1
|
Dos Santos Pereira M, Dias de Abreu GH, Vanderlei LCA, Raisman-Vozari R, Guimarães FS, Lu HC, Michel PP, Del Bel E. 4'-fluorocannabidiol associated with capsazepine restrains L-DOPA-induced dyskinesia in hemiparkinsonian mice: Contribution of anti-inflammatory and anti-glutamatergic mechanisms. Neuropharmacology 2024; 251:109926. [PMID: 38554815 DOI: 10.1016/j.neuropharm.2024.109926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024]
Abstract
We tested the efficacy of 4'-fluorocannabidiol (4'-F-CBD), a semisynthetic cannabidiol derivative, and HU-910, a cannabinoid receptor 2 (CB2) agonist in resolving l-DOPA-induced dyskinesia (LID). Specifically, we were interested in studying whether these compounds could restrain striatal inflammatory responses and rescue glutamatergic disturbances characteristic of the dyskinetic state. C57BL/6 mice were rendered hemiparkinsonian by unilateral striatal lesioning with 6-OHDA. Abnormal involuntary movements were then induced by repeated i.p. injections of l-DOPA + benserazide. After LID was installed, the effects of a 3-day treatment with 4'-F-CBD or HU-910 in combination or not with the TRPV1 antagonist capsazepine (CPZ) or CB2 agonists HU-308 and JWH015 were assessed. Immunostaining was conducted to investigate the impacts of 4'-F-CBD and HU-910 (with CPZ) on inflammation and glutamatergic synapses. Our results showed that the combination of 4'-F-CBD + CPZ, but not when administered alone, decreased LID. Neither HU-910 alone nor HU-910+CPZ were effective. The CB2 agonists HU-308 and JWH015 were also ineffective in decreasing LID. Both combination treatments efficiently reduced microglial and astrocyte activation in the dorsal striatum of dyskinetic mice. However, only 4'-F-CBD + CPZ normalized the density of glutamate vesicular transporter-1 (vGluT1) puncta colocalized with the postsynaptic density marker PSD95. These findings suggest that 4'-F-CBD + CPZ normalizes dysregulated cortico-striatal glutamatergic inputs, which could be involved in their anti-dyskinetic effects. Although it is not possible to rule out the involvement of anti-inflammatory mechanisms, the decrease in striatal neuroinflammation markers by 4'-F-CBD and HU-910 without an associated reduction in LID indicates that they are insufficient per se to prevent LID manifestations.
Collapse
Affiliation(s)
- Maurício Dos Santos Pereira
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Ribeirão Preto, Brazil; Paris Brain Institute, Inserm, CNRS, Sorbonne Université, Paris, France.
| | - Gabriel Henrique Dias de Abreu
- Department of Psychological and Brain Sciences, Program in Neuroscience, Gill Center for Bimolecular Sciences, Indiana University, Bloomington, United States.
| | | | | | | | - Hui-Chen Lu
- Department of Psychological and Brain Sciences, Program in Neuroscience, Gill Center for Bimolecular Sciences, Indiana University, Bloomington, United States.
| | | | - Elaine Del Bel
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
2
|
Stasiłowicz-Krzemień A, Nogalska W, Maszewska Z, Maleszka M, Dobroń M, Szary A, Kępa A, Żarowski M, Hojan K, Lukowicz M, Cielecka-Piontek J. The Use of Compounds Derived from Cannabis sativa in the Treatment of Epilepsy, Painful Conditions, and Neuropsychiatric and Neurodegenerative Disorders. Int J Mol Sci 2024; 25:5749. [PMID: 38891938 PMCID: PMC11171823 DOI: 10.3390/ijms25115749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Neurological disorders present a wide range of symptoms and challenges in diagnosis and treatment. Cannabis sativa, with its diverse chemical composition, offers potential therapeutic benefits due to its anticonvulsive, analgesic, anti-inflammatory, and neuroprotective properties. Beyond cannabinoids, cannabis contains terpenes and polyphenols, which synergistically enhance its pharmacological effects. Various administration routes, including vaporization, oral ingestion, sublingual, and rectal, provide flexibility in treatment delivery. This review shows the therapeutic efficacy of cannabis in managing neurological disorders such as epilepsy, neurodegenerative diseases, neurodevelopmental disorders, psychiatric disorders, and painful pathologies. Drawing from surveys, patient studies, and clinical trials, it highlights the potential of cannabis in alleviating symptoms, slowing disease progression, and improving overall quality of life for patients. Understanding the diverse therapeutic mechanisms of cannabis can open up possibilities for using this plant for individual patient needs.
Collapse
Affiliation(s)
- Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Wiktoria Nogalska
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Zofia Maszewska
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Mateusz Maleszka
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Maria Dobroń
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Agnieszka Szary
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Aleksandra Kępa
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Marcin Żarowski
- Department of Developmental Neurology, Poznan University of Medical Sciences, Przybyszewski 49, 60-355 Poznan, Poland;
| | - Katarzyna Hojan
- Department of Occupational Therapy, Poznan University of Medical Sciences, Swięcickiego 6, 61-847 Poznan, Poland;
- Department of Rehabilitation, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Malgorzata Lukowicz
- Department of Rehabilitation, Centre of Postgraduate Medical Education, Konarskiego 13, 05-400 Otwock, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| |
Collapse
|
3
|
Bove F, Angeloni B, Sanginario P, Rossini PM, Calabresi P, Di Iorio R. Neuroplasticity in levodopa-induced dyskinesias: An overview on pathophysiology and therapeutic targets. Prog Neurobiol 2024; 232:102548. [PMID: 38040324 DOI: 10.1016/j.pneurobio.2023.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/29/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Levodopa-induced dyskinesias (LIDs) are a common complication in patients with Parkinson's disease (PD). A complex cascade of electrophysiological and molecular events that induce aberrant plasticity in the cortico-basal ganglia system plays a key role in the pathophysiology of LIDs. In the striatum, multiple neurotransmitters regulate the different forms of physiological synaptic plasticity to provide it in a bidirectional and Hebbian manner. In PD, impairment of both long-term potentiation (LTP) and long-term depression (LTD) progresses with disease and dopaminergic denervation of striatum. The altered balance between LTP and LTD processes leads to unidirectional changes in plasticity that cause network dysregulation and the development of involuntary movements. These alterations have been documented, in both experimental models and PD patients, not only in deep brain structures but also at motor cortex. Invasive and non-invasive neuromodulation treatments, as deep brain stimulation, transcranial magnetic stimulation, or transcranial direct current stimulation, may provide strategies to modulate the aberrant plasticity in the cortico-basal ganglia network of patients affected by LIDs, thus restoring normal neurophysiological functioning and treating dyskinesias. In this review, we discuss the evidence for neuroplasticity impairment in experimental PD models and in patients affected by LIDs, and potential neuromodulation strategies that may modulate aberrant plasticity.
