1
|
Shao Z, Chang Y, Venton BJ. Carbon microelectrodes with customized shapes for neurotransmitter detection: A review. Anal Chim Acta 2022; 1223:340165. [PMID: 35998998 PMCID: PMC9867599 DOI: 10.1016/j.aca.2022.340165] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 01/26/2023]
Abstract
Carbon is a popular electrode material for neurotransmitter detection due to its good electrochemical properties, high biocompatibility, and inert chemistry. Traditional carbon electrodes, such as carbon fibers, have smooth surfaces and fixed shapes. However, newer studies customize the shape and nanostructure the surface to enhance electrochemistry for different applications. In this review, we show how changing the structure of carbon electrodes with methods such as chemical vapor deposition (CVD), wet-etching, direct laser writing (DLW), and 3D printing leads to different electrochemical properties. The customized shapes include nanotips, complex 3D structures, porous structures, arrays, and flexible sensors with patterns. Nanostructuring enhances sensitivity and selectivity, depending on the carbon nanomaterial used. Carbon nanoparticle modifications enhance electron transfer kinetics and prevent fouling for neurochemicals that are easily polymerized. Porous electrodes trap analyte momentarily on the scale of an electrochemistry experiment, leading to thin layer electrochemical behavior that enhances secondary peaks from chemical reactions. Similar thin layer cell behavior is observed at cavity carbon nanopipette electrodes. Nanotip electrodes facilitate implantation closer to the synapse with reduced tissue damage. Carbon electrode arrays are used to measure from multiple neurotransmitter release sites simultaneously. Custom-shaped carbon electrodes are enabling new applications in neuroscience, such as distinguishing different catecholamines by secondary peaks, detection of vesicular release in single cells, and multi-region measurements in vivo.
Collapse
Affiliation(s)
- Zijun Shao
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22904-4319, USA
| | - Yuanyu Chang
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22904-4319, USA
| | - B Jill Venton
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22904-4319, USA.
| |
Collapse
|
2
|
Song Q, Li Q, Yan J, Song Y. Echem methods and electrode types of the current in vivo electrochemical sensing. RSC Adv 2022; 12:17715-17739. [PMID: 35765338 PMCID: PMC9199085 DOI: 10.1039/d2ra01273a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
For a long time, people have been eager to realize continuous real-time online monitoring of biological compounds. Fortunately, in vivo electrochemical biosensor technology has greatly promoted the development of biological compound detection. This article summarizes the existing in vivo electrochemical detection technologies into two categories: microdialysis (MD) and microelectrode (ME). Then we summarized and discussed the electrode surface time, pollution resistance, linearity and the number of instances of simultaneous detection and analysis, the composition and characteristics of the sensor, and finally, we also predicted and prospected the development of electrochemical technology and sensors in vivo.
Collapse
Affiliation(s)
- Qiuye Song
- The Affiliated Zhangjiagang Hospital of Soochow University Zhangjiagang 215600 Jiangsu People's Republic of China +86 791 87802135 +86 791 87802135
| | - Qianmin Li
- Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine 1688 Meiling Road Nanchang 330006 China
| | - Jiadong Yan
- The Affiliated Zhangjiagang Hospital of Soochow University Zhangjiagang 215600 Jiangsu People's Republic of China +86 791 87802135 +86 791 87802135
| | - Yonggui Song
- Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi Province, Jiangxi University of Chinese Medicine 1688 Meiling Road Nanchang 330006 China.,Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Nanchang Medical College 1688 Meiling Road Nanchang 330006 China
| |
Collapse
|
3
|
France M, Galligan JJ, Swain GM. In vitro electrochemical measurement of serotonin release in the human jejunum mucosa using a diamond microelectrode. Analyst 2022; 147:2523-2532. [PMID: 35543208 PMCID: PMC9599047 DOI: 10.1039/d2an00487a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report herein on the use of a boron-doped diamond microelectrode (DME) to record oxidation currents in vitro associated with the release of serotonin from enterochromaffin cells in the epithelium of the human intestinal mucosa.
Collapse
Affiliation(s)
- Marion France
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - James J. Galligan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Greg M. Swain
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Ivandini TA, Einaga Y. Electrochemical Sensing Applications Using Diamond Microelectrodes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tribidasari A. Ivandini
- Department of Chemistry, Faculty of Mathematics and Science, Universitas Indonesia, Kampus UI Depok, Jakarta 16424, Indonesia
| | - Yasuaki Einaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
5
|
Lucio Boschen S, Trevathan J, Hara SA, Asp A, Lujan JL. Defining a Path Toward the Use of Fast-Scan Cyclic Voltammetry in Human Studies. Front Neurosci 2021; 15:728092. [PMID: 34867151 PMCID: PMC8633532 DOI: 10.3389/fnins.2021.728092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Fast Scan Cyclic Voltammetry (FSCV) has been used for decades as a neurochemical tool for in vivo detection of phasic changes in electroactive neurotransmitters in animal models. Recently, multiple research groups have initiated human neurochemical studies using FSCV or demonstrated interest in bringing FSCV into clinical use. However, there remain technical challenges that limit clinical implementation of FSCV by creating barriers to appropriate scientific rigor and patient safety. In order to progress with clinical FSCV, these limitations must be first addressed through (1) appropriate pre-clinical studies to ensure accurate measurement of neurotransmitters and (2) the application of a risk management framework to assess patient safety. The intent of this work is to bring awareness of the current issues associated with FSCV to the scientific, engineering, and clinical communities and encourage them to seek solutions or alternatives that ensure data accuracy, rigor and reproducibility, and patient safety.
