotine intake in a sex-specific manner, and this may be due to diet-induced changes in neuronal excitability and circulating leptin levels.
Collapse
Affiliation(s)
- Samuel Tetteh-Quarshie
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Avenue, Huntington, WV 25703, USA
| | - Karli M Morrison
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Avenue, Huntington, WV 25703, USA
| | - Nathan A Olszewski
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Avenue, Huntington, WV 25703, USA
| | - Lauren E Young
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Avenue, Huntington, WV 25703, USA
| | - Esther N Mensah
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Avenue, Huntington, WV 25703, USA
| | - Mason K Sword
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Avenue, Huntington, WV 25703, USA
| | - Brandon J Henderson
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Avenue, Huntington, WV 25703, USA.
| |
Collapse
|
3
|
Wojcieszak J, Kuczyńska K, Leszczyńska A, Naraziński E, Cichalewska-Studzińska M. Access to high-fat diet results in increased sensitivity to the psychostimulant effects of MDPV in mice. Pharmacol Rep 2025; 77:434-449. [PMID: 39869285 DOI: 10.1007/s43440-025-00701-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND The current study investigated the effects of high-fat diet on acute response to 3,4-methylenedioxypyrovalerone (MDPV) in mice. MDPV is a beta-cathinone derivative endowed with psychostimulant activity. Similarly to recreational substances, consumption of palatable food stimulates the mesolimbic dopaminergic system, resulting in neuroadaptive changes. METHODS Adolescent C57BL/6N mice were fed either control diet (CD), 10% of kcal from fat, or high-fat diet (HFD), 60% of kcal from fat. After eight weeks, one group of HFD-fed mice had their diet changed to CD for an additional two weeks. Fasting glucose levels and glucose tolerance were measured to detect impairment in glucose metabolism. Subsequently, the mice were treated with either MDPV (1 mg/kg) or saline, and their locomotor activity was measured. Using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), the expression of dopamine receptor D1 (Drd1), dopamine receptor D2 (Drd2), and FBJ osteosarcoma oncogene B (FosB) genes was measured in the striatum of mice. RESULTS Feeding with HFD caused obesity and glucose intolerance in mice. Restriction of fat reduced body mass and reversed impairment of glucose metabolism. HFD-fed mice responded to MDPV with higher potency than CD-fed counterparts, with an increased incidence of stereotypies. A change of diet partially reversed this effect. Downregulation of Drd2 was observed in the mice that switched from HFD to CD, whereas treatment with MDPV caused upregulation of FosB only in the CD-fed mice. CONCLUSIONS Current results suggest that obesity may increase sensitivity to psychostimulant effects of MDPV and elevate the risk of addiction as mice fed with HFD responded to acute treatment with MDPV with higher potency and showed tolerance of FosB induction in response to the drug.
Collapse
Affiliation(s)
- Jakub Wojcieszak
- Department of Pharmacodynamics, Medical University of Lodz, Muszyńskiego 1, Łódź, 90-151, Poland.
| | - Katarzyna Kuczyńska
- Department of Pharmacodynamics, Medical University of Lodz, Muszyńskiego 1, Łódź, 90-151, Poland
| | - Adrianna Leszczyńska
- Department of Pharmacodynamics, Medical University of Lodz, Muszyńskiego 1, Łódź, 90-151, Poland
| | - Eryk Naraziński
- Department of Pharmacodynamics, Medical University of Lodz, Muszyńskiego 1, Łódź, 90-151, Poland
| | | |
Collapse
|
4
|
Strumila R, Lengvenyte A, Guillaume S, Nobile B, Olie E, Courtet P. GLP-1 agonists and risk of suicidal thoughts and behaviours: Confound by indication once again? A narrative review. Eur Neuropsychopharmacol 2024; 87:29-34. [PMID: 39068741 DOI: 10.1016/j.euroneuro.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) agonists have been successfully used in clinical practice for the treatment of diabetes and obesity, offering significant clinical benefits. However, concerns regarding their potential link to psychiatric side effects, like suicidal thoughts and behaviours (STB) have emerged. This narrative review investigates the complex interplay between GLP-1 agonists and STB, focusing on the biological stress induced by rapid weight loss, psychological and social consequences, similar mechanism with addiction, and the evaluative lens of the Bradford Hill criteria on causality. While GLP-1 agonists can contribute to substantial health improvements, they also introduce biological and psychological stressors. Disruptions in homeostasis from quick weight reduction can elevate cortisol and norepinephrine levels, heightening the risk for, or exacerbation of STB. Psychological factors, including unfulfilled expectations and identity changes after significant weight loss, compound these risks. Utilizing the Bradford Hill criteria reveals insufficient evidence for a direct causal link between GLP-1 agonists and STB. Yet, the indirect effects related to the metabolic and psychological disturbances associated with rapid weight loss call for a cautious approach. Used carefully in targeted populations GLP-1 agonists may even emerge as protective agents against STB. Therefore, it is crucial to monitor patients during the treatment and screen for preexisting mental health conditions. If detected, appropriate clinical management should be applied. Future studies should aim at optimizing dosing schedules to mitigate the adverse effects of rapid weight loss and further investigate GLP-1 agonists in possible STB prevention.
