1
|
Graham DJ. Nine insights from internet engineering that help us understand brain network communication. FRONTIERS IN COMPUTER SCIENCE 2023. [DOI: 10.3389/fcomp.2022.976801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Philosophers have long recognized the value of metaphor as a tool that opens new avenues of investigation. By seeing brains as having the goal of representation, the computer metaphor in its various guises has helped systems neuroscience approach a wide array of neuronal behaviors at small and large scales. Here I advocate a complementary metaphor, the internet. Adopting this metaphor shifts our focus from computing to communication, and from seeing neuronal signals as localized representational elements to seeing neuronal signals as traveling messages. In doing so, we can take advantage of a comparison with the internet's robust and efficient routing strategies to understand how the brain might meet the challenges of network communication. I lay out nine engineering strategies that help the internet solve routing challenges similar to those faced by brain networks. The internet metaphor helps us by reframing neuronal activity across the brain as, in part, a manifestation of routing, which may, in different parts of the system, resemble the internet more, less, or not at all. I describe suggestive evidence consistent with the brain's use of internet-like routing strategies and conclude that, even if empirical data do not directly implicate internet-like routing, the metaphor is valuable as a reference point for those investigating the difficult problem of network communication in the brain and in particular the problem of routing.
Collapse
|
2
|
Test-retest reliability of prepulse inhibition (PPI) and PPI correlation with working memory. Acta Neuropsychiatr 2022; 34:344-353. [PMID: 35959694 DOI: 10.1017/neu.2022.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Sensorimotor gating is experimentally operationalized by the prepulse inhibition (PPI) of the startle response (SR). Previous studies suggest high test-retest reliability of PPI and potential correlation with working memory (WM). Here, we aimed to validate and extend the test-retest reliability of PPI in healthy humans and its correlation with WM performance. METHODS We applied an acoustic startle PPI paradigm with four different prepulse intensities (64, 68, 72 and 76 dB) and two different WM tasks [n-back, change detection task (CDT)] in a group of 26 healthy adults (final sample size n = 23). To assess test-retest reliability, we performed all tests on two separate days ~27 days (range: 21-32 days) apart. RESULTS We were able to confirm high test-retest reliability of the PPI with a mean intraclass correlation (ICC) of > 0.80 and significant positive correlation of PPI with n-back but not with CDT performance. Detailed analysis showed that PPI across all prepulse intensities significantly correlated with both the 2-back and 0-back conditions, suggesting regulation by cross-conditional processes (e.g. attention). However, when removing the 0-back component from the 2-back data, we found a specific and significant correlation with WM for the 76-dB PPI condition. CONCLUSION With the present study, we were able to confirm the high test-retest reliability of the PPI in humans and could validate and expand on its correlation with WM performance.
Collapse
|
3
|
Sedghizadeh MJ, Hojjati H, Ezzatdoost K, Aghajan H, Vahabi Z, Tarighatnia H. Olfactory response as a marker for Alzheimer's disease: Evidence from perceptual and frontal lobe oscillation coherence deficit. PLoS One 2020; 15:e0243535. [PMID: 33320870 PMCID: PMC7737889 DOI: 10.1371/journal.pone.0243535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 11/24/2020] [Indexed: 11/19/2022] Open
Abstract
High-frequency oscillations of the frontal cortex are involved in functions of the brain that fuse processed data from different sensory modules or bind them with elements stored in the memory. These oscillations also provide inhibitory connections to neural circuits that perform lower-level processes. Deficit in the performance of these oscillations has been examined as a marker for Alzheimer's disease (AD). Additionally, the neurodegenerative processes associated with AD, such as the deposition of amyloid-beta plaques, do not occur in a spatially homogeneous fashion and progress more prominently in the medial temporal lobe in the early stages of the disease. This region of the brain contains neural circuitry involved in olfactory perception. Several studies have suggested that olfactory deficit can be used as a marker for early diagnosis of AD. A quantitative assessment of the performance of the olfactory system can hence serve as a potential biomarker for Alzheimer's disease, offering a relatively convenient and inexpensive diagnosis method. This study examines the decline in the perception of olfactory stimuli and the deficit in the performance of high-frequency frontal oscillations in response to olfactory stimulation as markers for AD. Two measurement modalities are employed for assessing the olfactory performance: 1) An interactive smell identification test is used to sample the response to a sizable variety of odorants, and 2) Electroencephalography data are collected in an olfactory perception task with a pair of selected odorants in order to assess the connectivity of frontal cortex regions. Statistical analysis methods are used to assess the significance of selected features extracted from the recorded modalities as Alzheimer's biomarkers. Olfactory decline regressed to age in both healthy and mild AD groups are evaluated, and single- and multi-modal classifiers are also developed. The novel aspects of this study include: 1) Combining EEG response to olfactory stimulation with behavioral assessment of olfactory perception as a marker of AD, 2) Identification of odorants most significantly affected in mild AD patients, 3) Identification of odorants which are still adequately perceived by mild AD patients, 4) Analysis of the decline in the spatial coherence of different oscillatory bands in response to olfactory stimulation, and 5) Being the first study to quantitatively assess the performance of olfactory decline due to aging and AD in the Iranian population.