Collapse
Affiliation(s)
- Suelen Lucio Boschen
- Applied Computational Neurophysiology and Neuromodulation Laboratory, Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - James Trevathan
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Seth A Hara
- Division of Engineering, Mayo Clinic, Rochester, MN, United States
| | - Anders Asp
- Applied Computational Neurophysiology and Neuromodulation Laboratory, Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - J Luis Lujan
- Applied Computational Neurophysiology and Neuromodulation Laboratory, Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
6
|
Seaton BT, Heien ML. Biocompatible reference electrodes to enhance chronic electrochemical signal fidelity in vivo. Anal Bioanal Chem 2021; 413:6689-6701. [PMID: 34595560 DOI: 10.1007/s00216-021-03640-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
In vivo electrochemistry is a vital tool of neuroscience that allows for the detection, identification, and quantification of neurotransmitters, their metabolites, and other important analytes. One important goal of in vivo electrochemistry is a better understanding of progressive neurological disorders (e.g., Parkinson's disease). A complete understanding of such disorders can only be achieved through a combination of acute (i.e., minutes to hours) and chronic (i.e., days or longer) experimentation. Chronic studies are more challenging because they require prolonged implantation of electrodes, which elicits an immune response, leading to glial encapsulation of the electrodes and altered electrode performance (i.e., biofouling). Biofouling leads to increased electrode impedance and reference electrode polarization, both of which diminish the selectivity and sensitivity of in vivo electrochemical measurements. The increased impedance factor has been successfully mitigated previously with the use of a counter electrode, but the challenge of reference electrode polarization remains. The commonly used Ag/AgCl reference electrode lacks the long-term potential stability in vivo required for chronic measurements. In addition, the cytotoxicity of Ag/AgCl adversely affects animal experimentation and prohibits implantation in humans, hindering translational research progress. Thus, a move toward biocompatible reference electrodes with superior chronic potential stability is necessary. Two qualifying materials, iridium oxide and boron-doped diamond, are introduced and discussed in terms of their electrochemical properties, biocompatibilities, fabrication methods, and applications. In vivo electrochemistry continues to advance toward more chronic experimentation in both animal models and humans, necessitating the utilization of biocompatible reference electrodes that should provide superior potential stability and allow for unprecedented chronic signal fidelity when used with a counter electrode for impedance mitigation.
Collapse
Affiliation(s)
- Blake T Seaton
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Michael L Heien
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
7
|
Leroy A, Teixidor J, Bertsch A, Renaud P. In-flow electrochemical detection of chemicals in droplets with pyrolysed photoresist electrodes: application as a module for quantification of microsampled dopamine. LAB ON A CHIP 2021; 21:3328-3337. [PMID: 34250532 DOI: 10.1039/d1lc00116g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The electrochemical quantification of analytes in droplets of PBS separated by a fluorinated phase was investigated. PDMS-fused silica chips with pyrolysed photoresist electrodes were prepared using a simple fabrication technique and used to analyze droplets in flow. Potentiostatic chronoamperometry provided current readouts consistent with mass transport and the concentration inside the droplets. This paper highlights measurements of dopamine in droplets in T-junction microfluidic chips at unprecedently low concentrations, with a limit of detection of 207 nM and a linear range of 0.21-20 μM, giving results similar to continuous flow electrochemistry and allowing the analysis in the striatal extracellular range (<1 μM). The system was applied to the quick and reliable on-line detection of dopamine concentration steps in droplets collected with a microsampling probe in vitro, demonstrating the usefulness of the electrochemical device as a quantification module for microsampled chemicals in droplets.
Collapse
Affiliation(s)
- Albert Leroy
- EPFL-STI-IMT-LMIS4, École Polytechnique Fédérale de Lausanne, Station 17, CH-1015 Lausanne, Switzerland.
| | | | | | | |
Collapse
|
8
|
Purcell EK, Becker MF, Guo Y, Hara SA, Ludwig KA, McKinney CJ, Monroe EM, Rechenberg R, Rusinek CA, Saxena A, Siegenthaler JR, Sortwell CE, Thompson CH, Trevathan JK, Witt S, Li W. Next-Generation Diamond Electrodes for Neurochemical Sensing: Challenges and Opportunities. MICROMACHINES 2021; 12:128. [PMID: 33530395 PMCID: PMC7911340 DOI: 10.3390/mi12020128] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Carbon-based electrodes combined with fast-scan cyclic voltammetry (FSCV) enable neurochemical sensing with high spatiotemporal resolution and sensitivity. While their attractive electrochemical and conductive properties have established a long history of use in the detection of neurotransmitters both in vitro and in vivo, carbon fiber microelectrodes (CFMEs) also have limitations in their fabrication, flexibility, and chronic stability. Diamond is a form of carbon with a more rigid bonding structure (sp3-hybridized) which can become conductive when boron-doped. Boron-doped diamond (BDD) is characterized by an extremely wide potential window, low background current, and good biocompatibility. Additionally, methods for processing and patterning diamond allow for high-throughput batch fabrication and customization of electrode arrays with unique architectures. While tradeoffs in sensitivity can undermine the advantages of BDD as a neurochemical sensor, there are numerous untapped opportunities to further improve performance, including anodic pretreatment, or optimization of the FSCV waveform, instrumentation, sp2/sp3 character, doping, surface characteristics, and signal processing. Here, we review the state-of-the-art in diamond electrodes for neurochemical sensing and discuss potential opportunities for future advancements of the technology. We highlight our team's progress with the development of an all-diamond fiber ultramicroelectrode as a novel approach to advance the performance and applications of diamond-based neurochemical sensors.