Collapse
Affiliation(s)
- Robertas Strumila
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France; Psychiatric Clinic, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.
| | - Aiste Lengvenyte
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France; Psychiatric Clinic, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Sebastien Guillaume
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Benedicte Nobile
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Emilie Olie
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Courtet
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
5
|
Hagarty-Waite KA, Emmons HA, Fordahl SC, Erikson KM. The Influence of Strain and Sex on High Fat Diet-Associated Alterations of Dopamine Neurochemistry in Mice. Nutrients 2024; 16:3301. [PMID: 39408267 PMCID: PMC11479034 DOI: 10.3390/nu16193301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Objective: The objective of this study was to determine the influence of sex and strain on striatal and nucleus accumbens dopamine neurochemistry and dopamine-related behavior due to a high-saturated-fat diet (HFD). Methods: Male and female C57B6/J (B6J) and Balb/cJ (Balb/c) mice were randomly assigned to a control-fat diet (CFD) containing 10% kcal fat/g or a mineral-matched HFD containing 60% kcal fat/g for 12 weeks. Results: Intraperitoneal glucose tolerance testing (IPGTT) and elevated plus maze experiments (EPM) confirmed that an HFD produced marked blunting of glucose clearance and increased anxiety-like behavior, respectively, in male and female B6J mice. Electrically evoked dopamine release in the striatum and reuptake in the nucleus accumbens (NAc), as measured by ex vivo fast scan cyclic voltammetry, was reduced for HFD-fed B6J females. Impairment in glucose metabolism explained HFD-induced changes in dopamine neurochemistry for B6J males and, to a lesser extent, Balb/c males. The relative expressions of protein markers associated with the activation of microglia, ionized calcium binding adaptor molecule (Iba1) and cluster of differentiation molecule 11b (CD11b) in the striatum were increased due to an HFD for B6J males but were unchanged or decreased amongst HFD-fed Balb/c mice. Conclusions: Our findings demonstrate that strain and sex influence the insulin- and microglia-dependent mechanisms of alterations to dopamine neurochemistry and associated behavior due to an HFD.
Collapse
Affiliation(s)
| | | | | | - Keith M. Erikson
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (K.A.H.-W.); (H.A.E.); (S.C.F.)
| |
Collapse
|
6
|
Emmons HA, Fordahl SC. Moderate-intensity aerobic exercise enhanced dopamine signaling in diet-induced obese female mice without preventing body weight gain. Neuroscience 2024; 555:1-10. [PMID: 39032807 PMCID: PMC11344652 DOI: 10.1016/j.neuroscience.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Obesity continues to rise in prevalence and financial burden despite strong evidence linking it to an increased risk of developing several chronic diseases. Dopamine response and receptor density are shown to decrease under conditions of obesity. However, it is unclear if this could be a potential mechanism for treatment without drugs that have a potential for abuse. Therefore, the aim of this study was to investigate whether moderate-intensity exercise could reduce body weight gain and the associated decreases in dopamine signaling observed with high-fat diet-induced adiposity. We hypothesized that exercise would attenuate body weight gain and diet-induced inflammation in high-fat (HF)-fed mice, resulting in dopamine signaling (release and reuptake rate) comparable to sedentary, low-fat (LF)-fed counterparts. This hypothesis was tested using a mouse model of diet-induced obesity (DIO) and fast-scan cyclic voltammetry to measure evoked dopamine release and reuptake rates. Although the exercise protocol employed in this study was not sufficient to prevent significant body weight gain, there was an enhancement of dopamine signaling observed in female mice fed a HF diet that underwent treadmill running. Additionally, aerobic treadmill exercise enhanced the sensitivity to amphetamine (AMPH) in this same group of exercised, HF-fed females. The estrous cycle might influence the ability of exercise to enhance dopamine signaling in females, an effect not observed in male groups. Further research into females by estrous cycle phase, in addition to determining the optimal intensity and duration of aerobic exercise, are logical next steps.