Collapse
Affiliation(s)
| | - Hadi Hojjati
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Kiana Ezzatdoost
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Hamid Aghajan
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Zahra Vahabi
- Department of Geriatric Medicine, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Memory and Behavioral Neurology Division, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Heliya Tarighatnia
- Department of Geriatric Medicine, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Kreiter AK. Synchrony, flexible network configuration, and linking neural events to behavior. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Attention Selectively Gates Afferent Signal Transmission to Area V4. J Neurosci 2019; 38:3441-3452. [PMID: 29618546 DOI: 10.1523/jneurosci.2221-17.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 11/21/2022] Open
Abstract
Selective attention allows focusing on only part of the incoming sensory information. Neurons in the extrastriate visual cortex reflect such selective processing when different stimuli are simultaneously present in their large receptive fields. Their spiking response then resembles the response to the attended stimulus when presented in isolation. Unclear is where in the neuronal pathway attention intervenes to achieve such selective signal routing and processing. To investigate this question, we tagged two equivalent visual stimuli by independent broadband luminance noise and used the spectral coherence of these behaviorally irrelevant signals with the field potential of a local neuronal population in male macaque monkeys' area V4 as a measure for their respective causal influences. This new experimental paradigm revealed that signal transmission was considerably weaker for the not-attended stimulus. Furthermore, our results show that attention does not need to modulate responses in the input populations sending signals to V4 to selectively represent a stimulus, nor do they suggest a change of the V4 neurons' output gain depending on their feature similarity with the stimuli. Our results rather imply that selective attention uses a gating mechanism comprising the synaptic "inputs" that transmit signals from upstream areas into the V4 neurons. A minimal model implementing attention-dependent routing by gamma-band synchrony replicated the attentional gating effect and the signals' spectral transfer characteristics. It supports the proposal that selective interareal gamma-band synchrony subserves signal routing and explains our experimental finding that attention selectively gates signals already at the level of afferent synaptic input.SIGNIFICANCE STATEMENT Depending on the behavioral context, the brain needs to channel the flow of information through its networks of massively interconnected neurons. We designed an experiment that allows to causally assess routing of information originating from an attended object. We found that attention "gates" signals at the interplay between afferent fibers and the local neurons. A minimal model demonstrated that coherent gamma-rhythmic activity (∼60 Hz) between local neurons and their afferent-providing input neurons can realize the gating. Importantly, the attended signals did not need to be amplified already in an earlier processing stage, nor did they get amplified by a simple output response modulation. The method provides a useful tool to study mechanisms of dynamic network configuration underlying cognitive processes.
Collapse
|
6
|
Cannon J. Analytical Calculation of Mutual Information between Weakly Coupled Poisson-Spiking Neurons in Models of Dynamically Gated Communication. Neural Comput 2016; 29:118-145. [PMID: 27870617 DOI: 10.1162/neco_a_00915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Mutual information is a commonly used measure of communication between neurons, but little theory exists describing the relationship between mutual information and the parameters of the underlying neuronal interaction. Such a theory could help us understand how specific physiological changes affect the capacity of neurons to synaptically communicate, and, in particular, they could help us characterize the mechanisms by which neuronal dynamics gate the flow of information in the brain. Here we study a pair of linear-nonlinear-Poisson neurons coupled by a weak synapse. We derive an analytical expression describing the mutual information between their spike trains in terms of synapse strength, neuronal activation function, the time course of postsynaptic currents, and the time course of the background input received by the two neurons. This expression allows mutual information calculations that would otherwise be computationally intractable. We use this expression to analytically explore the interaction of excitation, information transmission, and the convexity of the activation function. Then, using this expression to quantify mutual information in simulations, we illustrate the information-gating effects of neural oscillations and oscillatory coherence, which may either increase or decrease the mutual information across the synapse depending on parameters. Finally, we show analytically that our results can quantitatively describe the selection of one information pathway over another when multiple sending neurons project weakly to a single receiving neuron.
Collapse
Affiliation(s)
- Jonathan Cannon
- Department of Biology, Brandeis University, Waltham, MA 02453, U.S.A.
| |
Collapse
|
7
|
Burwick T, Bouras A. Selective Interareal Synchronization through Gamma Frequency Differences and Slower-Rhythm Gamma Phase Reset. Neural Comput 2016; 29:643-678. [PMID: 27764592 DOI: 10.1162/neco_a_00908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The communication-through-coherence (CTC) hypothesis states that a sending group of neurons will have a particularly strong effect on a receiving group if both groups oscillate in a phase-locked ("coherent") manner (Fries, 2005 , 2015 ). Here, we consider a situation with two visual stimuli, one in the focus of attention and the other distracting, resulting in two sites of excitation at an early cortical area that project to a common site in a next area. Taking a modeler's perspective, we confirm the workings of a mechanism that was proposed by Bosman et al. ( 2012 ) in the context of providing experimental evidence for the CTC hypothesis: a slightly higher gamma frequency of the attended sending site compared to the distracting site may cause selective interareal synchronization with the receiving site if combined with a slow-rhythm gamma phase reset. We also demonstrate the relevance of a slightly lower intrinsic frequency of the receiving site for this scenario. Moreover, we discuss conditions for a transition from bottom-up to top-down driven phase locking.
Collapse
Affiliation(s)
- Thomas Burwick
- Frankfurt Institute for Advanced Studies, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Alexandros Bouras
- Frankfurt Institute for Advanced Studies, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
8
|
Romeo A, Supèr H. Feature-Based Attention by Lateral Spike Synchronization. Neural Comput 2016; 28:629-51. [PMID: 26890346 DOI: 10.1162/neco_a_00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We introduce a neural model capable of feature selectiveness by spike-mediated synchronization through lateral synaptic couplings. For a stimulus containing two features, the attended one elicits a higher response. In the case of sequential single-feature stimuli, repetition of the attended feature also results in an enhanced response, exhibited by greater synchrony and higher spiking rates.
Collapse
Affiliation(s)
- August Romeo
- Department of Basic Psychology, Faculty of Psychology, University of Barcelona, Barcelona 08035, Spain
| | - Hans Supèr
- Department of Basic Psychology, Faculty of Psychology, University of Barcelona, Barcelona 08035, Spain; Institute for Brain, Cognition, and Behavior, Barcelona 08035, Spain; and Catalan Institution for Research and Advanced Studies, Barcelona 08010, Spain
| |
Collapse
|
9
|
Uzuntarla M, Ozer M, Ileri U, Calim A, Torres JJ. Effects of dynamic synapses on noise-delayed response latency of a single neuron. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062710. [PMID: 26764730 DOI: 10.1103/physreve.92.062710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Indexed: 06/05/2023]
Abstract
The noise-delayed decay (NDD) phenomenon emerges when the first-spike latency of a periodically forced stochastic neuron exhibits a maximum for a particular range of noise intensity. Here, we investigate the latency response dynamics of a single Hodgkin-Huxley neuron that is subject to both a suprathreshold periodic stimulus and a background activity arriving through dynamic synapses. We study the first-spike latency response as a function of the presynaptic firing rate f. This constitutes a more realistic scenario than previous works, since f provides a suitable biophysically realistic parameter to control the level of activity in actual neural systems. We first report on the emergence of classical NDD behavior as a function of f for the limit of static synapses. Second, we show that when short-term depression and facilitation mechanisms are included at the synapses, different NDD features can be found due to their modulatory effect on synaptic current fluctuations. For example, an intriguing double NDD (DNDD) behavior occurs for different sets of relevant synaptic parameters. Moreover, depending on the balance between synaptic depression and synaptic facilitation, single NDD or DNDD can prevail, in such a way that synaptic facilitation favors the emergence of DNDD whereas synaptic depression favors the existence of single NDD. Here we report the existence of the DNDD effect in the response latency dynamics of a neuron.