Collapse
Affiliation(s)
- Erin K. Purcell
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Michael F. Becker
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Yue Guo
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
| | - Seth A. Hara
- Division of Engineering, Mayo Clinic, Rochester, MN 55905, USA;
| | - Kip A. Ludwig
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.A.L.); (J.K.T.)
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Collin J. McKinney
- Department of Chemistry, Electronics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Elizabeth M. Monroe
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89154, USA; (E.M.M.); (C.A.R.)
| | - Robert Rechenberg
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Cory A. Rusinek
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89154, USA; (E.M.M.); (C.A.R.)
| | - Akash Saxena
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - James R. Siegenthaler
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Caryl E. Sortwell
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Cort H. Thompson
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - James K. Trevathan
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.A.L.); (J.K.T.)
- Grainger Institute for Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Suzanne Witt
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Wen Li
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
9
|
Niwa O, Ohta S, Takahashi S, Zhang Z, Kamata T, Kato D, Shiba S. Hybrid Carbon Film Electrodes for Electroanalysis. ANAL SCI 2021; 37:37-47. [PMID: 33071269 DOI: 10.2116/analsci.20sar15] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/08/2020] [Indexed: 11/23/2022]
Abstract
Carbon materials have been widely used for electrochemical analysis and include carbon nanotubes, graphene, and boron-doped diamond electrodes in addition to conventional carbon electrodes, such as those made of glassy carbon and graphite. Of the carbon-based electrodes, carbon film has advantages because it can be fabricated reproducibly and micro- or nanofabricated into electrodes with a wide range of shapes and sizes. Here, we report two categories of hybrid-type carbon film electrodes for mainly electroanalytical applications. The first category consists of carbon films doped or surface terminated with other atoms such as nitrogen, oxygen and fluorine, which can control surface hydrophilicity and lipophilicity or electrocatalytic performance, and are used to detect various electroactive biochemicals. The second category comprises metal nanoparticles embedded in carbon film electrodes fabricated by co-sputtering, which exhibits high electrocatalytic activity for environmental and biological samples including toxic heavy metal ions and clinical sugar markers, which are difficult to detect at pure carbon-based electrodes.
Collapse
Affiliation(s)
- Osamu Niwa
- Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji Fukaya Saitama, 369-0293, Japan.
| | - Saki Ohta
- Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji Fukaya Saitama, 369-0293, Japan
| | - Shota Takahashi
- Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji Fukaya Saitama, 369-0293, Japan
| | - Zixin Zhang
- Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji Fukaya Saitama, 369-0293, Japan
| | - Tomoyuki Kamata
- Health and Medical Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Dai Kato
- Health and Medical Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Shunsuke Shiba
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering Ehime University, 3-Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| |
Collapse
|
10
|
Rusheen AE, Gee TA, Jang DP, Blaha CD, Bennet KE, Lee KH, Heien ML, Oh Y. Evaluation of electrochemical methods for tonic dopamine detection in vivo. Trends Analyt Chem 2020; 132:116049. [PMID: 33597790 PMCID: PMC7885180 DOI: 10.1016/j.trac.2020.116049] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dysfunction in dopaminergic neuronal systems underlie a number of neurologic and psychiatric disorders such as Parkinson's disease, drug addiction, and schizophrenia. Dopamine systems communicate via two mechanisms, a fast "phasic" release (sub-second to second) that is related to salient stimuli and a slower "tonic" release (minutes to hours) that regulates receptor tone. Alterations in tonic levels are thought to be more critically important in enabling normal motor, cognitive, and motivational functions, and dysregulation in tonic dopamine levels are associated with neuropsychiatric disorders. Therefore, development of neurochemical recording techniques that enable rapid, selective, and quantitative measurements of changes in tonic extracellular levels are essential in determining the role of dopamine in both normal and disease states. Here, we review state-of-the-art advanced analytical techniques for in vivo detection of tonic levels, with special focus on electrochemical techniques for detection in humans.