Collapse
Affiliation(s)
| | - Steve C Fordahl
- UNC Greensboro, Department of Nutrition, Greensboro NC, USA.
| |
Collapse
|
7
|
Duan Y, Guo F, Li C, Xiang D, Gong M, Yi H, Chen L, Yan L, Zhang D, Dai L, Liu X, Wang Z. Aqueous extract of fermented Eucommia ulmoides leaves alleviates hyperlipidemia by maintaining gut homeostasis and modulating metabolism in high-fat diet fed rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155291. [PMID: 38518640 DOI: 10.1016/j.phymed.2023.155291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/19/2023] [Accepted: 12/16/2023] [Indexed: 03/24/2024]
Abstract
BACKGROUND As a traditional Chinese medicinal herb, the lipid-lowing biological potential of Eucommia ulmoides leaves (EL) has been demonstrated. After fermentation, the EL have been made into various products with lipid-lowering effects and antioxidant activity. However, the anti-hyperlipidemic mechanism of fermented Eucommia ulmoides leaves (FEL) is unclear now. PURPOSE To evaluate the effects of FEL on hyperlipidemia and investigate the mechanism based on regulating gut homeostasis and host metabolism. METHODS Hyperlipidemia animal model in Wistar rats was established after 8 weeks high-fat diet (HFD) fed. The administered doses of aqueous extract of FEL (FELE) were 128, 256 and 512 mg/kg/d, respectively. Serum biochemical parameters detection, histopathological sections analysis, 16S rDNA sequencing of gut microbiota and untargeted fecal metabolomics analysis, were performed to determine the therapeutic effects and predict related pathways of FELE on hyperlipidemia. The changes of proteins and genes elated to lipid were detected by Immunofluorescence (IF) and quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS 56 Components in FELE were identified by UPLC-MS, with organic acids, flavonoids and phenolic acids accounting for the majority. The intervention of FELE significantly reduced the body weight, lipid accumulation and the levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein-cholesterol (LDL-C) in hyperlipidemia rats, while increased the level of High-density lipoprotein-cholesterol (HDL-C). Meanwhile, FELE improved the inflammatory makers and oxidative stress factors, which is tumor necrosis factor-α (TNF-α), monocyte chemotactic protein-1 (MCP-1), interleukin-6 (IL-6), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT). These results demonstrated that FETE can effectively reduce blood lipids and alleviate inflammation and oxidative damage caused by hyperlipidemia. Mechanistically, FELE restore the homeostasis of gut microbiota by reducing the Firmicutes/Bacteroidetes ratio and increasing the abundance of probiotics, especially Lactobacillus, Rombousia, Bacteroides, Roseburia, Clostridia_UCG-014_Unclassified, while modulated metabolism through amino acid, bile acid and lipid-related metabolism pathways. In addition, the Pearson correlation analysis found that the upregulated bilirubin, threonine, dopamine and downregulated lipocholic acid, d-sphingosine were key metabolites after FELE intervention. IF and qRT-PCR analysis showed that FELE upregulated the expression of fatty acid oxidation proteins and genes (PPARα, CPT1A), bile acid synthesis and excretion proteins and genes (LXRα, CYP7A1, FXR), and downregulated the expression of adipogenic gene (SREBP-1c) by regulating gut microbiota to improve metabolism and exert a lipid-lowering effect. CONCLUSION This work filled the lipid-lowering mechanism gap of FEL. FELE can improve HFD-induced hyperlipidemia by regulating the gut microbiota homeostasis and metabolism. Thus, FEL has the potential to develop into the novel raw material of lipid-lowering drugs.
Collapse
Affiliation(s)
- Yu Duan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fengqian Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dinghua Xiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Man Gong
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Hong Yi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liangmian Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lihua Yan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liping Dai
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Xiaoqian Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Zhimin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
8
|
Henderson BJ, Tetteh-Quarshie S, Olszewski NA. Modulators of nicotine reward and reinforcement. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 99:355-386. [PMID: 38467487 DOI: 10.1016/bs.apha.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Nicotine has been well-characterized for its ability to alter neurophysiology to promote rewarding and reinforcing properties. However, several exogenous chemicals possess properties that modulate or enhance nicotine's ability to alter neurophysiology. This chapter focuses on nicotine's impact on behavior through changes in neurophysiology and several chemical entities that in-turn modulate nicotine's ability to act as a neuromodulator.
