1
|
Fan H, Shi Y, Liu H, Zuo X, Yang Y, Yin H, Li Y, Wang X, Liu L, Wang F, Han H, Wu Q, Yang N, Tang Y, Lu G. Inhalation of H 2/O 2 (66.7 %/33.3 %) mitigates depression-like behaviors in diabetes mellitus complicated with depression mice via suppressing inflammation and preventing hippocampal damage. Biomed Pharmacother 2024; 180:117559. [PMID: 39405908 DOI: 10.1016/j.biopha.2024.117559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/16/2024] [Accepted: 10/08/2024] [Indexed: 11/14/2024] Open
Abstract
Diabetes mellitus complicated with depression (DD) is a prevalent psychosomatic disorder. It is characterized by severe cognitive impairment, and associated with high rates of disability and mortality. Although conventional treatment options are available, the efficacy of these regimens in managing DD remains limited. Molecular hydrogen (H2), a selective hydroxyl radical scavenger, has shown therapeutic potential in the treatment of various systemic diseases. This study aims to investigate the therapeutic effects of H2 on DD. A DD mouse model was established through intraperitoneal injection of streptozotocin (STZ, 150 mg/kg) and lipopolysaccharide (LPS, 0.5 mg/kg). Following the induction of DD, the mice were treated with H2/O2 (66.7 %/33.3 %)inhalation for 7 days. Behavioral assessments were conducted by standard behavioral tests, and the levels of inflammatory cytokines in peripheral blood serum and hippocampal tissue were measured using enzyme-linked immunosorbent assay (ELISA). Furthermore, magnetic resonance imaging (MRI) scans and immunofluorescence staining of the hippocampus were performed to evaluate hippocampal structural integrity. The results demonstrated that inhalation of H2/O2 (66.7 %/33.3 %) significantly ameliorated depressive behaviors and symptoms in DD mice, reversed hippocampal volume reduction, decreased inflammatory cytokine levels in peripheral blood serum and hippocampal tissue, and inhibited the activation of A1 astrocytes in the hippocampus. Our study suggests that H2/O2 (66.7 %/33.3 %) inhalation therapy may offer a promising treatment strategy for DD and its associated symptoms.
Collapse
Affiliation(s)
- Huaju Fan
- Medical Laboratory Animal Center, School of Psychology, Shandong Second Medical University, Weifang, Shandong 261053, China; Sichuan Second Veterans Hospital, Chengdu, Sichuan 611230, China
| | - Yanhua Shi
- Medical Laboratory Animal Center, School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Haiqiang Liu
- Weifang People's Hospital Weifang, Shandong 261000, China
| | - Xiaofei Zuo
- Medical Laboratory Animal Center, School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Yanmei Yang
- Medical Laboratory Animal Center, School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Hao Yin
- Medical Laboratory Animal Center, School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Yanyan Li
- Medical Laboratory Animal Center, School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Xianghui Wang
- Medical Laboratory Animal Center, School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Li Liu
- Medical Laboratory Animal Center, School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Fengjiao Wang
- Medical Laboratory Animal Center, School of Public Health, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Huifang Han
- Medical Laboratory Animal Center, School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Qianying Wu
- Medical Laboratory Animal Center, School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Nana Yang
- Medical Laboratory Animal Center, School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong 261053, China.
| | - Yaohui Tang
- School of Biomedical Engineering and Affiliated Sixth People's Hospital, Shanghai JiaoTong University, 1954 Hua Shan Rd., Shanghai 200030, China.
| | - Guohua Lu
- Medical Laboratory Animal Center, School of Psychology, Shandong Second Medical University, Weifang, Shandong 261053, China.
| |
Collapse
|
2
|
Cong E, Zhong Y, Wu M, Chen H, Cai Y, Ling Z, Wang Y, Wen H, Hu Y, Zhang H, Li Y, Liu X, Zhong P, Lai W, Xu Y, Wu Y. Hippocampal subfield morphology from first episodes of bipolar disorder type II and major depressive disorder in a drug naïve Chinese cohort. Front Psychiatry 2024; 15:1438144. [PMID: 39119073 PMCID: PMC11306163 DOI: 10.3389/fpsyt.2024.1438144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Symptoms during the onset of major depressive disorder [MDD] and bipolar disorder type II [BD-II] are similar. The difference of hippocampus subregion could be a biological marker to distinguish MDD from BD-II. Methods We recruited 61 drug-naïve patients with a first-episode MDD and BD-II episode and 30 healthy controls (HC) to participate in a magnetic resonance imaging [MRI] study. We built a general linear model (one-way analysis of covariance) with 22 hippocampal subfields and two total hippocampal volumes as dependent variables, and the diagnosis of MDD, BD-II, and HC as independent variables. We performed pair-wise comparisons of hippocampal subfield volumes between MDD and HC, BD-II and MDD, BD-II and HC with post hoc for primary analysis. Results We identified three regions that differed significantly in size between patients and controls. The left hippocampal fissure, the hippocampal-amygdaloid transition area (HATA), and the right subiculum body were all significantly larger in patients with MDD compared with the HC. In the onset of first-episode of MDD, the hippocampal volume increased significantly, especially on the left side comparing to HC. However, we found differences between MDD and BD-II were not statistically significant. The volume of the left HATA and right subiculum body in BD-II was larger. Conclusions The sample size of this study is relatively small, as it is a cross-sectional comparative study. In both MDD and BD-II groups, the volume of more left subregions appeared to increase. The left subregions were severely injured in the development of depressive disorder.