Collapse
Affiliation(s)
- Aaron E. Rusheen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, United States
| | - Taylor A. Gee
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, United States
| | - Dong P. Jang
- Department of Biomedical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Charles D. Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Kevin E. Bennet
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
- Division of Engineering, Mayo Clinic, Rochester, MN, 55905, United States
| | - Kendall H. Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States
| | - Michael L. Heien
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, United States
| | - Yoonbae Oh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States
| |
Collapse
|
11
|
Mani N, Rifai A, Houshyar S, Booth MA, Fox K. Diamond in medical devices and sensors: An overview of diamond surfaces. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/mds3.10127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nour Mani
- Center for Additive Manufacturing School of Engineering RMIT University VIC Australia
- School of Engineering RMIT University Melbourne Victoria Australia
| | - Aaqil Rifai
- School of Engineering RMIT University Melbourne Victoria Australia
| | - Shadi Houshyar
- Center for Additive Manufacturing School of Engineering RMIT University VIC Australia
- School of Engineering RMIT University Melbourne Victoria Australia
| | | | - Kate Fox
- Center for Additive Manufacturing School of Engineering RMIT University VIC Australia
- School of Engineering RMIT University Melbourne Victoria Australia
| |
Collapse
|
12
|
Zhang F, de Ridder H, Pont SC. Asymmetric perceptual confounds between canonical lightings and materials. J Vis 2019; 18:11. [PMID: 30347097 DOI: 10.1167/18.11.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To better understand the interactions between material perception and light perception, we further developed our material probe MatMix 1.0 into MixIM 1.0, which allows optical mixing of canonical lighting modes. We selected three canonical lighting modes (ambient, focus, and brilliance) and created scenes to represent the three illuminations. Together with four canonical material modes (matte, velvety, specular, glittery), this resulted in 12 basis images (the "bird set"). These images were optically mixed in our probing method. Three experiments were conducted with different groups of observers. In Experiment 1, observers were instructed to manipulate MixIM 1.0 and match optically mixed lighting modes while discounting the materials. In Experiment 2, observers were shown a pair of stimuli and instructed to simultaneously judge whether the materials and lightings were the same or different in a four-category discrimination task. In Experiment 3, observers performed both the matching and discrimination tasks in which only the ambient and focus light were implemented. Overall, the matching and discrimination results were comparable as (a) robust asymmetric perceptual confounds were found and confirmed in both types of tasks, (b) performances were consistent and all above chance levels, and (c) observers had higher sensitivities to our canonical materials than to our canonical lightings. The latter result may be explained in terms of a generic insensitivity for naturally occurring variations in light conditions. Our findings suggest that midlevel image features are more robust across different materials than across different lightings and, thus, more diagnostic for materials than for lightings, causing the asymmetric perceptual confounds.
Collapse
Affiliation(s)
- Fan Zhang
- Perceptual Intelligence Laboratory, Industrial Design Engineering, Delft University of Technology, The Netherlands
| | - Huib de Ridder
- Perceptual Intelligence Laboratory, Industrial Design Engineering, Delft University of Technology, The Netherlands
| | - Sylvia C Pont
- Perceptual Intelligence Laboratory, Industrial Design Engineering, Delft University of Technology, The Netherlands
| |
Collapse
|
13
|
Yang N, Yu S, Macpherson JV, Einaga Y, Zhao H, Zhao G, Swain GM, Jiang X. Conductive diamond: synthesis, properties, and electrochemical applications. Chem Soc Rev 2019; 48:157-204. [DOI: 10.1039/c7cs00757d] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review summarizes systematically the growth, properties, and electrochemical applications of conductive diamond.
Collapse
Affiliation(s)
- Nianjun Yang
- Institute of Materials Engineering
- University of Siegen
- Siegen 57076
- Germany
| | - Siyu Yu
- Institute of Materials Engineering
- University of Siegen
- Siegen 57076
- Germany
| | | | - Yasuaki Einaga
- Department of Chemistry
- Keio University
- Yokohama 223-8522
- Japan
| | - Hongying Zhao
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Guohua Zhao
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | | | - Xin Jiang
- Institute of Materials Engineering
- University of Siegen
- Siegen 57076
- Germany
| |
Collapse
|
14
|
Yamaguchi C, Natsui K, Iizuka S, Tateyama Y, Einaga Y. Electrochemical properties of fluorinated boron-doped diamond electrodes via fluorine-containing plasma treatment. Phys Chem Chem Phys 2019; 21:13788-13794. [DOI: 10.1039/c8cp07402j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It was systematically demonstrated that the electrochemical properties of fluorinated boron-doped diamond electrodes could be attributed to interfacial band bending.
Collapse
Affiliation(s)
- Chizu Yamaguchi
- Department of Chemistry
- Keio University
- Yokohama 223-8522
- Japan
| | - Keisuke Natsui
- Department of Chemistry
- Keio University
- Yokohama 223-8522
- Japan
| | - Shota Iizuka
- Center for Green Research on Energy and Environmental Materials (GREEN) and International Center for Materials Nanoarchitectonics (MANA)
- National Institute of Materials Science (NIMS)
- Tsukuba
- Japan
| | - Yoshitaka Tateyama
- Center for Green Research on Energy and Environmental Materials (GREEN) and International Center for Materials Nanoarchitectonics (MANA)
- National Institute of Materials Science (NIMS)
- Tsukuba
- Japan
| | - Yasuaki Einaga
- Department of Chemistry
- Keio University
- Yokohama 223-8522
- Japan
- ACCEL
| |
Collapse
|
15
|
Einaga Y. Development of Electrochemical Applications of Boron-Doped Diamond Electrodes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180268] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
16
|
Unmodified and multi-walled carbon nanotube modified tetrahedral amorphous carbon (ta-C) films as in vivo sensor materials for sensitive and selective detection of dopamine. Biosens Bioelectron 2018; 118:23-30. [DOI: 10.1016/j.bios.2018.07.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 12/31/2022]
|
17
|
Zhang P, Hou F, Yan FF, Xi J, Lin BR, Zhao J, Yang J, Chen G, Zhang MY, He Q, Dosher BA, Lu ZL, Huang CB. High reward enhances perceptual learning. J Vis 2018; 18:11. [PMID: 30372760 PMCID: PMC6108453 DOI: 10.1167/18.8.11] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 05/12/2018] [Indexed: 02/01/2023] Open
Abstract
Studies of perceptual learning have revealed a great deal of plasticity in adult humans. In this study, we systematically investigated the effects and mechanisms of several forms (trial-by-trial, block, and session rewards) and levels (no, low, high, subliminal) of monetary reward on the rate, magnitude, and generalizability of perceptual learning. We found that high monetary reward can greatly promote the rate and boost the magnitude of learning and enhance performance in untrained spatial frequencies and eye without changing interocular, interlocation, and interdirection transfer indices. High reward per se made unique contributions to the enhanced learning through improved internal noise reduction. Furthermore, the effects of high reward on perceptual learning occurred in a range of perceptual tasks. The results may have major implications for the understanding of the nature of the learning rule in perceptual learning and for the use of reward to enhance perceptual learning in practical applications.
