1
|
Kelly M, Garner M, Cooper EM, Orsini CA. Cholinergic regulation of decision making under risk of punishment. Neurobiol Learn Mem 2025; 217:108018. [PMID: 39710058 DOI: 10.1016/j.nlm.2024.108018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/18/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
The ability to choose between options that differ in their risks and rewards depends on brain regions within the mesocorticolimbic circuit and regulation of their activity by neurotransmitter systems. Dopamine neurotransmission in particular plays a critical role in modulating such risk-taking behavior; however, the contribution of other major modulatory neurotransmitters, such as acetylcholine, is not as well-defined, especially for decision making in which the risk associated with more rewarding outcomes involves adverse consequences. Consequently, the goal of the current experiments was to examine how cholinergic signaling influences decision making involving risk of explicit punishment. Male and female rats were trained in a decision-making task in which they chose between a small safe food reward and a larger food reward accompanied by a risk of footshock punishment. After training in this task, the effects of nicotinic and muscarinic agonists and antagonists on risk-taking performance were evaluated. Neither nicotine, a nicotinic receptor agonist, nor mecamylamine, a nicotinic receptor antagonist, affected preference for the risky lever, although mecamylamine did alter latencies to press the risky lever and the percentage of omissions. The muscarinic receptor agonist oxotremorine decreased preference for the large, risky lever; similar effects on behavior were observed with the administration of the muscarinic receptor antagonist scopolamine. Control experiments were therefore conducted in which these same muscarinic receptor ligands were administered prior to testing in a reward discrimination task. These experiments revealed that the effects of oxotremorine and scopolamine on risk taking may be due to altered motivational processes rather than to changes in sensitivity to risk of punishment. Importantly, there were no sex differences in the effects of cholinergic manipulations on preference for the large, risky lever. Collectively, these findings suggest that in both males and females, cholinergic signaling via muscarinic receptors is involved in decision making involving risk of explicit punishment, with a specific role in modulating sensitivity to differences in reward magnitude. Future studies will expand upon this work by exploring whether targeting cholinergic receptors has therapeutic potential for psychiatric conditions in which risk taking is pathologically altered.
Collapse
Affiliation(s)
- Megan Kelly
- Department of Psychology, The University of Texas at Austin, Austin TX 78712, United States
| | - Merrick Garner
- Department of Psychology, The University of Texas at Austin, Austin TX 78712, United States
| | - Emily M Cooper
- Department of Psychology, The University of Texas at Austin, Austin TX 78712, United States
| | - Caitlin A Orsini
- Department of Psychology, The University of Texas at Austin, Austin TX 78712, United States; Department of Neurology, The University of Texas at Austin, Austin TX 78712, United States; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin TX 78712, United States.
| |
Collapse
|
2
|
da Costa P, Schetinger MRC, Baldissarelli J, Stefanello N, Lopes TF, Reichert KP, Assmann CE, Bottari NB, Miron VV, Vargas FFA, Gutierres JM, da Cruz IBM, Morsch VM. Blackcurrant ( Ribes nigrum L.) improves cholinergic signaling and protects against chronic Scopolamine-induced memory impairment in mice. J Psychopharmacol 2024; 38:1170-1183. [PMID: 39262284 DOI: 10.1177/02698811241273776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
BACKGROUND Blackcurrant (Ribes nigrum L.) is a berry rich in anthocyanins, bioactive compounds known for their antioxidant and neuroprotective properties that benefit human health. AIMS This study aimed to investigate the effects of blackcurrant and its association with Donepezil on memory impairment, cholinergic neurotransmission, and antioxidant systems in a mouse model of amnesia induced by chronic administration of Scopolamine. METHODS Adult male Swiss mice were given saline, blackcurrant (50 mg/kg, orally), and/or Donepezil (5 mg/kg, orally) and/or Scopolamine (1 mg/kg, intraperitoneally). RESULTS Behavioral tests revealed that blackcurrant and/or Donepezil prevented the learning and memory deficits induced by Scopolamine. In the cerebral cortex and hippocampus, blackcurrant and/or Donepezil treatments prevented the increase in acetylcholinesterase and butyrylcholinesterase activities induced by Scopolamine. Scopolamine also disrupted the glutathione redox system and increased levels of reactive species; nevertheless, blackcurrant and/or Donepezil treatments were able to prevent oxidative stress. Furthermore, these treatments prevented the increase in gene expression and protein density of acetylcholinesterase and the decrease in gene expression of the choline acetyltransferase enzyme induced by Scopolamine. CONCLUSIONS Findings suggest that blackcurrant and Donepezil, either alone or in combination, have anti-amnesic effects by modulating cholinergic system enzymes and improving the redox profile. Therefore, blackcurrant could be used as a natural supplement for the prevention and treatment of memory impairment in neurodegenerative diseases.