Collapse
Affiliation(s)
- M Uzuntarla
- Department of Biomedical Engineering, Bulent Ecevit University, Engineering Faculty, 67100 Zonguldak, Turkey
- The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | - M Ozer
- Department of Electrical and Electronics Engineering, Bulent Ecevit University, Engineering Faculty, 67100 Zonguldak, Turkey
| | - U Ileri
- Department of Biomedical Engineering, Bulent Ecevit University, Engineering Faculty, 67100 Zonguldak, Turkey
| | - A Calim
- Department of Biomedical Engineering, Bulent Ecevit University, Engineering Faculty, 67100 Zonguldak, Turkey
| | - J J Torres
- Department of Electromagnetism and Physics of the Matter and Institute "Carlos I" for Theoretical and Computational Physics, University of Granada, Granada E-18071, Spain
| |
Collapse
|
10
|
Harnack D, Ernst UA, Pawelzik KR. A model for attentional information routing through coherence predicts biased competition and multistable perception. J Neurophysiol 2015; 114:1593-605. [PMID: 26108958 PMCID: PMC4563023 DOI: 10.1152/jn.01038.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/22/2015] [Indexed: 11/22/2022] Open
Abstract
Selective attention allows to focus on relevant information and to ignore distracting features of a visual scene. These principles of information processing are reflected in response properties of neurons in visual area V4: if a neuron is presented with two stimuli in its receptive field, and one is attended, it responds as if the nonattended stimulus was absent (biased competition). In addition, when the luminance of the two stimuli is temporally and independently varied, local field potentials are correlated with the modulation of the attended stimulus and not, or much less, correlated with the nonattended stimulus (information routing). To explain these results in one coherent framework, we present a two-layer spiking cortical network model with distance-dependent lateral connectivity and converging feed-forward connections. With oscillations arising inherently from the network structure, our model reproduces both experimental observations. Hereby, lateral interactions and shifts of relative phases between sending and receiving layers (communication through coherence) are identified as the main mechanisms underlying both biased competition as well as selective routing. Exploring the parameter space, we show that the effects are robust and prevalent over a broad range of parameters. In addition, we identify the strength of lateral inhibition in the first model layer as crucial for determining the working regime of the system: increasing lateral inhibition allows a transition from a network configuration with mixed representations to one with bistable representations of the competing stimuli. The latter is discussed as a possible neural correlate of multistable perception phenomena such as binocular rivalry.
Collapse
Affiliation(s)
- Daniel Harnack
- Institute for Theoretical Physics, Department Neurophysics, University of Bremen, Bremen, Germany
| | - Udo Alexander Ernst
- Institute for Theoretical Physics, Department Neurophysics, University of Bremen, Bremen, Germany
| | - Klaus Richard Pawelzik
- Institute for Theoretical Physics, Department Neurophysics, University of Bremen, Bremen, Germany
| |
Collapse
|
11
|
Blaes S, Burwick T. Attentional Bias Through Oscillatory Coherence Between Excitatory Activity and Inhibitory Minima. Neural Comput 2015; 27:1405-37. [PMID: 25973545 DOI: 10.1162/neco_a_00742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
An implementation of attentional bias is presented for a network model that couples excitatory and inhibitory oscillatory units in a manner that is inspired by the mechanisms that generate cortical gamma oscillations. Attentional biases are implemented as oscillatory coherences between excitatory units that encode the spatial location or features of the target and the pool of inhibitory units. This form of attentional bias is motivated by neurophysiological findings that relate selective attention to spike field coherence. Including also pattern recognition mechanisms, we demonstrate how this implementation of attentional bias leads to selection of an attentional target while suppressing distracters for cases of spatial and feature-based attention. With respect to neurophysiological observations, we argue that the recently found positive correlation between high firing rates and strong gamma locking with attention (Vinck, Womelsdorf, Buffalo, Desimone, & Fries, 2013) may point to an essential mechanism of the brain's attentional selection and suppression processes.
Collapse
Affiliation(s)
- Sebastian Blaes
- Frankfurt Institute for Advanced Studies, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Thomas Burwick
- Frankfurt Institute for Advanced Studies, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
12
|
Kerr RR, Grayden DB, Thomas DA, Gilson M, Burkitt AN. Goal-directed control with cortical units that are gated by both top-down feedback and oscillatory coherence. Front Neural Circuits 2014; 8:94. [PMID: 25152715 PMCID: PMC4126059 DOI: 10.3389/fncir.2014.00094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 07/20/2014] [Indexed: 11/13/2022] Open
Abstract
The brain is able to flexibly select behaviors that adapt to both its environment and its present goals. This cognitive control is understood to occur within the hierarchy of the cortex and relies strongly on the prefrontal and premotor cortices, which sit at the top of this hierarchy. Pyramidal neurons, the principal neurons in the cortex, have been observed to exhibit much stronger responses when they receive inputs at their soma/basal dendrites that are coincident with inputs at their apical dendrites. This corresponds to inputs from both lower-order regions (feedforward) and higher-order regions (feedback), respectively. In addition to this, coherence between oscillations, such as gamma oscillations, in different neuronal groups has been proposed to modulate and route communication in the brain. In this paper, we develop a simple, but novel, neural mass model in which cortical units (or ensembles) exhibit gamma oscillations when they receive coherent oscillatory inputs from both feedforward and feedback connections. By forming these units into circuits that can perform logic operations, we identify the different ways in which operations can be initiated and manipulated by top-down feedback. We demonstrate that more sophisticated and flexible top-down control is possible when the gain of units is modulated by not only top-down feedback but by coherence between the activities of the oscillating units. With these types of units, it is possible to not only add units to, or remove units from, a higher-level unit's logic operation using top-down feedback, but also to modify the type of role that a unit plays in the operation. Finally, we explore how different network properties affect top-down control and processing in large networks. Based on this, we make predictions about the likely connectivities between certain brain regions that have been experimentally observed to be involved in goal-directed behavior and top-down attention.