Collapse
Affiliation(s)
- Enzhao Cong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yingyan Zhong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyue Wu
- X-LANCE Lab, Department of Computer Science and Engineering, MoE Key Lab of Artificial Intelligence, AI Institute Shanghai Jiao Tong University, Shanghai, China
| | - Haiying Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyun Cai
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Ling
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Hu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huifeng Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pingfang Zhong
- Affective Disorder Department, Lincang Psychiatric Hospital, Lincang, China
| | - Weijie Lai
- Psychiatric Department, Zhangzhou Fukang Hospital, Zhangzhou, China
| | - Yifeng Xu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Wu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Tang M, Zhang L, Zhou Z, Cao L, Gao Y, Wang Y, Li H, Hu X, Bao W, Liang K, Kuang W, Sweeney JA, Gong Q, Huang X. Divergent effects of sex on hippocampal subfield alterations in drug-naive patients with major depressive disorder. J Affect Disord 2024; 354:173-180. [PMID: 38492647 DOI: 10.1016/j.jad.2024.03.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND The hippocampus is a crucial brain structure in etiological models of major depressive disorder (MDD). It remains unclear whether sex differences in the incidence and symptoms of MDD are related to differential illness-associated brain alterations, including alterations in the hippocampus. This study investigated divergent the effects of sex on hippocampal subfield alterations in drug-naive patients with MDD. METHODS High-resolution structural MR images were obtained from 144 drug-naive individuals with MDD early in their illness course and 135 age- and sex-matched healthy controls (HCs). Hippocampal subfields were segmented using FreeSurfer software and analyzed in terms of both histological subfields (CA1-4, dentate gyrus, etc.) and more integrative larger functional subregions (head, body and tail). RESULTS We observed a significant overall reduction in hippocampal volume in MDD patients, with deficits more prominent deficits in the posterior hippocampus. Differences in anatomic alterations between male and female patients were observed in the CA1-head, presubiculum-body and fimbria in the left hemisphere. Exploratory analyses revealed different patterns of clinical and memory function correlations with histological subfields and functional subregions between male and female patients primarily in the hippocampal head and body. LIMITATIONS This cross-sectional study cannot clarify the causality of hippocampal alterations or their association with illness risk or onset. CONCLUSIONS These findings represent the first reported sex-specific alterations in hippocampal histological subfields in patients with MDD early in the illness course prior to treatment. Sex-specific hippocampal alterations may contribute to diverse sex differences in the clinical presentation of MDD.
Collapse
Affiliation(s)
- Mengyue Tang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Lianqing Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Zilin Zhou
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Lingxiao Cao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yingxue Gao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yingying Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Hailong Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xinyue Hu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Weijie Bao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Kaili Liang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - John A Sweeney
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Xiaoqi Huang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
4
|
Hurtado H, Hansen M, Strack J, Vainik U, Decker AL, Khundrakpam B, Duncan K, Finn AS, Mabbott DJ, Merz EC. Polygenic risk for depression and anterior and posterior hippocampal volume in children and adolescents. J Affect Disord 2024; 344:619-627. [PMID: 37858734 PMCID: PMC10842073 DOI: 10.1016/j.jad.2023.10.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Depression has frequently been associated with smaller hippocampal volume. The hippocampus varies in function along its anterior-posterior axis, with the anterior hippocampus more strongly associated with stress and emotion processing. The goals of this study were to examine the associations among parental history of anxiety/depression, polygenic risk scores for depression (PGS-DEP), and anterior and posterior hippocampal volumes in children and adolescents. To examine specificity to PGS-DEP, we examined associations of educational attainment polygenic scores (PGS-EA) with anterior and posterior hippocampal volume. METHODS Participants were 350 3- to 21-year-olds (46 % female). PGS-DEP and PGS-EA were computed based on recent, large-scale genome-wide association studies. High-resolution, T1-weighted magnetic resonance imaging (MRI) data were acquired, and a semi-automated approach was used to segment the hippocampus into anterior and posterior subregions. RESULTS Children and adolescents with higher polygenic risk for depression were more likely to have a parent with a history of anxiety/depression. Higher polygenic risk for depression was significantly associated with smaller anterior but not posterior hippocampal volume. PGS-EA was not associated with anterior or posterior hippocampal volumes. LIMITATIONS Participants in these analyses were all of European ancestry. CONCLUSIONS Polygenic risk for depression may lead to smaller anterior but not posterior hippocampal volume in children and adolescents, and there may be specificity of these effects to PGS-DEP rather than PGS-EA. These findings may inform the earlier identification of those in need of support and the design of more effective, personalized treatment strategies. DECLARATIONS OF INTEREST none. DECLARATIONS OF INTEREST None.