Collapse
Affiliation(s)
- Pauline da Costa
- Postgraduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Maria Rosa C Schetinger
- Postgraduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Jucimara Baldissarelli
- Multicenter Postgraduate Program in Physiological Sciences, Department of Physiology and Pharmacology, Federal University of Pelotas, Pelotas, RS, Brazil
- Postgraduate Program in Biochemistry and Bioprospecting, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Naiara Stefanello
- Postgraduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Thauan F Lopes
- Postgraduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Karine P Reichert
- Postgraduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Charles E Assmann
- Postgraduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Nathieli B Bottari
- Postgraduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Department of Microbiology and Parasitology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Vanessa V Miron
- Postgraduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Fermina Francesca A Vargas
- Multicenter Postgraduate Program in Physiological Sciences, Department of Physiology and Pharmacology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Jessié M Gutierres
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Ivana Beatrice M da Cruz
- Post graduate Program in Gerontology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Vera Maria Morsch
- Postgraduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
3
|
Balakrishnan AS, Johansen LBE, Lindsley CW, Conn PJ, Thomsen M. Co-stimulation of muscarinic M1 and M4 acetylcholine receptors prevents later cocaine reinforcement in male and female mice, but not place-conditioning. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111079. [PMID: 38950842 DOI: 10.1016/j.pnpbp.2024.111079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Acute stimulation of M1 or M4 muscarinic cholinergic receptors reduces cocaine abuse-related effects in mice and rats. The combined activation of these receptor subtypes produces synergistic effects on some behavioural endpoints in mice. M1 and M1 + M4 receptor stimulation in a cocaine vs. food choice assay in rats and microdialysis in rats showed delayed and lasting "anticocaine effects". Here, we tested whether these putative lasting neuroplastic changes are sufficient to occlude the reinforcing effects of cocaine at the behavioural level in mice. Mice were pre-treated with the M1 receptor partial agonist VU0364572, M4 receptor positive allosteric modulator VU0152100, or VU0364572 + VU0152100 two weeks prior to acquisition of cocaine intravenous self-administration (IVSA). Male C57BL/6JRj mice received vehicle, VU0364572, VU0152100, or VU0364572 + VU0152100. Female mice were tested with two VU0364572 + VU0152100 dose combinations or vehicle. To attribute potential effects to either reduced rewarding effects or increased aversion to cocaine, we tested VU0364572 alone and VU0364572 + VU0152100 in acquisition of cocaine-conditioned place preference (CPP) in male mice using an unbiased design. The acquisition of cocaine IVSA was drastically reduced and/or slowed in male and female mice receiving VU0364572 + VU0152100, but not either drug alone. Food-maintained operant behaviour was unaffected, indicating that the treatment effects were cocaine-specific. No treatment altered the acquisition of cocaine-CPP, neither in the post-test, nor in a challenge 14 days later. The cocaine IVSA findings confirm unusual long-lasting "anticocaine" effects of muscarinic M1 + M4 receptor stimulation. Thus, in mice, simultaneous stimulation of both receptor subtypes seems to produce potential neuroplastic changes that yield lasting effects.