Collapse
Affiliation(s)
- Francesco Bove
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Benedetta Angeloni
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pasquale Sanginario
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Paolo Calabresi
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Di Iorio
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
4
|
di Biase L, Pecoraro PM, Carbone SP, Caminiti ML, Di Lazzaro V. Levodopa-Induced Dyskinesias in Parkinson's Disease: An Overview on Pathophysiology, Clinical Manifestations, Therapy Management Strategies and Future Directions. J Clin Med 2023; 12:4427. [PMID: 37445461 DOI: 10.3390/jcm12134427] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Since its first introduction, levodopa has become the cornerstone for the treatment of Parkinson's disease and remains the leading therapeutic choice for motor control therapy so far. Unfortunately, the subsequent appearance of abnormal involuntary movements, known as dyskinesias, is a frequent drawback. Despite the deep knowledge of this complication, in terms of clinical phenomenology and the temporal relationship during a levodopa regimen, less is clear about the pathophysiological mechanisms underpinning it. As the disease progresses, specific oscillatory activities of both motor cortical and basal ganglia neurons and variation in levodopa metabolism, in terms of the dopamine receptor stimulation pattern and turnover rate, underlie dyskinesia onset. This review aims to provide a global overview on levodopa-induced dyskinesias, focusing on pathophysiology, clinical manifestations, therapy management strategies and future directions.
Collapse
Affiliation(s)
- Lazzaro di Biase
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Brain Innovations Lab, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Pasquale Maria Pecoraro
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Simona Paola Carbone
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Maria Letizia Caminiti
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Vincenzo Di Lazzaro
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| |
Collapse
|
5
|
Urbi B, Lee Y, Hughes I, Thorning S, Broadley SA, Sabet A, Heshmat S. Effects of cannabinoids in Parkinson's disease animal models: a systematic review and meta-analysis. BMJ OPEN SCIENCE 2022; 6:e100302. [PMID: 36618606 PMCID: PMC9812814 DOI: 10.1136/bmjos-2022-100302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Objectives Cannabis has been proposed as a potential treatment for Parkinson's disease (PD) due to its neuroprotective benefits. However, there has been no rigorous review of preclinical studies to evaluate any potential treatment effect. This systematic review was undertaken to provide evidence in support or against a treatment effect of cannabinoids in animal models of PD. Methods Databases were searched for any controlled comparative studies that assessed the effects of any cannabinoid, cannabinoid-based treatment or endocannabinoid transport blocker on behavioural symptoms in PD animal models. Results A total of 41 studies were identified to have met the criteria for this review. 14 of these studies were included in meta-analyses of rotarod, pole and open field tests. Meta-analysis of rotarod tests showed a weighted mean difference of 31.63 s for cannabinoid-treated group compared with control. Meta-analysis of pole tests also showed a positive treatment effect, evidenced by a weighted mean difference of -1.51 s for cannabinoid treat group compared with control. However, meta-analysis of open field test demonstrated a standardised mean difference of only 0.36 indicating no benefit. Conclusion This review demonstrates cannabinoid treatment effects in alleviating motor symptoms of PD animal models and supports the conduct of clinical trials of cannabis in PD population. However, there is no guarantee of successful clinical translation of this outcome because of the many variables that might have affected the results, such as the prevalent unclear and high risk of bias, the different study methods, PD animal models and cannabinoids used.
Collapse
Affiliation(s)
- Berzenn Urbi
- Office for Research Governance and Development, Gold Coast University Hospital, Southport, Queensland, Australia,Medicine, Griffith University Faculty of Health, Gold Coast, Queensland, Australia
| | - Yunjoo Lee
- Medicine, Griffith University Faculty of Health, Gold Coast, Queensland, Australia
| | - Ian Hughes
- Office for Research Governance and Development, Gold Coast University Hospital, Southport, Queensland, Australia
| | - Sarah Thorning
- Office for Research Governance and Development, Gold Coast University Hospital, Southport, Queensland, Australia
| | - Simon A Broadley
- Medicine, Griffith University Faculty of Health, Gold Coast, Queensland, Australia,Department of Neurology, Gold Coast University Hospital, Southport, Queensland, Australia
| | - Arman Sabet
- Medicine, Griffith University Faculty of Health, Gold Coast, Queensland, Australia,Department of Neurology, Gold Coast University Hospital, Southport, Queensland, Australia
| | - Saman Heshmat
- Department of Neurology, Gold Coast University Hospital, Southport, Queensland, Australia
| |
Collapse
|
6
|
Urbi B, Corbett J, Hughes I, Owusu MA, Thorning S, Broadley SA, Sabet A, Heshmat S. Effects of Cannabis in Parkinson's Disease: A Systematic Review and Meta-Analysis. JOURNAL OF PARKINSON'S DISEASE 2022; 12:495-508. [PMID: 34958046 DOI: 10.3233/jpd-212923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The legalization of cannabis in many countries has allowed many Parkinson's disease (PD) patients to turn to cannabis as a treatment. As such there is a growing interest from the PD community to be properly guided by evidence regarding potential treatment benefits of cannabis. This systematic review and meta-analysis aims to compile the best available evidence to help guide patients and their family, clinicians and researchers make informed decisions. A systematic search of the literature was conducted in June 2021. Five randomized controlled studies and eighteen non-randomized studies investigated cannabis treatment in PD patients. No compelling evidence was found to recommend the use of cannabis in PD patients. However, a potential benefit was identified with respect to alleviation of PD related tremor, anxiety, pain, improvement of sleep quality and quality of life. Given the relative paucity of well-designed randomized studies, there is an identified need for further investigation, particularly in these areas.