Collapse
Affiliation(s)
- Pan Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Laboratory of Brain Processes (LOBES), Center for Cognitive and Brain Sciences, Center for Cognitive and Behavioral Brain Imaging, and Departments of Psychology, The Ohio State University, Columbus, OH, USA
| | - Fang Hou
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fang-Fang Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jie Xi
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Bo-Rong Lin
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jin Zhao
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jia Yang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ge Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- School of Arts and Design, Zhengzhou University of Light Industry, Zhengzhou, Henan, China
| | - Meng-Yuan Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Qing He
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Barbara Anne Dosher
- Department of Cognitive Sciences and Institute of Mathematical Behavioral Sciences, University of California, Irvine, CA, USA
| | - Zhong-Lin Lu
- Laboratory of Brain Processes (LOBES), Center for Cognitive and Brain Sciences, Center for Cognitive and Behavioral Brain Imaging, and Departments of Psychology, The Ohio State University, Columbus, OH, USA
| | - Chang-Bing Huang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Nasri B, Wu T, Alharbi A, You KD, Gupta M, Sebastian SP, Kiani R, Shahrjerdi D. Hybrid CMOS-Graphene Sensor Array for Subsecond Dopamine Detection. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2017; 11:1192-1203. [PMID: 29293417 PMCID: PMC5936076 DOI: 10.1109/tbcas.2017.2778048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We introduce a hybrid CMOS-graphene sensor array for subsecond measurement of dopamine via fast-scan cyclic voltammetry (FSCV). The prototype chip has four independent CMOS readout channels, fabricated in a 65-nm process. Using planar multilayer graphene as biologically compatible sensing material enables integration of miniaturized sensing electrodes directly above the readout channels. Taking advantage of the chemical specificity of FSCV, we introduce a region of interest technique, which subtracts a large portion of the background current using a programmable low-noise constant current at about the redox potentials. We demonstrate the utility of this feature for enhancing the sensitivity by measuring the sensor response to a known dopamine concentration in vitro at three different scan rates. This strategy further allows us to significantly reduce the dynamic range requirements of the analog-to-digital converter (ADC) without compromising the measurement accuracy. We show that an integrating dual-slope ADC is adequate for digitizing the background-subtracted current. The ADC operates at a sampling frequency of 5-10 kHz and has an effective resolution of about 60 pA, which corresponds to a theoretical dopamine detection limit of about 6 nM. Our hybrid sensing platform offers an effective solution for implementing next-generation FSCV devices that can enable precise recording of dopamine signaling in vivo on a large scale.
Collapse
|
19
|
Flexible Boron-Doped Diamond (BDD) Electrodes for Plant Monitoring. SENSORS 2017; 17:s17071638. [PMID: 28714895 PMCID: PMC5539713 DOI: 10.3390/s17071638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 11/17/2022]
Abstract
Detecting the bio-potential changes of plants would be useful for monitoring their growth and health in the field. A sensitive plant monitoring system with flexible boron-doped diamond (BDD) electrodes prepared from BDD powder and resin (Nafion or Vylon-KE1830) was investigated. The properties of the electrodes were compared with those of small BDD plate-type electrodes by monitoring the bioelectric potentials of potted Aloe and hybrid species in the genus Opuntia. While flexible BDD electrodes have wide potential windows, their cyclic voltammograms are different from those of the BDD plate. Further, the potential gap between a pair of electrodes attached to the plants changes as the plants are stimulated artificially with a finger touch, suggesting that the bioelectric potentials in the plant also changed, manifesting as changes in the potential gap between the electrodes. The BDD electrodes were assessed for their response reproducibility to a finger stimulus for 30 days. It was concluded that the plant monitoring system worked well with flexible BDD electrodes. Further, the electrodes were stable, and as reliable as the BDD plate electrodes in this study. Thus, a flexible and inexpensive BDD electrode system was successfully fabricated for monitoring the bioelectric potential changes in plants.
Collapse
|
20
|
Carabelli V, Marcantoni A, Picollo F, Battiato A, Bernardi E, Pasquarelli A, Olivero P, Carbone E. Planar Diamond-Based Multiarrays to Monitor Neurotransmitter Release and Action Potential Firing: New Perspectives in Cellular Neuroscience. ACS Chem Neurosci 2017; 8:252-264. [PMID: 28027435 DOI: 10.1021/acschemneuro.6b00328] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
High biocompatibility, outstanding electrochemical responsiveness, inertness, and transparency make diamond-based multiarrays (DBMs) first-rate biosensors for in vitro detection of electrochemical and electrical signals from excitable cells together, with potential for in vivo applications as neural interfaces and prostheses. Here, we will review the electrochemical and physical properties of various DBMs and how these devices have been employed for recording released neurotransmitter molecules and all-or-none action potentials from living cells. Specifically, we will overview how DBMs can resolve localized exocytotic events from subcellular compartments using high-density microelectrode arrays (MEAs), or monitoring oxidizable neurotransmitter release from populations of cells in culture and tissue slices using low-density MEAs. Interfacing DBMs with excitable cells is currently leading to the promising opportunity of recording electrical signals as well as creating neuronal interfaces through the same device. Given the recent increasingly growing development of newly available DBMs of various geometries to monitor electrical activity and neurotransmitter release in a variety of excitable and neuronal tissues, the discussion will be limited to planar DBMs.