Collapse
Affiliation(s)
- Brandon J Henderson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, United States.
| | - Samuel Tetteh-Quarshie
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, United States
| | - Nathan A Olszewski
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, United States
| |
Collapse
|
9
|
Kim JS, Williams KC, Kirkland RA, Schade R, Freeman KG, Cawthon CR, Rautmann AW, Smith JM, Edwards GL, Glenn TC, Holmes PV, de Lartigue G, de La Serre CB. The gut-brain axis mediates bacterial driven modulation of reward signaling. Mol Metab 2023; 75:101764. [PMID: 37380023 PMCID: PMC10372379 DOI: 10.1016/j.molmet.2023.101764] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023] Open
Abstract
OBJECTIVE Our goal is to investigate if microbiota composition modulates reward signaling and assess the role of the vagus in mediating microbiota to brain communication. METHODS Male germ-free Fisher rats were colonized with gastrointestinal contents from chow (low fat (LF) ConvLF) or HF (ConvHF) fed rats. RESULTS Following colonization, ConvHF rats consumed significantly more food than ConvLF animals. ConvHF rats displayed lower feeding-induced extracellular DOPAC levels (a metabolite of dopamine) in the Nucleus Accumbens (NAc) as well as reduced motivation for HF foods compared to ConvLF rats. Dopamine receptor 2 (DDR2) expression levels in the NAc were also significantly lower in ConvHF animals. Similar deficits were observed in conventionally raised HF fed rats, showing that diet-driven alteration in reward can be initiated via microbiota. Selective gut to brain deafferentation restored DOPAC levels, DRD2 expression, and motivational drive in ConvHF rats. CONCLUSIONS We concluded from these data that a HF-type microbiota is sufficient to alter appetitive feeding behavior and that bacteria to reward communication is mediated by the vagus nerve.
Collapse
Affiliation(s)
- Jiyoung S Kim
- Department of Nutritional Sciences, University of Georgia, USA
| | | | | | - Ruth Schade
- Department of Nutritional Sciences, University of Georgia, USA
| | | | | | | | | | - Gaylen L Edwards
- Department of Physiology and Pharmacology, University of Georgia, USA
| | - Travis C Glenn
- Department of Environmental Health Science, University of Georgia, USA
| | | | - Guillaume de Lartigue
- Monell Chemical Senses Center and Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, USA
| | | |
Collapse
|
10
|
Santos-Cruz LF, Sigrist-Flores SC, Castañeda-Partida L, Heres-Pulido ME, Dueñas-García IE, Piedra-Ibarra E, Ponciano-Gómez A, Jiménez-Flores R, Campos-Aguilar M. Effects of Fructose and Palmitic Acid on Gene Expression in Drosophila melanogaster Larvae: Implications for Neurodegenerative Diseases. Int J Mol Sci 2023; 24:10279. [PMID: 37373426 DOI: 10.3390/ijms241210279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
One of the largest health problems worldwide is the development of chronic noncommunicable diseases due to the consumption of hypercaloric diets. Among the most common alterations are cardiovascular diseases, and a high correlation between overnutrition and neurodegenerative diseases has also been found. The urgency in the study of specific damage to tissues such as the brain and intestine led us to use Drosophila melanogaster to study the metabolic effects caused by the consumption of fructose and palmitic acid in specific tissues. Thus, third instar larvae (96 ± 4 h) of the wild Canton-S strain of D. melanogaster were used to perform transcriptomic profiling in brain and midgut tissues to test for the potential metabolic effects of a diet supplemented with fructose and palmitic acid. Our data infer that this diet can alter the biosynthesis of proteins at the mRNA level that participate in the synthesis of amino acids, as well as fundamental enzymes for the dopaminergic and GABAergic systems in the midgut and brain. These also demonstrated alterations in the tissues of flies that may help explain the development of various reported human diseases associated with the consumption of fructose and palmitic acid in humans. These studies will not only help to better understand the mechanisms by which the consumption of these alimentary products is related to the development of neuronal diseases but may also contribute to the prevention of these conditions.