Collapse
Affiliation(s)
- Hailee Hurtado
- Department of Psychology, Colorado State University, Fort Collins, CO, USA
| | - Melissa Hansen
- Department of Psychology, Colorado State University, Fort Collins, CO, USA
| | - Jordan Strack
- Department of Psychology, Colorado State University, Fort Collins, CO, USA
| | - Uku Vainik
- University of Tartu, Tartu, Estonia; Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Alexandra L Decker
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Katherine Duncan
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Amy S Finn
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Donald J Mabbott
- Department of Psychology, University of Toronto, Toronto, ON, Canada.; Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada.; Department of Psychology, Hospital for Sick Children, Toronto, ON, Canada
| | - Emily C Merz
- Department of Psychology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
5
|
Wu C, Jia L, Mu Q, Fang Z, Hamoudi HJAS, Huang M, Hu S, Zhang P, Xu Y, Lu S. Altered hippocampal subfield volumes in major depressive disorder with and without anhedonia. BMC Psychiatry 2023; 23:540. [PMID: 37491229 PMCID: PMC10369779 DOI: 10.1186/s12888-023-05001-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Previous neuroimaging findings have demonstrated the association between anhedonia and the hippocampus. However, few studies have focused on the structural changes in the hippocampus in major depressive disorder (MDD) patients with anhedonia. Meanwhile, considering that multiple and functionally specialized subfields of the hippocampus have their own signatures, the present study aimed to investigate the volumetric alterations of the hippocampus as well as its subfields in MDD patients with and without anhedonia. METHODS A total of 113 subjects, including 30 MDD patients with anhedonia, 40 MDD patients without anhedonia, and 43 healthy controls (HCs), were recruited in the study. All participants underwent high-resolution brain magnetic resonance imaging (MRI) scans, and the automated hippocampal substructure module in FreeSurfer 6.0 was used to evaluate the volumes of hippocampal subfields. We compared the volumetric differences in hippocampal subfields among the three groups by analysis of variance (ANOVA, post hoc Bonferroni), and partial correlation was used to explore the association between hippocampal subregion volumes and clinical characteristics. RESULTS ANOVA showed significant volumetric differences in the hippocampal subfields among the three groups in the left hippocampus head, mainly in the cornu ammonis (CA) 1, granule cell layer of the dentate gyrus (GC-ML-DG), and molecular layer (ML). Compared with HCs, both groups of MDD patients showed significantly smaller volumes in the whole left hippocampus head. Interestingly, further exploration revealed that only MDD patients with anhedonia had significantly reduced volumes in the left CA1, GC-ML-DG and ML when compared with HCs. No significant difference was found in the volumes of the hippocampal subfields between MDD patients without anhedonia and HCs, either the two groups of MDD patients. However, no association between hippocampal subfield volumes and clinical characteristics was found in either the subset of patients with anhedonia or in the patient group as a whole. CONCLUSIONS These preliminary findings suggest that MDD patients with anhedonia exhibit unique atrophy of the hippocampus and that subfield abnormalities in the left CA1 and DG might be associated with anhedonia in MDD.