Collapse
Affiliation(s)
- Valentina Carabelli
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
| | - Andrea Marcantoni
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
| | - Federico Picollo
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 sez. Torino, Italy
| | - Alfio Battiato
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 sez. Torino, Italy
| | - Ettore Bernardi
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 sez. Torino, Italy
| | - Alberto Pasquarelli
- Institute
of Electron Devices and Circuits, Ulm University, 89081 Ulm, Germany
| | - Paolo Olivero
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 sez. Torino, Italy
| | - Emilio Carbone
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
| |
Collapse
|
21
|
Ribeiro JA, Fernandes PM, Pereira CM, Silva F. Electrochemical sensors and biosensors for determination of catecholamine neurotransmitters: A review. Talanta 2016; 160:653-679. [DOI: 10.1016/j.talanta.2016.06.066] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 01/03/2023]
|
22
|
Functional alterations of the dopaminergic and glutamatergic systems in spontaneous α-synuclein overexpressing rats. Exp Neurol 2016; 287:21-33. [PMID: 27771352 DOI: 10.1016/j.expneurol.2016.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/15/2022]
Abstract
The presence of α-synuclein (α-syn) in Lewy bodies and Lewy neurites is an important characteristic of the neurodegenerative processes of substantia nigra pars compacta (SNpc) dopaminergic (DAergic) neurons in Parkinson's disease (PD) and other synucleinopathies. Here we report that Berlin-Druckrey rats carrying a spontaneous mutation in the 3' untranslated region of α-syn mRNA (m/m rats) display a marked accumulation of α-syn in the mesencephalic area, striatum and frontal cortex, accompanied to severe dysfunctions in the dorsolateral striatum. Despite a small reduction in the number of SNpc and ventral tegmental area DAergic cells, the surviving dopaminergic neurons of the m/m rats do not show clear-cut alterations of the spontaneous and evoked firing activity, DA responses and somatic amphetamine-induced firing inhibition. Interestingly, mutant DAergic neurons display diminished whole-cell Ih conductance and a reduced frequency of spontaneous excitatory synaptic currents. By contrast, m/m rats show a severe impairment of DA and glutamate release in the dorsolateral striatum, as revealed by amperometric measure of DA currents and by electrophysiological recordings of glutamatergic synaptic events in striatal medium spiny neurons. These functional impairments are paralleled by a decreased expression of the DA transporter and VGluT1 proteins in the same area. Thus, together with α-syn overload in the mesencephalic region, striatum and frontal cortex, the main functional alterations occur in the DAergic and glutamatergic terminals in the dorsal striatum of the m/m rats.
Collapse
|
23
|
Maybeck V, Schnitker J, Li W, Heuschkel M, Offenhäusser A. An evaluation of extracellular MEA versus optogenetic stimulation of cortical neurons. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/5/055017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Continuous and selective measurement of oxytocin and vasopressin using boron-doped diamond electrodes. Sci Rep 2016; 6:32429. [PMID: 27599852 PMCID: PMC5013270 DOI: 10.1038/srep32429] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/09/2016] [Indexed: 01/14/2023] Open
Abstract
The electrochemical detection of oxytocin using boron-doped diamond (BDD) electrodes was studied. Cyclic voltammetry of oxytocin in a phosphate buffer solution exhibits an oxidation peak at +0.7 V (vs. Ag/AgCl), which is attributable to oxidation of the phenolic group in the tyrosyl moiety. Furthermore, the linearity of the current peaks obtained in flow injection analysis (FIA) using BDD microelectrodes over the oxytocin concentration range from 0.1 to 10.0 μM with a detection limit of 50 nM (S/N = 3) was high (R(2) = 0.995). Although the voltammograms of oxytocin and vasopressin observed with an as-deposited BDD electrode, as well as with a cathodically-reduced BDD electrode, were similar, a clear distinction was observed with anodically-oxidized BDD electrodes due to the attractive interaction between vasopressin and the oxidized BDD surface. By means of this distinction, selective measurements using chronoamperometry combined with flow injection analysis at an optimized potential were demonstrated, indicating the possibility of making selective in situ or in vivo measurements of oxytocin.
Collapse
|
25
|
|
26
|
Bennet KE, Tomshine JR, Min HK, Manciu FS, Marsh MP, Paek SB, Settell ML, Nicolai EN, Blaha CD, Kouzani AZ, Chang SY, Lee KH. A Diamond-Based Electrode for Detection of Neurochemicals in the Human Brain. Front Hum Neurosci 2016; 10:102. [PMID: 27014033 PMCID: PMC4791376 DOI: 10.3389/fnhum.2016.00102] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/25/2016] [Indexed: 11/13/2022] Open
Abstract
Deep brain stimulation (DBS), a surgical technique to treat certain neurologic and psychiatric conditions, relies on pre-determined stimulation parameters in an open-loop configuration. The major advancement in DBS devices is a closed-loop system that uses neurophysiologic feedback to dynamically adjust stimulation frequency and amplitude. Stimulation-driven neurochemical release can be measured by fast-scan cyclic voltammetry (FSCV), but existing FSCV electrodes rely on carbon fiber, which degrades quickly during use and is therefore unsuitable for chronic neurochemical recording. To address this issue, we developed durable, synthetic boron-doped diamond-based electrodes capable of measuring neurochemical release in humans. Compared to carbon fiber electrodes, they were more than two orders-of-magnitude more physically-robust and demonstrated longevity in vitro without deterioration. Applied for the first time in humans, diamond electrode recordings from thalamic targets in patients (n = 4) undergoing DBS for tremor produced signals consistent with adenosine release at a sensitivity comparable to carbon fiber electrodes. (Clinical trials # NCT01705301).