Collapse
Affiliation(s)
- Luis Felipe Santos-Cruz
- Toxicología Genética, Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Santiago Cristobal Sigrist-Flores
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Laura Castañeda-Partida
- Toxicología Genética, Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - María Eugenia Heres-Pulido
- Toxicología Genética, Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Irma Elena Dueñas-García
- Toxicología Genética, Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Elías Piedra-Ibarra
- Fisiología Vegetal (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Alberto Ponciano-Gómez
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Rafael Jiménez-Flores
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| | - Myriam Campos-Aguilar
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico
| |
Collapse
|
11
|
Hartmann H, Janssen LK, Herzog N, Morys F, Fängström D, Fallon SJ, Horstmann A. Self-reported intake of high-fat and high-sugar diet is not associated with cognitive stability and flexibility in healthy men. Appetite 2023; 183:106477. [PMID: 36764221 DOI: 10.1016/j.appet.2023.106477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
Animal studies indicate that a high-fat/high-sugar diet (HFS) can change dopamine signal transmission in the brain, which could promote maladaptive behavior and decision-making. Such diet-induced changes may also explain observed alterations in the dopamine system in human obesity. Genetic variants that modulate dopamine transmission have been proposed to render some individuals more prone to potential effects of HFS. The objective of this study was to investigate the association of HFS with dopamine-dependent cognition in humans and how genetic variations might modulate this potential association. Using a questionnaire assessing the self-reported consumption of high-fat/high-sugar foods, we investigated the association with diet by recruiting healthy young men that fall into the lower or upper end of that questionnaire (low fat/sugar group: LFS, n = 45; high fat/sugar group: HFS, n = 41) and explored the interaction of fat and sugar consumption with COMT Val158Met and Taq1A genotype. During functional magnetic resonance imaging (fMRI) scanning, male participants performed a working memory (WM) task that probes distractor-resistance and updating of WM representations. Logistic and linear regression models revealed no significant difference in WM performance between the two diet groups, nor an interaction with COMT Val158Met or Taq1A genotype. Neural activation in task-related brain areas also did not differ between diet groups. Independent of diet group, higher BMI was associated with lower overall accuracy on the WM task. This cross-sectional study does not provide evidence for diet-related differences in WM stability and flexibility in men, nor for a predisposition of COMT Val158Met or Taq1A genotype to the hypothesized detrimental effects of an HFS diet. Previously reported associations of BMI with WM seem to be independent of HFS intake in our male study sample.
Collapse
Affiliation(s)
- Hendrik Hartmann
- Collaborative Research Centre 1052, University of Leipzig, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany; Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Lieneke K Janssen
- Collaborative Research Centre 1052, University of Leipzig, Leipzig, Germany; Institute of Psychology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Nadine Herzog
- Department of Neurology, Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany
| | - Filip Morys
- Montreal Neurological Institute, Montreal, QC, Canada
| | - Daniel Fängström
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Annette Horstmann
- Collaborative Research Centre 1052, University of Leipzig, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany; Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Methylmercury-Induced Metabolic Alterations in Caenorhabditis elegans Are Diet-Dependent. TOXICS 2021; 9:toxics9110287. [PMID: 34822679 PMCID: PMC8619518 DOI: 10.3390/toxics9110287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 10/29/2021] [Indexed: 01/12/2023]
Abstract
Methylmercury (MeHg) is a well-known neurotoxicant; however, its role in metabolic diseases has been gaining wider attention. Chronic exposure to MeHg in human populations shows an association with diabetes mellitus and metabolic syndrome (MS). As the incidences of both obesity and MS are on the rise globally, it is important to understand the potential role of MeHg in the development of the disease. There is a dearth of information on dietary interactions between MeHg and lipids, which play an important role in developing MS. We have previously shown that MeHg increases food seeking behaviors, lipid levels, fat storage, and pro-adipogenic gene expression in C. elegans fed the standard OP50 Escherichia coli diet. However, we hypothesized that these metabolic changes could be prevented if the worms were fed a bacterial diet lower in lipid content. We tested whether C. elegans developed metabolic alterations in response to MeHg if they were fed two alternative E. coli strains (HT115 and HB101) that are known absorb significantly less lipids from their media. Additionally, to explore the effect of a high-lipid and high-cholesterol diet on MeHg-induced metabolic dysfunction, we supplemented the OP50 strain with twice the standard concentration of cholesterol in the nematode growth media. Wild-type worms fed either the HB101 or HT115 diet were more resistant to MeHg than the worms fed the OP50 diet, showing a significant right-hand shift in the dose–response survival curve. Worms fed the OP50 diet supplemented with cholesterol were more sensitive to MeHg, showing a significant left-hand shift in the dose–response survival curve. Changes in sensitivity to MeHg by differential diet were not due to altered MeHg intake in the worms as measured by inductively coupled mass spectrometry. Worms fed the low-fat diets showed protection from MeHg-induced metabolic changes, including decreased food consumption, lower triglyceride content, and lower fat storage than the worms fed either of the higher-fat diets. Oxidative stress is a common characteristic of both MeHg exposure and high-fat diets. Worms fed either OP50 or OP50 supplemented with cholesterol and treated with MeHg had significantly higher levels of reactive oxygen species, carbonylated proteins, and loss of glutathione than the worms fed the HT115 or HB101 low-lipid diets. Taken together, our data suggest a synergistic effect of MeHg and dietary lipid levels on MeHg toxicity and fat metabolism in C. elegans, which may affect the ability of MeHg to cause metabolic dysfunction.
Collapse
|