Collapse
Affiliation(s)
- Robert R Kerr
- NeuroEngineering Laboratory, Department of Electrical and Electronic Engineering, The University of Melbourne Melbourne, VIC, Australia ; Centre for Neural Engineering, The University of Melbourne Melbourne, VIC, Australia ; NICTA, Victoria Research Lab, The University of Melbourne Melbourne, VIC, Australia
| | - David B Grayden
- NeuroEngineering Laboratory, Department of Electrical and Electronic Engineering, The University of Melbourne Melbourne, VIC, Australia ; Centre for Neural Engineering, The University of Melbourne Melbourne, VIC, Australia ; NICTA, Victoria Research Lab, The University of Melbourne Melbourne, VIC, Australia ; Bionics Institute East Melbourne, VIC, Australia
| | - Doreen A Thomas
- Department of Mechanical Engineering, The University of Melbourne Melbourne, VIC, Australia
| | - Matthieu Gilson
- NeuroEngineering Laboratory, Department of Electrical and Electronic Engineering, The University of Melbourne Melbourne, VIC, Australia ; Centre for Neural Engineering, The University of Melbourne Melbourne, VIC, Australia ; Laboratory for Neural Circuit Theory, RIKEN Brain Science Institute Saitama, Japan
| | - Anthony N Burkitt
- NeuroEngineering Laboratory, Department of Electrical and Electronic Engineering, The University of Melbourne Melbourne, VIC, Australia ; Centre for Neural Engineering, The University of Melbourne Melbourne, VIC, Australia ; NICTA, Victoria Research Lab, The University of Melbourne Melbourne, VIC, Australia ; Bionics Institute East Melbourne, VIC, Australia
| |
Collapse
|
13
|
Bosman CA, Lansink CS, Pennartz CMA. Functions of gamma-band synchronization in cognition: from single circuits to functional diversity across cortical and subcortical systems. Eur J Neurosci 2014; 39:1982-99. [PMID: 24809619 DOI: 10.1111/ejn.12606] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/18/2014] [Accepted: 04/03/2014] [Indexed: 12/19/2022]
Abstract
Gamma-band activity (30-90 Hz) and the synchronization of neural activity in the gamma-frequency range have been observed in different cortical and subcortical structures and have been associated with different cognitive functions. However, it is still unknown whether gamma-band synchronization subserves a single universal function or a diversity of functions across the full spectrum of cognitive processes. Here, we address this question reviewing the mechanisms of gamma-band oscillation generation and the functions associated with gamma-band activity across several cortical and subcortical structures. Additionally, we raise a plausible explanation of why gamma rhythms are found so ubiquitously across brain structures. Gamma band activity originates from the interplay between inhibition and excitation. We stress that gamma oscillations, associated with this interplay, originate from basic functional motifs that conferred advantages for low-level system processing and multiple cognitive functions throughout evolution. We illustrate the multifunctionality of gamma-band activity by considering its role in neural systems for perception, selective attention, memory, motivation and behavioral control. We conclude that gamma-band oscillations support multiple cognitive processes, rather than a single one, which, however, can be traced back to a limited set of circuit motifs which are found universally across species and brain structures.
Collapse
Affiliation(s)
- Conrado A Bosman
- Cognitive and Systems Neuroscience Group, Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Postal Box 94216, 1090, GE Amsterdam, The Netherlands; Research Priority Program Brain & Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
14
|
Yilmaz O. Oscillatory synchronization model of attention to moving objects. Neural Netw 2012; 29-30:20-36. [PMID: 22369920 DOI: 10.1016/j.neunet.2012.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 12/26/2011] [Accepted: 01/27/2012] [Indexed: 10/14/2022]
Abstract
The world is a dynamic environment hence it is important for the visual system to be able to deploy attention on moving objects and attentively track them. Psychophysical experiments indicate that processes of both attentional enhancement and inhibition are spatially focused on the moving objects; however the mechanisms of these processes are unknown. The studies indicate that the attentional selection of target objects is sustained via a feedforward-feedback loop in the visual cortical hierarchy and only the target objects are represented in attention-related areas. We suggest that feedback from the attention-related areas to early visual areas modulates the activity of neurons; establishes synchronization with respect to a common oscillatory signal for target items via excitatory feedback, and also establishes de-synchronization for distractor items via inhibitory feedback. A two layer computational neural network model with integrate-and-fire neurons is proposed and simulated for simple attentive tracking tasks. Consistent with previous modeling studies, we show that via temporal tagging of neural activity, distractors can be attentively suppressed from propagating to higher levels. However, simulations also suggest attentional enhancement of activity for distractors in the first layer which represents neural substrate dedicated for low level feature processing. Inspired by this enhancement mechanism, we developed a feature based object tracking algorithm with surround processing. Surround processing improved tracking performance by 57% in PETS 2001 dataset, via eliminating target features that are likely to suffer from faulty correspondence assignments.
Collapse
Affiliation(s)
- Ozgur Yilmaz
- National Research Center for Magnetic Resonance (UMRAM), Bilkent Cyberpark Ankara, Turkey.
| |
Collapse
|
15
|
Wildie M, Shanahan M. Establishing Communication between Neuronal Populations through Competitive Entrainment. Front Comput Neurosci 2012; 5:62. [PMID: 22275892 PMCID: PMC3257854 DOI: 10.3389/fncom.2011.00062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 12/12/2011] [Indexed: 11/30/2022] Open
Abstract
The role of gamma frequency oscillation in neuronal interaction, and the relationship between oscillation and information transfer between neurons, has been the focus of much recent research. While the biological mechanisms responsible for gamma oscillation and the properties of resulting networks are well studied, the dynamics of changing phase coherence between oscillating neuronal populations are not well understood. To this end we develop a computational model of competitive selection between multiple stimuli, where the selection and transfer of population-encoded information arises from competition between converging stimuli to entrain a target population of neurons. Oscillation is generated by Pyramidal-Interneuronal Network Gamma through the action of recurrent synaptic connections between a locally connected network of excitatory and inhibitory neurons. Competition between stimuli is driven by differences in coherence of oscillation, while transmission of a single selected stimulus is enabled between generating and receiving neurons via Communication-through-Coherence. We explore the effect of varying synaptic parameters on the competitive transmission of stimuli over different neuron models, and identify a continuous region within the parameter space of the recurrent synaptic loop where inhibition-induced oscillation results in entrainment of target neurons. Within this optimal region we find that competition between stimuli of equal coherence results in model output that alternates between representation of the stimuli, in a manner strongly resembling well-known biological phenomena resulting from competitive stimulus selection such as binocular rivalry.