Collapse
Affiliation(s)
- Kevin E Bennet
- Division of Engineering, Mayo ClinicRochester, MN, USA; Neurologic Surgery, Mayo ClinicRochester, MN, USA; School of Engineering, Deakin UniversityMelbourne, VIC, Australia
| | - Jonathan R Tomshine
- Division of Engineering, Mayo ClinicRochester, MN, USA; Neurologic Surgery, Mayo ClinicRochester, MN, USA
| | - Hoon-Ki Min
- Neurologic Surgery, Mayo Clinic Rochester, MN, USA
| | | | | | | | | | | | | | - Abbas Z Kouzani
- School of Engineering, Deakin University Melbourne, VIC, Australia
| | | | | |
Collapse
|
27
|
Yoshimi K, Kumada S, Weitemier A, Jo T, Inoue M. Reward-Induced Phasic Dopamine Release in the Monkey Ventral Striatum and Putamen. PLoS One 2015; 10:e0130443. [PMID: 26110516 PMCID: PMC4482386 DOI: 10.1371/journal.pone.0130443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 05/20/2015] [Indexed: 12/13/2022] Open
Abstract
In-vivo voltammetry has successfully been used to detect dopamine release in rodent brains, but its application to monkeys has been limited. We have previously detected dopamine release in the caudate of behaving Japanese monkeys using diamond microelectrodes (Yoshimi 2011); however it is not known whether the release pattern is the same in various areas of the forebrain. Recent studies have suggested variations in the dopaminergic projections to forebrain areas. In the present study, we attempted simultaneous recording at two locations in the striatum, using fast-scan cyclic voltammetry (FSCV) on carbon fibers, which has been widely used in rodents. Responses to unpredicted food and liquid rewards were detected repeatedly. The response to the liquid reward after conditioned stimuli was enhanced after switching the prediction cue. These characteristics were generally similar between the ventral striatum and the putamen. Overall, the technical application of FSCV recording in multiple locations was successful in behaving primates, and further voltammetric recordings in multiple locations will expand our knowledge of dopamine reward responses.
Collapse
Affiliation(s)
- Kenji Yoshimi
- Department of Neurophysiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| | - Shiori Kumada
- Department of Psychology, Japan Women's University, Kawasaki, Kanagawa, Japan
| | | | - Takayuki Jo
- Department of Neurology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Masato Inoue
- Department of Neurophysiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
28
|
Özel RE, Hayat A, Andreescu S. RECENT DEVELOPMENTS IN ELECTROCHEMICAL SENSORS FOR THE DETECTION OF NEUROTRANSMITTERS FOR APPLICATIONS IN BIOMEDICINE. ANAL LETT 2015; 48:1044-1069. [PMID: 26973348 PMCID: PMC4787221 DOI: 10.1080/00032719.2014.976867] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurotransmitters are important biological molecules that are essential to many neurophysiological processes including memory, cognition, and behavioral states. The development of analytical methodologies to accurately detect neurotransmitters is of great importance in neurological and biological research. Specifically designed microelectrodes or microbiosensors have demonstrated potential for rapid, real-time measurements with high spatial resolution. Such devices can facilitate study of the role and mechanism of action of neurotransmitters and can find potential uses in biomedicine. This paper reviews the current status and recent advances in the development and application of electrochemical sensors for the detection of small-molecule neurotransmitters. Measurement challenges and opportunities of electroanalytical methods to advance study and understanding of neurotransmitters in various biological models and disease conditions are discussed.
Collapse
Affiliation(s)
- Rıfat Emrah Özel
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA. Fax: 3152686610; Tel: 3152682394
| | - Akhtar Hayat
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA. Fax: 3152686610; Tel: 3152682394
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology (CIIT), Lahore, Pakistan
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA. Fax: 3152686610; Tel: 3152682394
| |
Collapse
|
29
|
Bucher ES, Wightman RM. Electrochemical Analysis of Neurotransmitters. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2015; 8:239-61. [PMID: 25939038 PMCID: PMC4728736 DOI: 10.1146/annurev-anchem-071114-040426] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements.
Collapse
|
30
|
Trouillon R, Einaga Y, Gijs MA. Cathodic pretreatment improves the resistance of boron-doped diamond electrodes to dopamine fouling. Electrochem commun 2014. [DOI: 10.1016/j.elecom.2014.07.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
31
|
Yoshimi K, Weitemier A. Temporal differentiation of pH-dependent capacitive current from dopamine. Anal Chem 2014; 86:8576-84. [PMID: 25105214 DOI: 10.1021/ac500706m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Voltammetric recording of dopamine (DA) with fast-scan cyclic voltammetry (FSCV) on carbon fiber microelectrodes have been widely used, because of its high sensitivity to dopamine. However, since an electric double layer on a carbon fiber surface in a physiological ionic solution behaves as a capacitor, fast voltage manipulation in FSCV induces large capacitive current. The faradic current from oxidation/reduction of target chemicals must be extracted from this large background current. It is known that ionic shifts, including H(+), influence this capacitance, and pH shift can cause confounding influences on the FSCV recordings within a wide range of voltage. Besides FSCV with a triangular waveform, we have been using rectangular pulse voltammetry (RPV) for dopamine detection in the brain. In this method, the onset of a single pulse causes a large capacitive current, but unlike FSCV, the capacitive current is restricted to a narrow temporal window of just after pulse onset (<5 ms). In contrast, the peak of faradic current from dopamine oxidation occurs after a delay of more than a few milliseconds. Taking advantage of the temporal difference, we show that RPV could distinguish dopamine from pH shifts clearly and easily. In addition, the early onset current was useful to evaluate pH shifts. The narrow voltage window of our RPV pulse allowed a clear differentiation of dopamine and serotonin (5-HT), as we have shown previously. Additional recording with RPV, alongside FSCV, would improve identification of chemicals such as dopamine, pH, and 5-HT.