Collapse
Affiliation(s)
- Congchong Wu
- Department of Psychiatry, The First Affiliated Hospital, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lili Jia
- Department of Psychiatry, The First Affiliated Hospital, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Clinical Psychology, The Fifth Peoples' Hospital of Lin'an District, Hangzhou, Zhejiang, China
| | - Qingli Mu
- Department of Psychiatry, The First Affiliated Hospital, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhe Fang
- Department of Psychiatry, The First Affiliated Hospital, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | | | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Peng Zhang
- Department of Psychiatry, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, 310003, Zhejiang, China.
| | - Yi Xu
- Department of Psychiatry, The First Affiliated Hospital, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Shaojia Lu
- Department of Psychiatry, The First Affiliated Hospital, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Engineering Center for Mathematical Mental Health, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
6
|
Cao P, Chen C, Si Q, Li Y, Ren F, Han C, Zhao J, Wang X, Xu G, Sui Y. Volumes of hippocampal subfields suggest a continuum between schizophrenia, major depressive disorder and bipolar disorder. Front Psychiatry 2023; 14:1191170. [PMID: 37547217 PMCID: PMC10400724 DOI: 10.3389/fpsyt.2023.1191170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Objective There is considerable debate as to whether the continuum of major psychiatric disorders exists and to what extent the boundaries extend. Converging evidence suggests that alterations in hippocampal volume are a common sign in psychiatric disorders; however, there is still no consensus on the nature and extent of hippocampal atrophy in schizophrenia (SZ), major depressive disorder (MDD) and bipolar disorder (BD). The aim of this study was to verify the continuum of SZ - BD - MDD at the level of hippocampal subfield volume and to compare the volume differences in hippocampal subfields in the continuum. Methods A total of 412 participants (204 SZ, 98 MDD, and 110 BD) underwent 3 T MRI scans, structured clinical interviews, and clinical scales. We segmented the hippocampal subfields with FreeSurfer 7.1.1 and compared subfields volumes across the three diagnostic groups by controlling for age, gender, education, and intracranial volumes. Results The results showed a gradual increase in hippocampal subfield volumes from SZ to MDD to BD. Significant volume differences in the total hippocampus and 13 of 26 hippocampal subfields, including CA1, CA3, CA4, GC-ML-DG, molecular layer and the whole hippocampus, bilaterally, and parasubiculum in the right hemisphere, were observed among diagnostic groups. Medication treatment had the most effect on subfields of MDD compared to SZ and BD. Subfield volumes were negatively correlated with illness duration of MDD. Positive correlations were found between subfield volumes and drug dose in SZ and MDD. There was no significant difference in laterality between diagnostic groups. Conclusion The pattern of hippocampal volume reduction in SZ, MDD and BD suggests that there may be a continuum of the three disorders at the hippocampal level. The hippocampus represents a phenotype that is distinct from traditional diagnostic strategies. Combined with illness duration and drug intervention, it may better reflect shared pathophysiology and mechanisms across psychiatric disorders.
Collapse
Affiliation(s)
- Peiyu Cao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Congxin Chen
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qi Si
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
- Huai’an No. 3 People’s Hospital, Huai’an, China
| | - Yuting Li
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Fangfang Ren
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Chongyang Han
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Jingjing Zhao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Xiying Wang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Guoxin Xu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Yuxiu Sui
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| |
Collapse
|
7
|
Relations of hippocampal subfields atrophy patterns with memory and biochemical changes in end stage renal disease. Sci Rep 2023; 13:2982. [PMID: 36804419 PMCID: PMC9941083 DOI: 10.1038/s41598-023-29083-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
End-stage renal disease (ESRD) results in hippocampal volume reduction, but the hippocampal subfields atrophy patterns cannot be identified. We explored the volumes and asymmetry of the hippocampal subfields and their relationships with memory function and biochemical changes. Hippocampal global and subfields volumes were derived from 33 ESRD patients and 46 healthy controls (HCs) from structural MRI. We compared the volume and asymmetric index of each subfield, with receiver operating characteristic curve analysis to evaluate the differentiation between ESRD and HCs. The relations of hippocampal subfield volumes with memory performance and biochemical data were investigated in ESRD group. ESRD patients had smaller hippocampal subfield volumes, mainly in the left CA1 body, left fimbria, right molecular layer head, right molecular layer body and right HATA. The right molecular layer body exhibited the highest accuracy for differentiating ESRD from HCs, with a sensitivity of 80.43% and specificity of 72.73%. Worse learning process (r = 0.414, p = 0.032), immediate recall (r = 0.396, p = 0.041) and delayed recall (r = 0.482, p = 0.011) was associated with left fimbria atrophy. The left fimbria volume was positively correlated with Hb (r = 0.388, p = 0.05); the left CA1 body volume was negatively correlated with Urea (r = - 0.469, p = 0.016). ESRD patients showed global and hippocampal subfields atrophy. Left fimbria atrophy was related to memory function. Anemia and Urea level may be associated with the atrophy of left fimbria and CA1 body, respectively.