Collapse
Affiliation(s)
- Berzenn Urbi
- Office for Research Governance and Development, Gold Coast Hospital and Health Service, QLD, Australia.,School of Medicine, Griffith University, QLD, Australia
| | - Joel Corbett
- Department of Neurology, Gold Coast Hospital and Health Service, QLD, Australia
| | - Ian Hughes
- Office for Research Governance and Development, Gold Coast Hospital and Health Service, QLD, Australia
| | - Maame Amma Owusu
- Office for Research Governance and Development, Gold Coast Hospital and Health Service, QLD, Australia
| | - Sarah Thorning
- Office for Research Governance and Development, Gold Coast Hospital and Health Service, QLD, Australia
| | - Simon A Broadley
- School of Medicine, Griffith University, QLD, Australia.,Department of Neurology, Gold Coast Hospital and Health Service, QLD, Australia
| | - Arman Sabet
- School of Medicine, Griffith University, QLD, Australia.,Department of Neurology, Gold Coast Hospital and Health Service, QLD, Australia
| | - Saman Heshmat
- School of Medicine, Griffith University, QLD, Australia.,UQCCR, Centre for Clinical Research, University of Queensland, QLD Australia
| |
Collapse
|
7
|
Bove F, Calabresi P. Plasticity, genetics, and epigenetics in l-dopa-induced dyskinesias. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:167-184. [PMID: 35034732 DOI: 10.1016/b978-0-12-819410-2.00009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
l-Dopa-induced dyskinesias (LIDs) are a frequent complication in l-dopa-treated patients affected by Parkinson's disease (PD). In the last years, several progresses in the knowledge of LIDs mechanisms have led to the identification of several molecular and electrophysiologic events. A complex cascade of intracellular events underlies the pathophysiology of LIDs, and, among these, aberrant plasticity in the cortico-basal ganglia system, at striatal and cortical level, plays a key role. Furthermore, several recent studies have investigated genetic susceptibility and epigenetic modifications in LIDs pathophysiology that might have future relevance in clinical practice and pharmacologic research. These progresses might lead to the development of specific strategies not only to treat, but also to prevent or delay the development of LIDs in PD.
Collapse
Affiliation(s)
- Francesco Bove
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Calabresi
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
8
|
Soria-Gomez E, Pagano Zottola AC, Mariani Y, Desprez T, Barresi M, Bonilla-del Río I, Muguruza C, Le Bon-Jego M, Julio-Kalajzić F, Flynn R, Terral G, Fernández-Moncada I, Robin LM, Oliveira da Cruz JF, Corinti S, Amer YO, Goncalves J, Varilh M, Cannich A, Redon B, Zhao Z, Lesté-Lasserre T, Vincent P, Tolentino-Cortes T, Busquets-García A, Puente N, Bains JS, Hebert-Chatelain E, Barreda-Gómez G, Chaouloff F, Lohman AW, Callado LF, Grandes P, Baufreton J, Marsicano G, Bellocchio L. Subcellular specificity of cannabinoid effects in striatonigral circuits. Neuron 2021; 109:1513-1526.e11. [DOI: 10.1016/j.neuron.2021.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/09/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022]
|
9
|
Patricio F, Morales-Andrade AA, Patricio-Martínez A, Limón ID. Cannabidiol as a Therapeutic Target: Evidence of its Neuroprotective and Neuromodulatory Function in Parkinson's Disease. Front Pharmacol 2020; 11:595635. [PMID: 33384602 PMCID: PMC7770114 DOI: 10.3389/fphar.2020.595635] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
The phytocannabinoids of Cannabis sativa L. have, since ancient times, been proposed as a pharmacological alternative for treating various central nervous system (CNS) disorders. Interestingly, cannabinoid receptors (CBRs) are highly expressed in the basal ganglia (BG) circuit of both animals and humans. The BG are subcortical structures that regulate the initiation, execution, and orientation of movement. CBRs regulate dopaminergic transmission in the nigro-striatal pathway and, thus, the BG circuit also. The functioning of the BG is affected in pathologies related to movement disorders, especially those occurring in Parkinson’s disease (PD), which produces motor and non-motor symptoms that involving GABAergic, glutamatergic, and dopaminergic neural networks. To date, the most effective medication for PD is levodopa (l-DOPA); however, long-term levodopa treatment causes a type of long-term dyskinesias, l-DOPA-induced dyskinesias (LIDs). With neuromodulation offering a novel treatment strategy for PD patients, research has focused on the endocannabinoid system (ECS), as it participates in the physiological neuromodulation of the BG in order to control movement. CBRs have been shown to inhibit neurotransmitter release, while endocannabinoids (eCBs) play a key role in the synaptic regulation of the BG. In the past decade, cannabidiol (CBD), a non-psychotropic phytocannabinoid, has been shown to have compensatory effects both on the ECS and as a neuromodulator and neuroprotector in models such as 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and reserpine, as well as other PD models. Although the CBD-induced neuroprotection observed in animal models of PD has been attributed to the activation of the CB1 receptor, recent research conducted at a molecular level has proposed that CBD is capable of activating other receptors, such as CB2 and the TRPV-1 receptor, both of which are expressed in the dopaminergic neurons of the nigro-striatal pathway. These findings open new lines of scientific inquiry into the effects of CBD at the level of neural communication. Cannabidiol activates the PPARγ, GPR55, GPR3, GPR6, GPR12, and GPR18 receptors, causing a variety of biochemical, molecular, and behavioral effects due to the broad range of receptors it activates in the CNS. Given the low number of pharmacological treatment alternatives for PD currently available, the search for molecules with the therapeutic potential to improve neuronal communication is crucial. Therefore, the investigation of CBD and the mechanisms involved in its function is required in order to ascertain whether receptor activation could be a treatment alternative for both PD and LID.