Collapse
Affiliation(s)
- Mark Wildie
- Department of Computing, Imperial College London London, UK
| | | |
Collapse
|
16
|
Chik D. Does dynamical synchronization among neurons facilitate learning and enhance task performance? J Comput Neurosci 2012; 33:169-77. [PMID: 22228383 DOI: 10.1007/s10827-011-0380-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 11/30/2011] [Accepted: 12/19/2011] [Indexed: 11/30/2022]
Abstract
Synchronization among groups of neurons is an interesting yet mysterious mechanism in the brain. We propose and demonstrate that the adjustable timing of neural activities can produce profound effect on learning and task implementation. On one hand, learning of more complex patterns becomes possible because of the enhanced capability of classification. On the other hand, implementation of a complex task is aided through active maintenance and control of multiple rules and items. This sheds light on the development of new intelligent system, as well as the cause of impaired learning and task performance in patients.
Collapse
Affiliation(s)
- David Chik
- Laboratory for Dynamics of Emergent Intelligence, RIKEN Brain Science Institute, Wako-shi, Japan.
| |
Collapse
|
17
|
Toups JV, Fellous JM, Thomas PJ, Sejnowski TJ, Tiesinga PH. Finding the event structure of neuronal spike trains. Neural Comput 2011; 23:2169-208. [PMID: 21671786 PMCID: PMC3220920 DOI: 10.1162/neco_a_00173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Neurons in sensory systems convey information about physical stimuli in their spike trains. In vitro, single neurons respond precisely and reliably to the repeated injection of the same fluctuating current, producing regions of elevated firing rate, termed events. Analysis of these spike trains reveals that multiple distinct spike patterns can be identified as trial-to-trial correlations between spike times (Fellous, Tiesinga, Thomas, & Sejnowski, 2004 ). Finding events in data with realistic spiking statistics is challenging because events belonging to different spike patterns may overlap. We propose a method for finding spiking events that uses contextual information to disambiguate which pattern a trial belongs to. The procedure can be applied to spike trains of the same neuron across multiple trials to detect and separate responses obtained during different brain states. The procedure can also be applied to spike trains from multiple simultaneously recorded neurons in order to identify volleys of near-synchronous activity or to distinguish between excitatory and inhibitory neurons. The procedure was tested using artificial data as well as recordings in vitro in response to fluctuating current waveforms.
Collapse
Affiliation(s)
- J Vincent Toups
- Computational Neurophysics Laboratory, Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255, USA.
| | | | | | | | | |
Collapse
|
18
|
Tiesinga PH, Sejnowski TJ. Mechanisms for Phase Shifting in Cortical Networks and their Role in Communication through Coherence. Front Hum Neurosci 2010; 4:196. [PMID: 21103013 PMCID: PMC2987601 DOI: 10.3389/fnhum.2010.00196] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 09/29/2010] [Indexed: 11/13/2022] Open
Abstract
In the primate visual cortex, the phase of spikes relative to oscillations in the local field potential (LFP) in the gamma frequency range (30-80 Hz) can be shifted by stimulus features such as orientation and thus the phase may carry information about stimulus identity. According to the principle of communication through coherence (CTC), the relative LFP phase between the LFPs in the sending and receiving circuits affects the effectiveness of the transmission. CTC predicts that phase shifting can be used for stimulus selection. We review and investigate phase shifting in models of periodically driven single neurons and compare it with phase shifting in models of cortical networks. In a single neuron, as the driving current is increased, the spike phase varies systematically while the firing rate remains constant. In a network model of reciprocally connected excitatory (E) and inhibitory (I) cells phase shifting occurs in response to both injection of constant depolarizing currents and to brief pulses to I cells. These simple models provide an account for phase-shifting observed experimentally and suggest a mechanism for implementing CTC. We discuss how this hypothesis can be tested experimentally using optogenetic techniques.
Collapse
Affiliation(s)
- Paul H. Tiesinga
- Donders Institute for Brain, Cognition and Behavior, Radboud University NijmegenNijmegen, Netherlands
- Physics and Astronomy Department, University of North CarolinaChapel Hill, NC, USA
| | - Terrence J. Sejnowski
- Howard Hughes Medical Institute, Salk Institute for Biological StudiesLa Jolla, CA, USA
- Division of Biological Studies, University of California at San DiegoLa Jolla, CA, USA
| |
Collapse
|
19
|
Abstract
The mammalian brain exhibits profuse interregional connectivity. How information flow is rapidly and flexibly switched among connected areas remains poorly understood. Task-dependent changes in the power and interregion coherence of network oscillations suggest that such oscillations play a role in signal routing. We show that switching one of several convergent pathways from an asynchronous to an oscillatory state allows accurate selective transmission of population-coded information, which can be extracted even when other convergent pathways fire asynchronously at comparable rates. We further show that the band-pass filtering required to perform this information extraction can be implemented in a simple spiking network model with a single feed-forward interneuron layer. This constitutes a mechanism for flexible signal routing in neural circuits, which exploits sparsely synchronized network oscillations and temporal filtering by feed-forward inhibition.