Collapse
Affiliation(s)
- Kenji Yoshimi
- Department of Neurophysiology, Juntendo University School of Medicine , Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | | |
Collapse
|
32
|
Chandra S, Miller AD, Bendavid A, Martin PJ, Wong DKY. Minimizing Fouling at Hydrogenated Conical-Tip Carbon Electrodes during Dopamine Detection in Vivo. Anal Chem 2014; 86:2443-50. [DOI: 10.1021/ac403283t] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Avi Bendavid
- CSIRO Materials
Science and Engineering, P.O. Box 218, Lindfield, New South Wales 2070, Australia
| | - Philip J. Martin
- CSIRO Materials
Science and Engineering, P.O. Box 218, Lindfield, New South Wales 2070, Australia
| | | |
Collapse
|
33
|
Jackowska K, Krysinski P. New trends in the electrochemical sensing of dopamine. Anal Bioanal Chem 2012; 405:3753-71. [PMID: 23241816 PMCID: PMC3608872 DOI: 10.1007/s00216-012-6578-2] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/12/2012] [Accepted: 11/13/2012] [Indexed: 12/11/2022]
Abstract
Since the early 70s electrochemistry has been used as a powerful analytical technique for monitoring electroactive species in living organisms. In particular, after extremely rapid evolution of new micro and nanotechnology it has been established as an invaluable technique ranging from experiments in vivo to measurement of exocytosis during communication between cells under in vitro conditions. This review highlights recent advances in the development of electrochemical sensors for selective sensing of one of the most important neurotransmitters--dopamine. Dopamine is an electroactive catecholamine neurotransmitter, abundant in the mammalian central nervous system, affecting both cognitive and behavioral functions of living organisms. We have not attempted to cover a large time-span nor to be comprehensive in presenting the vast literature devoted to electrochemical dopamine sensing. Instead, we have focused on the last five years, describing recent progress as well as showing some problems and directions for future development.
Collapse
|
34
|
|
35
|
Hadjinicolaou AE, Leung RT, Garrett DJ, Ganesan K, Fox K, Nayagam DA, Shivdasani MN, Meffin H, Ibbotson MR, Prawer S, O’Brien BJ. Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis. Biomaterials 2012; 33:5812-20. [DOI: 10.1016/j.biomaterials.2012.04.063] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 04/30/2012] [Indexed: 11/27/2022]
|
36
|
Ariansen JL, Heien MLAV, Hermans A, Phillips PEM, Hernadi I, Bermudez MA, Schultz W, Wightman RM. Monitoring extracellular pH, oxygen, and dopamine during reward delivery in the striatum of primates. Front Behav Neurosci 2012; 6:36. [PMID: 22783176 PMCID: PMC3389715 DOI: 10.3389/fnbeh.2012.00036] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 06/15/2012] [Indexed: 12/20/2022] Open
Abstract
Dopamine projections that extend from the ventral tegmental area to the striatum have been implicated in the biological basis for behaviors associated with reward and addiction. Until recently, it has been difficult to evaluate the complex balance of energy utilization and neural activity in the striatum. Many techniques such as electrophysiology, functional magnetic resonance imaging (fMRI), and fast-scan cyclic voltammetry have been employed to monitor these neurochemical and neurophysiological changes. In this brain region, physiological responses to cues and rewards cause local, transient pH changes. Oxygen and pH are coupled in the brain through a complex system of blood flow and metabolism as a result of transient neural activity. Indeed, this balance is at the heart of imaging studies such as fMRI. To this end, we measured pH and O2 changes with fast-scan cyclic voltammetry in the striatum as indices of changes in metabolism and blood flow in vivo in three Macaca mulatta monkeys during reward-based behaviors. Specifically, the animals were presented with Pavlovian conditioned cues that predicted different probabilities of liquid reward. They also received free reward without predictive cues. The primary detected change consisted of pH shifts in the striatal extracellular environment following the reward predicting cues or the free reward. We observed three types of cue responses that consisted of purely basic pH shifts, basic pH shifts followed by acidic pH shifts, and purely acidic pH shifts. These responses increased with reward probability, but were not significantly different from each other. The pH changes were accompanied by increases in extracellular O2. The changes in pH and extracellular O2 are consistent with current theories of metabolism and blood flow. However, they were of sufficient magnitude that they masked dopamine changes in the majority of cases. The findings suggest a role of these chemical responses in neuronal reward processing.
Collapse
Affiliation(s)
- Jennifer L Ariansen
- Department of Chemistry and Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill NC, USA
| | | | | | | | | | | | | | | |
Collapse
|