Collapse
Affiliation(s)
- Felipe Patricio
- Laboratorio De Neurofarmacología, Facultad De Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Alan Axel Morales-Andrade
- Laboratorio De Neurofarmacología, Facultad De Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Aleidy Patricio-Martínez
- Laboratorio De Neurofarmacología, Facultad De Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.,Facultad De Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ilhuicamina Daniel Limón
- Laboratorio De Neurofarmacología, Facultad De Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
10
|
Leehey MA, Liu Y, Hart F, Epstein C, Cook M, Sillau S, Klawitter J, Newman H, Sempio C, Forman L, Seeberger L, Klepitskaya O, Baud Z, Bainbridge J. Safety and Tolerability of Cannabidiol in Parkinson Disease: An Open Label, Dose-Escalation Study. Cannabis Cannabinoid Res 2020; 5:326-336. [PMID: 33381646 PMCID: PMC7759259 DOI: 10.1089/can.2019.0068] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Cannabis is increasingly used in Parkinson disease (PD), despite little information regarding benefits and risks. Objectives: To investigate the safety and tolerability of a range of doses of cannabidiol (CBD), a nonintoxicating component of cannabis, and it's effect on common parkinsonian symptoms. Methods: In this open-label study Coloradans with PD, substantial rest tremor, not using cannabis received plant-derived highly purified CBD (Epidiolex®; 100 mg/mL). CBD was titrated from 5 to 20-25 mg/kg/day and maintained for 10-15 days. Results: Fifteen participants enrolled, two were screen failures. All 13 participants (10 male), mean (SD) age 68.15 (6.05), with 6.1 (4.0) years of PD, reported adverse events, including diarrhea (85%), somnolence (69%), fatigue (62%), weight gain (31%), dizziness (23%), abdominal pain (23%), and headache, weight loss, nausea, anorexia, and increased appetite (each 5%). Adverse events were mostly mild; none serious. Elevated liver enzymes, mostly a cholestatic pattern, occurred in five (38.5%) participants on 20-25 mg/kg/day, only one symptomatic. Three (23%) dropped out due to intolerance. Ten (eight male) that completed the study had improvement in total and motor Movement Disorder Society Unified Parkinson Disease Rating Scale scores of 7.70 (9.39, mean decrease 17.8%, p=0.012) and 6.10 (6.64, mean decrease 24.7%, p=0.004), respectively. Nighttime sleep and emotional/behavioral dyscontrol scores also improved significantly. Conclusions: CBD, in the form of Epidiolex, may be efficacious in PD, but the relatively high dose used in this study was associated with liver enzyme elevations. Randomized controlled trials are needed to investigate various forms of cannabis in PD.
Collapse
Affiliation(s)
- Maureen A. Leehey
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ying Liu
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Felecia Hart
- Department of Clinical Pharmacy, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Christen Epstein
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Mary Cook
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Stefan Sillau
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jost Klawitter
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Heike Newman
- Regulatory Compliance Office, University of Colorado, Aurora, Colorado, USA
| | - Cristina Sempio
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Lisa Forman
- Department of Gastroenterology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Lauren Seeberger
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Olga Klepitskaya
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Zachrey Baud
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jacquelyn Bainbridge
- Department of Clinical Pharmacy, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
11
|
Distinctive Evidence Involved in the Role of Endocannabinoid Signalling in Parkinson's Disease: A Perspective on Associated Therapeutic Interventions. Int J Mol Sci 2020; 21:ijms21176235. [PMID: 32872273 PMCID: PMC7504186 DOI: 10.3390/ijms21176235] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Current pharmacotherapy of Parkinson's disease (PD) is symptomatic and palliative, with levodopa/carbidopa therapy remaining the prime treatment, and nevertheless, being unable to modulate the progression of the neurodegeneration. No available treatment for PD can enhance the patient's life-quality by regressing this diseased state. Various studies have encouraged the enrichment of treatment possibilities by discovering the association of the effects of the endocannabinoid system (ECS) in PD. These reviews delineate the reported evidence from the literature on the neuromodulatory role of the endocannabinoid system and expression of cannabinoid receptors in symptomatology, cause, and treatment of PD progression, wherein cannabinoid (CB) signalling experiences alterations of biphasic pattern during PD progression. Published papers to date were searched via MEDLINE, PubMed, etc., using specific key words in the topic of our manuscript. Endocannabinoids regulate the basal ganglia neuronal circuit pathways, synaptic plasticity, and motor functions via communication with dopaminergic, glutamatergic, and GABAergic signalling systems bidirectionally in PD. Further, gripping preclinical and clinical studies demonstrate the context regarding the cannabinoid compounds, which is supported by various evidence (neuroprotection, suppression of excitotoxicity, oxidative stress, glial activation, and additional benefits) provided by cannabinoid-like compounds (much research addresses the direct regulation of cannabinoids with dopamine transmission and other signalling pathways in PD). More data related to endocannabinoids efficacy, safety, and pharmacokinetic profiles need to be explored, providing better insights into their potential to ameliorate or even regress PD.
Collapse
|
12
|
Zhang R, Luan J, Hu F, Lv J, Zhang J, Li K, Guo H, Cheng J, Chen P, Zhang Y, Cai Q, Gou X. Effect of (m)RVD-hemopressin against Aβ1-42-induced apoptosis and inhibition of neurite outgrowth in SH-SY5Y cells. Neuropeptides 2020; 81:102044. [PMID: 32241604 DOI: 10.1016/j.npep.2020.102044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/31/2020] [Accepted: 03/10/2020] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is a serious neurodegenerative disease. Senile plaques (SPs) in the extracellular space and neurofibrillary tangles (NFTs) in the intracellular areas of the brain are two typical features of AD. SPs and NFTs are composed of amyloid-β (Aβ) aggregates and hyperphosphorylated Tau, respectively. (m)RVD-hemopressin (RVD), which is derived from mouse brain peptide, binds to the cannabinoid 1 receptor (CB1R) as an agonist. Our previous study indicated that RVD reversed Aβ1-42-induced memory impairment in mice. Here, we investigated the underlying molecular mechanism of RVD on Aβ1-42-induced neurotoxicity in retinoic acid-differentiated human neuroblastoma SH-SY5Y cells. Cell viability and neurite outgrowth were investigated by live cell imaging and analysis instrument. We found that RVD reversed Aβ1-42-induced Tau phosphorylation, apoptosis and suppression of neurite outgrowth and the synapse-associated protein postsynaptic density protein 95 (PSD-95) by inhibiting the activity of protein kinase A (PKA) and glycogen synthase kinase 3β (GSK-3β). Combined treatment with AM251 (a CB1R antagonist) blocked the effects of RVD. In conclusion, RVD may be a potential therapeutic agent for the treatment of cognitive dysfunctions, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Ruisan Zhang
- Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Jing Luan
- Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Fengrui Hu
- Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Jiaming Lv
- Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Jieyuan Zhang
- Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Kang Li
- Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Huifang Guo
- Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Jianghong Cheng
- Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Peng Chen
- Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Yuelin Zhang
- Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China.
| | - Qiang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Hubei province, China.