Collapse
Affiliation(s)
- Abhishek Shankar Balakrishnan
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Mental Health Services in the Capital Region of Denmark and Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark; Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lærke Bornø Engelhardt Johansen
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Mental Health Services in the Capital Region of Denmark and Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Craig W Lindsley
- Warren Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - P Jeffrey Conn
- Warren Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Morgan Thomsen
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Mental Health Services in the Capital Region of Denmark and Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark; Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Mishra W, Kheradpezhouh E, Arabzadeh E. Activation of M1 cholinergic receptors in mouse somatosensory cortex enhances information processing and detection behaviour. Commun Biol 2024; 7:3. [PMID: 38168628 PMCID: PMC10761830 DOI: 10.1038/s42003-023-05699-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
To optimise sensory representations based on environmental demands, the activity of cortical neurons is regulated by neuromodulators such as Acetylcholine (ACh). ACh is implicated in cognitive functions including attention, arousal and sleep cycles. However, it is not clear how specific ACh receptors shape the activity of cortical neurons in response to sensory stimuli. Here, we investigate the role of a densely expressed muscarinic ACh receptor M1 in information processing in the mouse primary somatosensory cortex and its influence on the animal's sensitivity to detect vibrotactile stimuli. We show that M1 activation results in faster and more reliable neuronal responses, manifested by a significant reduction in response latencies and the trial-to-trial variability. At the population level, M1 activation reduces the network synchrony, and thus enhances the capacity of cortical neurons in conveying sensory information. Consistent with the neuronal findings, we show that M1 activation significantly improves performances in a vibriotactile detection task.
Collapse
Affiliation(s)
- Wricha Mishra
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Ehsan Kheradpezhouh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| |
Collapse
|
5
|
Echeverria V, Mendoza C, Iarkov A. Nicotinic acetylcholine receptors and learning and memory deficits in Neuroinflammatory diseases. Front Neurosci 2023; 17:1179611. [PMID: 37255751 PMCID: PMC10225599 DOI: 10.3389/fnins.2023.1179611] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023] Open
Abstract
Animal survival depends on cognitive abilities such as learning and memory to adapt to environmental changes. Memory functions require an enhanced activity and connectivity of a particular arrangement of engram neurons, supported by the concerted action of neurons, glia, and vascular cells. The deterioration of the cholinergic system is a common occurrence in neurological conditions exacerbated by aging such as traumatic brain injury (TBI), posttraumatic stress disorder (PTSD), Alzheimer's disease (AD), and Parkinson's disease (PD). Cotinine is a cholinergic modulator with neuroprotective, antidepressant, anti-inflammatory, antioxidant, and memory-enhancing effects. Current evidence suggests Cotinine's beneficial effects on cognition results from the positive modulation of the α7-nicotinic acetylcholine receptors (nAChRs) and the inhibition of the toll-like receptors (TLRs). The α7nAChR affects brain functions by modulating the function of neurons, glia, endothelial, immune, and dendritic cells and regulates inhibitory and excitatory neurotransmission throughout the GABA interneurons. In addition, Cotinine acting on the α7 nAChRs and TLR reduces neuroinflammation by inhibiting the release of pro-inflammatory cytokines by the immune cells. Also, α7nAChRs stimulate signaling pathways supporting structural, biochemical, electrochemical, and cellular changes in the Central nervous system during the cognitive processes, including Neurogenesis. Here, the mechanisms of memory formation as well as potential mechanisms of action of Cotinine on memory preservation in aging and neurological diseases are discussed.
Collapse
Affiliation(s)
- Valentina Echeverria
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
- Research and Development Department, Bay Pines VAHCS, Bay Pines, FL, United States
| | - Cristhian Mendoza
- Facultad de Odontologia y Ciencias de la Rehabilitacion, Universidad San Sebastián, Concepción, Chile
| | - Alex Iarkov
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
| |
Collapse
|