Collapse
|
20
|
Reconciling coherent oscillation with modulation of irregular spiking activity in selective attention: gamma-range synchronization between sensory and executive cortical areas. J Neurosci 2010; 30:2856-70. [PMID: 20181583 DOI: 10.1523/jneurosci.4222-09.2010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this computational work, we investigated gamma-band synchronization across cortical circuits associated with selective attention. The model explicitly instantiates a reciprocally connected loop of spiking neurons between a sensory-type (area MT) and an executive-type (prefrontal/parietal) cortical circuit (the source area for top-down attentional signaling). Moreover, unlike models in which neurons behave as clock-like oscillators, in our model single-cell firing is highly irregular (close to Poisson), while local field potential exhibits a population rhythm. In this "sparsely synchronized oscillation" regime, the model reproduces and clarifies multiple observations from behaving animals. Top-down attentional inputs have a profound effect on network oscillatory dynamics while only modestly affecting single-neuron spiking statistics. In addition, attentional synchrony modulations are highly selective: interareal neuronal coherence occurs only when there is a close match between the preferred feature of neurons, the attended feature, and the presented stimulus, a prediction that is experimentally testable. When interareal coherence was abolished, attention-induced gain modulations of sensory neurons were slightly reduced. Therefore, our model reconciles the rate and synchronization effects, and suggests that interareal coherence contributes to large-scale neuronal computation in the brain through modest enhancement of rate modulations as well as a pronounced attention-specific enhancement of neural synchrony.
Collapse
|
21
|
Masuda N. Selective population rate coding: a possible computational role of gamma oscillations in selective attention. Neural Comput 2009; 21:3335-62. [PMID: 19686062 DOI: 10.1162/neco.2009.09-08-857] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Selective attention is often accompanied by gamma oscillations in local field potentials and spike field coherence in brain areas related to visual, motor, and cognitive information processing. Gamma oscillations are implicated to play an important role in, for example, visual tasks including object search, shape perception, and speed detection. However, the mechanism by which gamma oscillations enhance cognitive and behavioral performance of attentive subjects is still elusive. Using feedforward fan-in networks composed of spiking neurons, we examine a possible role for gamma oscillations in selective attention and population rate coding of external stimuli. We implement the concept proposed by Fries ( 2005 ) that under dynamic stimuli, neural populations effectively communicate with each other only when there is a good phase relationship among associated gamma oscillations. We show that the downstream neural population selects a specific dynamic stimulus received by an upstream population and represents it by population rate coding. The encoded stimulus is the one for which gamma rhythm in the corresponding upstream population is resonant with the downstream gamma rhythm. The proposed role for gamma oscillations in stimulus selection is to enable top-down control, a neural version of time division multiple access used in communication engineering.
Collapse
Affiliation(s)
- Naoki Masuda
- Graduate School of Information Science and Technology, University of Tokyo, Bunkyo, Tokyo 113-8656, Japan.
| |
Collapse
|
22
|
Abstract
Increasing evidence suggests that neuronal synchronization in the gamma band (30-100 Hz) may play an important role in mediating cognitive processes. Gamma-band synchronization provides for the optimal temporal relationship between two signals to produce the long-term synaptic changes that have been theorized to underlie memory formation. Although neuronal populations in the hippocampus oscillate in the gamma range, the role of these oscillations in memory formation is still unclear. To address this issue, we recorded neuronal activity in the hippocampus while macaque monkeys performed a visual recognition memory task. During the encoding phase of this task, hippocampal neurons displayed gamma-band synchronization. Additionally, enhanced gamma-band synchronization during encoding predicted greater subsequent recognition memory performance. These changes in synchronization reflect enhanced coordination among hippocampal neurons and may facilitate synaptic changes necessary for successful memory encoding.
Collapse
|
23
|
Andersen RA, Cui H. Intention, action planning, and decision making in parietal-frontal circuits. Neuron 2009; 63:568-83. [PMID: 19755101 DOI: 10.1016/j.neuron.2009.08.028] [Citation(s) in RCA: 448] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Revised: 08/26/2009] [Accepted: 08/26/2009] [Indexed: 10/20/2022]
Abstract
The posterior parietal cortex and frontal cortical areas to which it connects are responsible for sensorimotor transformations. This review covers new research on four components of this transformation process: planning, decision making, forward state estimation, and relative-coordinate representations. These sensorimotor functions can be harnessed for neural prosthetic operations by decoding intended goals (planning) and trajectories (forward state estimation) of movements as well as higher cortical functions related to decision making and potentially the coordination of multiple body parts (relative-coordinate representations).
Collapse
Affiliation(s)
- Richard A Andersen
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
24
|
Tiesinga P, Sejnowski TJ. Cortical enlightenment: are attentional gamma oscillations driven by ING or PING? Neuron 2009; 63:727-32. [PMID: 19778503 PMCID: PMC2778762 DOI: 10.1016/j.neuron.2009.09.009] [Citation(s) in RCA: 295] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The response of a neuron to sensory stimuli can only give correlational support for functional hypotheses. To experimentally test causal function, the neural activity needs to be manipulated in a cell-type-specific as well as spatially and temporally precise way. We review recent optogenetic experiments on parvalbumin-positive cortical interneurons that link modeling studies of synchronization to experimental studies on attentional modulation of gamma oscillations in primates.
Collapse
Affiliation(s)
- Paul Tiesinga
- Donders Centre for Neuroscience, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | |
Collapse
|
25
|
Tiesinga PH, Buia CI. Spatial attention in area V4 is mediated by circuits in primary visual cortex. Neural Netw 2009; 22:1039-54. [PMID: 19643574 DOI: 10.1016/j.neunet.2009.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Revised: 05/15/2009] [Accepted: 07/14/2009] [Indexed: 11/30/2022]
Abstract
The ability to covertly select visual stimuli in our environment based on their behavioral relevance is an important skill. Stimulus selection has been studied experimentally, at the single neuron as well as at the population level, by recording from the visual cortex of subjects performing attention-demanding tasks, but studies at the local circuit level are lacking. We conducted simulations of a primary visual cortex (V1) model to provide insight into the local circuit computation underlying stimulus selection in V4. Two small oriented rectangular bars were placed at different locations in the 4 by 4 degree visual field represented by the V1 model, such that they activated different V1 neurons but such that they were both inside the classical receptive field (CRF) of the same V4 neuron. The biased competition framework [Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193-222] makes predictions for the response of V4 neurons and the modulation thereof by spatial and feature attention. In our simulation of the V1 network, we obtained results consistent with these predictions for V4 when the model had long-range excitatory projections targeting inhibitory neurons and when spatial attention was mediated by a spatially restricted projection that either inhibited the inhibitory neurons or excited the excitatory neurons. Although it is not clear whether attention effects measured in V4 neurons are generated mostly by local circuits within V4, our simulations suggest that spatial attention at a resolution less than the size of the CRF of a V4 neuron is inherited from upstream areas like V1 and relies on circuits mediating surround suppression at the single neuron level. Furthermore, the model displayed global oscillations in the alpha frequency range (around 10 Hz), whose coherence was highest in the absence of visual stimulation, which is consistent with electroencephalograms recorded in humans. By contrast, when a stimulus was presented the alpha oscillation sped up and became less coherent, whereas at the single column level (40-480 cells) transient beta/gamma oscillations were observed with a frequency between 25 and 50 Hz.