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China.
| |
Collapse
|
13
|
Leija-Salazar M, Bermúdez de León M, González-Horta A, González-Hernández B. Arachidonyl-2'-chloroethylamide (ACEA), a synthetic agonist of cannabinoid receptor, increases CB 1R gene expression and reduces dyskinesias in a rat model of Parkinson's disease. Pharmacol Biochem Behav 2020; 194:172950. [PMID: 32413434 DOI: 10.1016/j.pbb.2020.172950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/25/2020] [Accepted: 05/11/2020] [Indexed: 01/20/2023]
Abstract
l-Dopa is the most effective drug used for Parkinson's disease (PD), but after long-term treatment, the vast majority of PD patients develop abnormal involuntary movements (AIMs) termed l-Dopa-induced dyskinesia (LID). Cannabinoid receptors in the basal ganglia can modulate motor functions, but their role in the treatment of LID is controversial. Therefore, the aim of this study is to evaluate the motor behavior and mRNA expression of the cannabinoid receptor-1 (CB1R), encoded by the Cnr1 gene, in the striatum and globus pallidus of a 6-hydroxydopamine rat model of PD. The evaluated rats had 6-hydroxydopamine-induced injury, LID, and LID treated with arachidonyl-2'-chloroethylamide (ACEA), a cannabinoid receptor agonist. Contralateral turns and AIMs were recorded to assess motor behavior. Gene expression was quantified by reverse transcription coupled with quantitative polymerase chain reaction using TaqMan probes. Behavioral evaluations demonstrated that dyskinetic rats treated with ACEA had a significant reduction in AIMs compared to the dyskinetic group. The expression of CB1R mRNA was significantly decreased in the 6-hydroxydopamine-injured and dyskinetic rats, compared to intact rats. The striata of dyskinetic rats treated with ACEA exhibited highly significant increases in CB1R mRNA expression. Contrary to results in the striatum, a lower CB1R expression was observed in globus pallidus from dyskinetic ACEA-treated group. In summary, significant differences in mRNA expression of CB1R were found between the evaluated groups of rats, suggesting the occurrence of compensatory mechanisms that may result in the ACEA-mediated reduction of dyskinesias in a rat model of PD.
Collapse
Affiliation(s)
- Melissa Leija-Salazar
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Biológicas, Av. Universidad s/n, Ciudad Universitaria, 66451 San Nicolás de los Garza, Nuevo León, Mexico.
| | - Mario Bermúdez de León
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 2 de abril 501, Col. Independencia, 64720 Monterrey, Nuevo León, Mexico.
| | - Azucena González-Horta
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Biológicas, Av. Universidad s/n, Ciudad Universitaria, 66451 San Nicolás de los Garza, Nuevo León, Mexico.
| | - Brenda González-Hernández
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Biológicas, Av. Universidad s/n, Ciudad Universitaria, 66451 San Nicolás de los Garza, Nuevo León, Mexico.
| |
Collapse
|
14
|
Espadas I, Keifman E, Palomo-Garo C, Burgaz S, García C, Fernández-Ruiz J, Moratalla R. Beneficial effects of the phytocannabinoid Δ 9-THCV in L-DOPA-induced dyskinesia in Parkinson's disease. Neurobiol Dis 2020; 141:104892. [PMID: 32387338 DOI: 10.1016/j.nbd.2020.104892] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
The antioxidant and CB2 receptor agonist properties of Δ9-tetrahydrocannabivarin (Δ9-THCV) afforded neuroprotection in experimental Parkinson's disease (PD), whereas its CB1 receptor antagonist profile at doses lower than 5 mg/kg caused anti-hypokinetic effects. In the present study, we investigated the anti-dyskinetic potential of Δ9-THCV (administered i.p. at 2 mg/kg for two weeks), which had not been investigated before. This objective was investigated after inducing dyskinesia by repeated administration of L-DOPA (i.p. at 10 mg/kg) in a genetic model of dopaminergic deficiency, Pitx3ak mutant mice, which serves as a useful model for testing anti-dyskinetic agents. The daily treatment of these mice with L-DOPA for two weeks progressively increased the time spent in abnormal involuntary movements (AIMs) and elevated their horizontal and vertical activities (as measured in a computer-aided actimeter), signs that reflected the dyskinetic state of these mice. Interestingly, when combined with L-DOPA from the first injection, Δ9-THCV delayed the appearance of all these signs and decreased their intensity, with a reduction in the levels of FosB protein and the histone pAcH3 (measured by immunohistochemistry), which had previously been found to be elevated in the basal ganglia in L-DOPA-induced dyskinesia. In addition to the anti-dyskinetic effects of Δ9-THCV when administered at the onset of L-DOPA treatment, Δ9-THCV was also effective in attenuating the intensity of dyskinesia when administered for three consecutive days once these signs were already present (two weeks after the onset of L-DOPA treatment). In summary, our data support the anti-dyskinetic potential of Δ9-THCV, both to delay the occurrence and to attenuate the magnitude of dyskinetic signs. Although further studies are clearly required to determine the clinical significance of these data in humans, the results nevertheless situate Δ9-THCV in a promising position for developing a cannabinoid-based therapy for patients with PD.
Collapse
Affiliation(s)
- Isabel Espadas
- Instituto Cajal-CSIC, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | | | - Cristina Palomo-Garo
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Sonia Burgaz
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Concepción García
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Javier Fernández-Ruiz
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - Rosario Moratalla
- Instituto Cajal-CSIC, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.
| |
Collapse
|
15
|
Targeting the cannabinoid receptor CB2 in a mouse model of l-dopa induced dyskinesia. Neurobiol Dis 2019; 134:104646. [PMID: 31669673 DOI: 10.1016/j.nbd.2019.104646] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
L-dopa induced dyskinesia (LID) is a debilitating side-effect of the primary treatment used in Parkinson's disease (PD), l-dopa. Here we investigate the effect of HU-308, a cannabinoid CB2 receptor agonist, on LIDs. Utilizing a mouse model of PD and LIDs, induced by 6-OHDA and subsequent l-dopa treatment, we show that HU-308 reduced LIDs as effectively as amantadine, the current frontline treatment. Furthermore, treatment with HU-308 plus amantadine resulted in a greater anti-dyskinetic effect than maximally achieved with HU-308 alone, potentially suggesting a synergistic effect of these two treatments. Lastly, we demonstrated that treatment with HU-308 and amantadine either alone, or in combination, decreased striatal neuroinflammation, a mechanism which has been suggested to contribute to LIDs. Taken together, our results suggest pharmacological treatments with CB2 agonists merit further investigation as therapies for LIDs in PD patients. Furthermore, since CB2 receptors are thought to be primarily expressed on, and signal through, glia, our data provide weight to suggestion that neuroinflammation, or more specifically, altered glial function, plays a role in development of LIDs.