Collapse
|
8
|
Twait EL, Blom K, Koek HL, Zwartbol MHT, Ghaznawi R, Hendrikse J, Gerritsen L, Geerlings MI. Psychosocial factors and hippocampal subfields: The Medea-7T study. Hum Brain Mapp 2022; 44:1964-1984. [PMID: 36583397 PMCID: PMC9980899 DOI: 10.1002/hbm.26185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022] Open
Abstract
Specific subfields within the hippocampus have shown vulnerability to chronic stress, highlighting the importance of looking regionally within the hippocampus to understand the role of psychosocial factors in the development of neurodegenerative diseases. A systematic review on psychosocial factors and hippocampal subfield volumes was performed and showed inconsistent results, highlighting the need for future studies to explore this relationship. The current study aimed to explore the association of psychosocial factors with hippocampal (subfield) volumes, using high-field 7T MRI. Data were from the Memory Depression and Aging (Medea)-7T study, which included 333 participants without dementia. Hippocampal subfields were automatically segmented from T2-weighted images using ASHS software. Generalized linear models accounting for correlated outcomes were used to assess the association between subfields (i.e., entorhinal cortex, subiculum, Cornu Ammonis [CA]1, CA2, CA3, dentate gyrus, and tail) and each psychosocial factor (i.e., depressive symptoms, anxiety symptoms, childhood maltreatment, recent stressful life events, and social support), adjusted for age, sex, and intracranial volume. Neither depression nor anxiety was associated with specific hippocampal (subfield) volumes. A trend for lower total hippocampal volume was found in those reporting childhood maltreatment, and a trend for higher total hippocampal volume was found in those who experienced a recent stressful life event. Among subfields, low social support was associated with lower volume in the CA3 (B = -0.43, 95% CI: -0.72; -0.15). This study suggests possible differential effects among hippocampal (subfield) volumes and psychosocial factors.
Collapse
Affiliation(s)
- Emma L. Twait
- Department of Epidemiology, Julius Center for Health Sciences and Primary CareUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Kim Blom
- Department of Epidemiology, Julius Center for Health Sciences and Primary CareUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Huiberdina L. Koek
- Department of GeriatricsUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Maarten H. T. Zwartbol
- Department of RadiologyUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Rashid Ghaznawi
- Department of RadiologyUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Jeroen Hendrikse
- Department of RadiologyUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Lotte Gerritsen
- Department of PsychologyUtrecht UniversityUtrechtThe Netherlands
| | - Mirjam I. Geerlings
- Department of Epidemiology, Julius Center for Health Sciences and Primary CareUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands,Department of General PracticeAmsterdam UMC, Location University of AmsterdamAmsterdamThe Netherlands,Amsterdam Public Health, Aging & Later life, and Personalized MedicineAmsterdamThe Netherlands,Amsterdam Neuroscience, Neurodegeneration, and Mood, Anxiety, Psychosis, Stress, and SleepAmsterdamThe Netherlands
| | | |
Collapse
|
9
|
Tartt AN, Mariani MB, Hen R, Mann JJ, Boldrini M. Dysregulation of adult hippocampal neuroplasticity in major depression: pathogenesis and therapeutic implications. Mol Psychiatry 2022; 27:2689-2699. [PMID: 35354926 PMCID: PMC9167750 DOI: 10.1038/s41380-022-01520-y] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023]
Abstract
Major depressive disorder (MDD) was previously hypothesized to be a disease of monoamine deficiency in which low levels of monoamines in the synaptic cleft were believed to underlie depressive symptoms. More recently, however, there has been a paradigm shift toward a neuroplasticity hypothesis of depression in which downstream effects of antidepressants, such as increased neurogenesis, contribute to improvements in cognition and mood. This review takes a top-down approach to assess how changes in behavior and hippocampal-dependent circuits may be attributed to abnormalities at the molecular, structural, and synaptic level. We conclude with a discussion of how antidepressant treatments share a common effect in modulating neuroplasticity and consider outstanding questions and future perspectives.
Collapse
Affiliation(s)
| | | | - Rene Hen
- Departments of Psychiatry, Columbia University, New York, NY, USA
- Neuroscience, Columbia University, New York, NY, USA
- Pharmacology, Columbia University, New York, NY, USA
- Integrative Neuroscience, NYS Psychiatric Institute, New York, NY, USA
| | - J John Mann
- Departments of Psychiatry, Columbia University, New York, NY, USA
- Molecular Imaging and Neuropathology, NYS Psychiatric Institute, New York, NY, USA
| | - Maura Boldrini
- Departments of Psychiatry, Columbia University, New York, NY, USA.
- Molecular Imaging and Neuropathology, NYS Psychiatric Institute, New York, NY, USA.
| |
Collapse
|