Collapse
Affiliation(s)
- Paul H Tiesinga
- Computational Neurophysics Laboratory, Department of Physics & Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
26
|
Maffei A, Fontanini A. Network homeostasis: a matter of coordination. Curr Opin Neurobiol 2009; 19:168-73. [PMID: 19540746 DOI: 10.1016/j.conb.2009.05.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 05/12/2009] [Accepted: 05/27/2009] [Indexed: 11/29/2022]
Abstract
Brain circuits undergo distributed rearrangements throughout life: development, experience and behavior constantly modify synaptic strength and network connectivity. Despite these changes, neurons and circuits need to preserve their functional stability. Single neurons maintain their spontaneous firing rate within functional working ranges by regulating the efficacy of their synaptic inputs. But how do networks maintain a stable behavior? Is network homeostasis a consequence of cell autonomous mechanisms? In this article we will review recent evidence showing that network homeostasis is more than the sum of single-neuron homeostasis and that high-order network stability can be achieved by coordinated inter-cellular interactions.
Collapse
Affiliation(s)
- Arianna Maffei
- Department of Neurobiology and Behavior, SUNY - Stony Brook, Stony Brook, NY 11794, United States.
| | | |
Collapse
|
27
|
Abstract
Attention has been found to have a wide variety of effects on the responses of neurons in visual cortex. We describe a model of attention that exhibits each of these different forms of attentional modulation, depending on the stimulus conditions and the spread (or selectivity) of the attention field in the model. The model helps reconcile proposals that have been taken to represent alternative theories of attention. We argue that the variety and complexity of the results reported in the literature emerge from the variety of empirical protocols that were used, such that the results observed in any one experiment depended on the stimulus conditions and the subject's attentional strategy, a notion that we define precisely in terms of the attention field in the model, but that has not typically been completely under experimental control.
Collapse
Affiliation(s)
- John H Reynolds
- Salk Institute for Biological Studies, La Jolla, CA 92037-1099, USA.
| | | |
Collapse
|
28
|
Gamma oscillations mediate stimulus competition and attentional selection in a cortical network model. Proc Natl Acad Sci U S A 2008; 105:18023-8. [PMID: 19004759 DOI: 10.1073/pnas.0809511105] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Simultaneous presentation of multiple stimuli can reduce the firing rates of neurons in extrastriate visual cortex below the rate elicited by a single preferred stimulus. We describe computational results suggesting how this remarkable effect may arise from strong excitatory drive to a substantial local population of fast-spiking inhibitory interneurons, which can lead to a loss of coherence in that population and thereby raise the effectiveness of inhibition. We propose that in attentional states fast-spiking interneurons may be subject to a bath of inhibition resulting from cholinergic activation of a second class of inhibitory interneurons, restoring conditions needed for gamma rhythmicity. Oscillations and coherence are emergent features, not assumptions, in our model. The gamma oscillations in turn support stimulus competition. The mechanism is a form of "oscillatory selection," in which neural interactions change phase relationships that regulate firing rates, and attention shapes those neural interactions.
Collapse
|
29
|
Abstract
More coherent excitatory stimuli are known to have a competitive advantage over less coherent ones. We show here that this advantage is amplified greatly when the target includes inhibitory interneurons acting via GABA(A)-receptor-mediated synapses and the coherent input oscillates at gamma frequency. We hypothesize that therein lies, at least in part, the functional significance of the experimentally observed link between attentional biasing of stimulus competition and gamma frequency rhythmicity.
Collapse
Affiliation(s)
- Christoph Börgers
- Department of Mathematics, Tufts University, Medford, MA 02155, USA.
| | | |
Collapse
|
30
|
Zeitler M, Fries P, Gielen S. Biased competition through variations in amplitude of gamma-oscillations. J Comput Neurosci 2008; 25:89-107. [PMID: 18293071 PMCID: PMC2441488 DOI: 10.1007/s10827-007-0066-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 10/19/2007] [Accepted: 11/19/2007] [Indexed: 11/22/2022]
Abstract
Experiments in visual cortex have shown that the firing rate of a neuron in response to the simultaneous presentation of a preferred and non-preferred stimulus within the receptive field is intermediate between that for the two stimuli alone (stimulus competition). Attention directed to one of the stimuli drives the response towards the response induced by the attended stimulus alone (selective attention). This study shows that a simple feedforward model with fixed synaptic conductance values can reproduce these two phenomena using synchronization in the gamma-frequency range to increase the effective synaptic gain for the responses to the attended stimulus. The performance of the model is robust to changes in the parameter values. The model predicts that the phase locking between presynaptic input and output spikes increases with attention.