Collapse
|
16
|
Junior NCF, Dos-Santos-Pereira M, Guimarães FS, Del Bel E. Cannabidiol and Cannabinoid Compounds as Potential Strategies for Treating Parkinson's Disease and L-DOPA-Induced Dyskinesia. Neurotox Res 2019; 37:12-29. [PMID: 31637586 DOI: 10.1007/s12640-019-00109-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) and L-DOPA-induced dyskinesia (LID) are motor disorders with significant impact on the patient's quality of life. Unfortunately, pharmacological treatments that improve these disorders without causing severe side effects are not yet available. Delay in initiating L-DOPA is no longer recommended as LID development is a function of disease duration rather than cumulative L-DOPA exposure. Manipulation of the endocannabinoid system could be a promising therapy to control PD and LID symptoms. In this way, phytocannabinoids and synthetic cannabinoids, such as cannabidiol (CBD), the principal non-psychotomimetic constituent of the Cannabis sativa plant, have received considerable attention in the last decade. In this review, we present clinical and preclinical evidence suggesting CBD and other cannabinoids have therapeutic effects in PD and LID. Here, we discuss CBD pharmacology, as well as its neuroprotective effects and those of other cannabinoids. Finally, we discuss the modulation of several pro- or anti-inflammatory factors as possible mechanisms responsible for the therapeutic/neuroprotective potential of Cannabis-derived/cannabinoid synthetic compounds in motor disorders.
Collapse
Affiliation(s)
- Nilson Carlos Ferreira Junior
- Department of Pharmacology, FMRP, Campus USP, University of São Paulo, Av. Bandeirantes 13400, Ribeirão Preto, SP, 14049-900, Brazil.,USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo, Brazil
| | - Maurício Dos-Santos-Pereira
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo, Brazil.,Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Av. Café, s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, FMRP, Campus USP, University of São Paulo, Av. Bandeirantes 13400, Ribeirão Preto, SP, 14049-900, Brazil.,USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo, Brazil
| | - Elaine Del Bel
- Department of Pharmacology, FMRP, Campus USP, University of São Paulo, Av. Bandeirantes 13400, Ribeirão Preto, SP, 14049-900, Brazil. .,USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo, Brazil. .,Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Av. Café, s/n, Ribeirão Preto, SP, 14040-904, Brazil.
| |
Collapse
|
17
|
Crippa JAS, Hallak JEC, Zuardi AW, Guimarães FS, Tumas V, Dos Santos RG. Is cannabidiol the ideal drug to treat non-motor Parkinson's disease symptoms? Eur Arch Psychiatry Clin Neurosci 2019; 269:121-133. [PMID: 30706171 DOI: 10.1007/s00406-019-00982-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by motor symptoms such as bradykinesia, rest tremor, postural disturbances, and rigidity. PD is also characterized by non-motor symptoms such as sleep disturbances, cognitive deficits, and psychiatric disorders such as psychosis, depression, and anxiety. The pharmacological treatment for these symptoms is limited in efficacy and induce significant adverse reactions, highlighting the need for better treatment options. Cannabidiol (CBD) is a phytocannabinoid devoid of the euphoriant and cognitive effects of tetrahydrocannabinol, and preclinical and preliminary clinical studies suggest that this compound has therapeutic effect in non-motor symptoms of PD. In the present text, we review the clinical studies of cannabinoids in PD and the preclinical and clinical studies specifically on CBD. We found four randomized controlled trials (RCTs) involving the administration of agonists/antagonists of the cannabinoid 1 receptor, showing that these compounds were well tolerated, but only one study found positive results (reductions on levodopa-induced dyskinesia). We found seven preclinical models of PD using CBD, with six studies showing a neuroprotective effect of CBD. We found three trials involving CBD and PD: an open-label study, a case series, and an RCT. CBD was well tolerated, and all three studies reported significant therapeutic effects in non-motor symptoms (psychosis, rapid eye movement sleep behaviour disorder, daily activities, and stigma). However, sample sizes were small and CBD treatment was short (up to 6 weeks). Large-scale RCTs are needed to try to replicate these results and to assess the long-term safety of CBD.
Collapse
Affiliation(s)
- José Alexandre S Crippa
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
- National Institute of Science and Technology-Translational Medicine, Ribeirão Preto, Brazil.
- Hospital das Clínicas, Terceiro Andar, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, CEP-14049-900, Brazil.
| | - Jaime E C Hallak
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National Institute of Science and Technology-Translational Medicine, Ribeirão Preto, Brazil
| | - Antônio W Zuardi
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National Institute of Science and Technology-Translational Medicine, Ribeirão Preto, Brazil
| | - Francisco S Guimarães
- National Institute of Science and Technology-Translational Medicine, Ribeirão Preto, Brazil
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Vitor Tumas
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National Institute of Science and Technology-Translational Medicine, Ribeirão Preto, Brazil
| | - Rafael G Dos Santos
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National Institute of Science and Technology-Translational Medicine, Ribeirão Preto, Brazil
| |
Collapse
|
18
|
Gimenez-Bastida JA, Martinez Carreras L, Moya-Pérez A, Laparra Llopis JM. Pharmacological Efficacy/Toxicity of Drugs: A Comprehensive Update About the Dynamic Interplay of Microbes. J Pharm Sci 2017; 107:778-784. [PMID: 29107046 PMCID: PMC6712421 DOI: 10.1016/j.xphs.2017.10.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022]
Abstract
Oral ingestion is a common, easy to access, route for therapeutic drugs to be delivered. The conception of the gastrointestinal tract as a passive physiological compartment has evolved toward a dynamic perspective of the same. Thus, microbiota plays an important role in contributing with additional metabolic capacities to its host as well as to its phenotypic heterogeneity. These adaptations in turn influence the efficacy and toxicity of a broad range of drugs. Notwithstanding, xenobiotics and therapeutic drugs affecting the microbiome's activity also significantly impact metabolism affecting different organs and tissues, and thereby drugs' toxicity/efficacy effects. Other physiological interfaces (i.e., gut, lungs, and skin) also represent complex media with features about microbiota's composition. In addition, there have been described key regulatory effects of microbes on immunotherapy, because of its potential harnessing the host immune system, mental disorders by modulating neuroendocrine systems and cancer. These alterations are responsible of physiological variations in the response(s) between individuals and populations. However, the study of population-based differences in intestinal microbial-related drug metabolism has been largely inferential. This review outlines major reciprocal implications between drugs and microbes regulatory capacities in pharmacotherapy.
Collapse
Affiliation(s)
- Juan Antonio Gimenez-Bastida
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Lucia Martinez Carreras
- Nutrition Precision in Cancer Unit, Madrid Institute for Advanced Studies in Food (IMDEA Food), Madrid 28049, Spain
| | - Angela Moya-Pérez
- Department of Developmental and Cell Biology, University of California, Irvine, California 92617
| | - José Moisés Laparra Llopis
- Nutrition Precision in Cancer Unit, Madrid Institute for Advanced Studies in Food (IMDEA Food), Madrid 28049, Spain.
| |
Collapse
|
19
|
Cannabinoid CB1 and CB2 receptors differentially modulate L- and T-type Ca 2+ channels in rat retinal ganglion cells. Neuropharmacology 2017; 124:143-156. [PMID: 28431968 DOI: 10.1016/j.neuropharm.2017.04.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/15/2017] [Accepted: 04/17/2017] [Indexed: 01/09/2023]
Abstract
Endocannabinoid signaling system is involved in regulating multiple neuronal functions in the central nervous system by activating G-protein coupled cannabinoid CB1 and CB2 receptors (CB1Rs and CB2Rs). Growing evidence has shown that CB1Rs and CB2Rs are extensively expressed in retinal ganglion cells (RGCs). Here, modulation of L- and T-types Ca2+ channels by activating CB1Rs and CB2Rs in RGCs was investigated. Triple immunofluorescent staining showed that L-type subunit CaV1.2 was co-localized with T-type subunits (CaV3.1, CaV3.2 and CaV3.3) in rat RGCs. In acutely isolated rat RGCs, the CB1R agonist WIN55212-2 suppressed both peak and steady-state Ca2+ currents in a dose-dependent manner, with IC50 being 9.6 μM and 8.4 μM, respectively. It was further shown that activation of CB1Rs by WIN55212-2 or ACEA, another CB1R agonist, significantly suppressed both L- and T-type Ca2+ currents, and shifted inactivation curve of T-type one toward hyperpolarization direction. While the effect on L-type Ca2+ channels was mediated by intracellular cAMP/protein kinase A (PKA), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and calcium/calmodulin-dependent protein kinase II (CaMKII) signaling pathways, only CaMKII signaling pathway was involved in the effect on T-type Ca2+ channels. Furthermore, CB65 and HU308, two specific CB2R agonists, significantly suppressed T-type Ca2+ channels, which was mediated by intracellular cAMP/PKA and CaMKII signaling pathways, but had no effect on L-type channels. These results imply that endogenous cannabinoids may modulate the excitability and the output of RGCs by differentially suppressing the activity of L- and T-type Ca2+ channels through activation of CB1Rs and CB2Rs. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
|
20
|
Stampanoni Bassi M, Sancesario A, Morace R, Centonze D, Iezzi E. Cannabinoids in Parkinson's Disease. Cannabis Cannabinoid Res 2017; 2:21-29. [PMID: 28861502 PMCID: PMC5436333 DOI: 10.1089/can.2017.0002] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The endocannabinoid system plays a regulatory role in a number of physiological processes and has been found altered in different pathological conditions, including movement disorders. The interactions between cannabinoids and dopamine in the basal ganglia are remarkably complex and involve both the modulation of other neurotransmitters (γ-aminobutyric acid, glutamate, opioids, peptides) and the activation of different receptors subtypes (cannabinoid receptor type 1 and 2). In the last years, experimental studies contributed to enrich this scenario reporting interactions between cannabinoids and other receptor systems (transient receptor potential vanilloid type 1 cation channel, adenosine receptors, 5-hydroxytryptamine receptors). The improved knowledge, adding new interpretation on the biochemical interaction between cannabinoids and other signaling pathways, may contribute to develop new pharmacological strategies. A number of preclinical studies in different experimental Parkinson's disease (PD) models demonstrated that modulating the cannabinoid system may be useful to treat some motor symptoms. Despite new cannabinoid-based medicines have been proposed for motor and nonmotor symptoms of PD, so far, results from clinical studies are controversial and inconclusive. Further clinical studies involving larger samples of patients, appropriate molecular targets, and specific clinical outcome measures are needed to clarify the effectiveness of cannabinoid-based therapies.
Collapse
Affiliation(s)
- Mario Stampanoni Bassi
- Neurology and Neurorehabilitation Units, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy.,Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Andrea Sancesario
- Neurology and Neurorehabilitation Units, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| | - Roberta Morace
- Neurology and Neurorehabilitation Units, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| | - Diego Centonze
- Neurology and Neurorehabilitation Units, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy.,Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Ennio Iezzi
- Neurology and Neurorehabilitation Units, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| |
Collapse
|
21
|
Cunha AS, Matheus FC, Moretti M, Sampaio TB, Poli A, Santos DB, Colle D, Cunha MP, Blum-Silva CH, Sandjo LP, Reginatto FH, Rodrigues ALS, Farina M, Prediger RD. Agmatine attenuates reserpine-induced oral dyskinesia in mice: Role of oxidative stress, nitric oxide and glutamate NMDA receptors. Behav Brain Res 2016; 312:64-76. [DOI: 10.1016/j.bbr.2016.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 11/29/2022]
|
22
|
Celorrio M, Fernández-Suárez D, Rojo-Bustamante E, Echeverry-Alzate V, Ramírez MJ, Hillard CJ, López-Moreno JA, Maldonado R, Oyarzábal J, Franco R, Aymerich MS. Fatty acid amide hydrolase inhibition for the symptomatic relief of Parkinson's disease. Brain Behav Immun 2016; 57:94-105. [PMID: 27318096 DOI: 10.1016/j.bbi.2016.06.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/14/2016] [Accepted: 06/14/2016] [Indexed: 11/19/2022] Open
Abstract
Elements of the endocannabinoid system are strongly expressed in the basal ganglia where they suffer profound rearrangements after dopamine depletion. Modulation of the levels of the endocannabinoid 2-arachidonoyl-glycerol by inhibiting monoacylglycerol lipase alters glial phenotypes and provides neuroprotection in a mouse model of Parkinson's disease. In this study, we assessed whether inhibiting fatty acid amide hydrolase could also provide beneficial effects on the time course of this disease. The fatty acid amide hydrolase inhibitor, URB597, was administered chronically to mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and probenecid (MPTPp) over 5weeks. URB597 (1mg/kg) prevented MPTPp induced motor impairment but it did not preserve the dopamine levels in the nigrostriatal pathway or regulate glial cell activation. The symptomatic relief of URB597 was confirmed in haloperidol-induced catalepsy assays, where its anti-cataleptic effects were both blocked by antagonists of the two cannabinoid receptors (CB1 and CB2), and abolished in animals deficient in these receptors. Other fatty acid amide hydrolase inhibitors, JNJ1661010 and TCF2, also had anti-cataleptic properties. Together, these results demonstrate an effect of fatty acid amide hydrolase inhibition on the motor symptoms of Parkinson's disease in two distinct experimental models that is mediated by cannabinoid receptors.