Collapse
Affiliation(s)
- Magteld Zeitler
- Department of Biophysics, Institute for Neuroscience, Radboud University Nijmegen, Geert Grooteplein 21, 6525 EZ, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
31
|
Buia CI, Tiesinga PH. Role of interneuron diversity in the cortical microcircuit for attention. J Neurophysiol 2008; 99:2158-82. [PMID: 18287553 DOI: 10.1152/jn.01004.2007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Receptive fields of neurons in cortical area V4 are large enough to fit multiple stimuli, making V4 the ideal place to study the effects of selective attention at the single-neuron level. Experiments have revealed evidence for stimulus competition and have characterized the effect thereon of spatial and feature-based attention. We developed a biophysical model with spiking neurons and conductance-based synapses. To account for the comprehensive set of experimental results, it was necessary to include in the model, in addition to regular spiking excitatory (E) cells, two types of interneurons: feedforward interneurons (FFI) and top-down interneurons (TDI). Feature-based attention was mediated by a projection of the TDI to the FFI, stimulus competition was mediated by a cross-columnar excitatory connection to the FFI, whereas spatial attention was mediated by an increase in activity of the feedforward inputs from cortical area V2. The model predicts that spatial attention increases the FFI firing rate, whereas feature-based attention decreases the FFI firing rate and increases the TDI firing rate. During strong stimulus competition, the E cells were synchronous in the beta frequency range (15-35 Hz), but with feature-based attention, they became synchronous in the gamma frequency range (35-50 Hz). We propose that the FFI correspond to fast-spiking, parvalbumin-positive basket cells and that the TDI correspond to cells with a double-bouquet morphology that are immunoreactive to calbindin or calretinin. Taken together, the model results provide an experimentally testable hypothesis for the behavior of two interneuron types under attentional modulation.
Collapse
Affiliation(s)
- Calin I Buia
- Computational Neurophysics Laboratory, Physics and Astronomy Department, University of North Carolina, Chapel Hill, NC 27599-3255, USA
| | | |
Collapse
|
32
|
Tiesinga P, Fellous JM, Sejnowski TJ. Regulation of spike timing in visual cortical circuits. Nat Rev Neurosci 2008; 9:97-107. [PMID: 18200026 PMCID: PMC2868969 DOI: 10.1038/nrn2315] [Citation(s) in RCA: 250] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A train of action potentials (a spike train) can carry information in both the average firing rate and the pattern of spikes in the train. But can such a spike-pattern code be supported by cortical circuits? Neurons in vitro produce a spike pattern in response to the injection of a fluctuating current. However, cortical neurons in vivo are modulated by local oscillatory neuronal activity and by top-down inputs. In a cortical circuit, precise spike patterns thus reflect the interaction between internally generated activity and sensory information encoded by input spike trains. We review the evidence for precise and reliable spike timing in the cortex and discuss its computational role.
Collapse
Affiliation(s)
- Paul Tiesinga
- Physics and Astronomy Department, University of North Carolina at Chapel Hill, North Carolina 27599-3255, USA.
| | | | | |
Collapse
|
33
|
Helmstaedter M, de Kock CPJ, Feldmeyer D, Bruno RM, Sakmann B. Reconstruction of an average cortical column in silico. ACTA ACUST UNITED AC 2007; 55:193-203. [PMID: 17822776 DOI: 10.1016/j.brainresrev.2007.07.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 07/06/2007] [Accepted: 07/06/2007] [Indexed: 11/28/2022]
Abstract
The characterization of individual neurons by Golgi and Cajal has been the basis of neuroanatomy for a century. A new challenge is to anatomically describe, at cellular resolution, complete local circuits that can drive behavior. In this essay, we review the possibilities to obtain a model cortical column by using in vitro and in vivo pair recordings, followed by anatomical reconstructions of the projecting and target cells. These pairs establish connection modules that eventually may be useful to synthesize an average cortical column in silico. Together with data on sensory evoked neuronal activity measured in vivo, this will allow to model the anatomical and functional cellular basis of behavior based on more realistic assumptions than previously attempted.
Collapse
Affiliation(s)
- M Helmstaedter
- Department of Cell Physiology, Max-Planck-Institut für Medizinische Forschung, Jahnstrasse 29, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
34
|
Womelsdorf T, Schoffelen JM, Oostenveld R, Singer W, Desimone R, Engel AK, Fries P. Modulation of neuronal interactions through neuronal synchronization. Science 2007; 316:1609-12. [PMID: 17569862 DOI: 10.1126/science.1139597] [Citation(s) in RCA: 910] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Brain processing depends on the interactions between neuronal groups. Those interactions are governed by the pattern of anatomical connections and by yet unknown mechanisms that modulate the effective strength of a given connection. We found that the mutual influence among neuronal groups depends on the phase relation between rhythmic activities within the groups. Phase relations supporting interactions between the groups preceded those interactions by a few milliseconds, consistent with a mechanistic role. These effects were specific in time, frequency, and space, and we therefore propose that the pattern of synchronization flexibly determines the pattern of neuronal interactions.
Collapse
Affiliation(s)
- Thilo Womelsdorf
- F. C. Donders Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6525 EN Nijmegen, Netherlands.
| | | | | | | | | | | | | |
Collapse
|
35
|
Fries P, Nikolić D, Singer W. The gamma cycle. Trends Neurosci 2007; 30:309-16. [PMID: 17555828 DOI: 10.1016/j.tins.2007.05.005] [Citation(s) in RCA: 738] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 04/25/2007] [Accepted: 05/16/2007] [Indexed: 10/23/2022]
Abstract
Activated neuronal groups typically engage in rhythmic synchronization in the gamma-frequency range (30-100 Hz). Experimental and modeling studies demonstrate that each gamma cycle is framed by synchronized spiking of inhibitory interneurons. Here, we review evidence suggesting that the resulting rhythmic network inhibition interacts with excitatory input to pyramidal cells such that the more excited cells fire earlier in the gamma cycle. Thus, the amplitude of excitatory drive is recoded into phase values of discharges relative to the gamma cycle. This recoding enables transmission and read out of amplitude information within a single gamma cycle without requiring rate integration. Furthermore, variation of phase relations can be exploited to facilitate or inhibit exchange of information between oscillating cell assemblies. The gamma cycle could thus serve as a fundamental computational mechanism for the implementation of a temporal coding scheme that enables fast processing and flexible routing of activity, supporting fast selection and binding of distributed responses. This review is part of the INMED/TINS special issue Physiogenic and pathogenic oscillations: the beauty and the beast, based on presentations at the annual INMED/TINS symposium (http://inmednet.com).
Collapse
Affiliation(s)
- Pascal Fries
- F.C. Donders Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6525 EN Nijmegen, the Netherlands.
| | | | | |
Collapse
|
36
|
Taylor J, Nobre A, Shapiro K. Introduction to the special issue on ‘Brain & Attention’. Neural Netw 2006. [DOI: 10.1016/j.neunet.2006.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|