Collapse
Affiliation(s)
- Marta Celorrio
- Program of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
| | - Diana Fernández-Suárez
- Program of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
| | - Estefanía Rojo-Bustamante
- Program of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain; Department of Biochemistry and Genetics, School of Science, University of Navarra, Pamplona 31008, Spain
| | - Víctor Echeverry-Alzate
- Neuroscience Research Center, Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - María J Ramírez
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Navarra, Pamplona 31008, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona 31008, Spain
| | - Cecilia J Hillard
- Neuroscience Research Center, Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - José A López-Moreno
- Department of Psychobiology, School of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Rafael Maldonado
- Neuropharmacology Laboratory, University Pompeu Fabra, Barcelona, Spain
| | - Julen Oyarzábal
- Small Molecule Discovery Platform, Program of Molecular Therapeutics, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
| | - Rafael Franco
- Program of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - María S Aymerich
- Program of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain; Department of Biochemistry and Genetics, School of Science, University of Navarra, Pamplona 31008, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona 31008, Spain.
| |
Collapse
|
23
|
Lu KW, Yang J, Hsieh CL, Hsu YC, Lin YW. Electroacupuncture restores spatial learning and downregulates phosphorylated N-methyl-D-aspartate receptors in a mouse model of Parkinson's disease. Acupunct Med 2016; 35:133-141. [PMID: 27531695 DOI: 10.1136/acupmed-2015-011041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2016] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Parkinson's disease (PD) is a degenerative disorder of the central nervous system. PD can be classified as idiopathic, acquired or hereditary and may be caused by various factors such as oxidative stress, loss of mitochondrial function, neuronal excitotoxicity or calcium imbalance. METHODS We hypothesised that electroacupuncture (EA) at KI3 would reduce neuronal excitotoxicity by regulating N-methyl-D-aspartate (NMDA) receptor function and may represent a novel therapeutic approach for PD. RESULTS Our results showed that deficits in spatial learning (reflected by the escape latency time in the Morris water maze task) and long-term potentiation (LTP) caused by systemic 6-hydroxydopamine (6-OHDA) administration (that damages dopaminergic neurons) could be rescued by EA on day 3. In PD mice, phosphorylated NMDA receptor subunits NR1 and NR2B were elevated (134.03±10.17% and 123.46±3.47% of baseline levels, respectively) but total NR1 and NR2B was unaffected (101.37±3.87% and 102.61±4.22% of baseline, respectively). Elevated levels of pNR1 and pNR2B, and phosphorylated forms of protein kinase A, protein kinase C, α Ca2+/calmodulin-dependent protein kinase extracellular signal-regulated kinases (pERK), and cAMP response element-binding protein were also reduced following EA. CONCLUSIONS These novel findings suggest that EA can rescue learning and LTP deficits in a rodent model of PD. The results point to a possible role for EA-based approaches in the clinical treatment of learning deficits associated with PD.
Collapse
Affiliation(s)
- Kung-Wen Lu
- College of Chinese Medicine, School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Jun Yang
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ching-Liang Hsieh
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan.,College of Chinese Medicine, Graduate Institute of Integrative Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Chan Hsu
- College of Chinese Medicine, Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Yi-Wen Lin
- College of Chinese Medicine, Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan.,Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung, Taiwan
| |
Collapse
|
24
|
Coccurello R, Bisogno T. The bright side of psychoactive substances: cannabinoid-based drugs in motor diseases. Expert Rev Clin Pharmacol 2016; 9:1351-1362. [DOI: 10.1080/17512433.2016.1209111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
García C, Palomo-Garo C, Gómez-Gálvez Y, Fernández-Ruiz J. Cannabinoid-dopamine interactions in the physiology and physiopathology of the basal ganglia. Br J Pharmacol 2015; 173:2069-79. [PMID: 26059564 DOI: 10.1111/bph.13215] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/05/2015] [Accepted: 06/02/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Endocannabinoids and their receptors play a modulatory role in the control of dopamine transmission in the basal ganglia. However, this influence is generally indirect and exerted through the modulation of GABA and glutamate inputs received by nigrostriatal dopaminergic neurons, which lack cannabinoid CB1 receptors although they may produce endocannabinoids. Additional evidence suggests that CB2 receptors may be located in nigrostriatal dopaminergic neurons, and that certain eicosanoid-related cannabinoids may directly activate TRPV1 receptors, which have been found in nigrostriatal dopaminergic neurons, thus allowing in both cases a direct regulation of dopamine transmission by specific cannabinoids. In addition, CB1 receptors form heteromers with dopaminergic receptors which provide another pathway to direct interactions between both systems, in this case at the postsynaptic level. Through these direct mechanisms or through indirect mechanisms involving GABA or glutamate neurons, cannabinoids may interact with dopaminergic transmission in the basal ganglia and this is likely to have important effects on dopamine-related functions in these structures (i.e. control of movement) and, particularly, on different pathologies affecting these processes, in particular, Parkinson's disease, but also dyskinesia, dystonia and other pathological conditions. The present review will address the current literature supporting these cannabinoid-dopamine interactions at the basal ganglia, with emphasis on aspects dealing with the physiopathological consequences of these interactions. LINKED ARTICLES This article is part of a themed section on Updating Neuropathology and Neuropharmacology of Monoaminergic Systems. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.13/issuetoc.
Collapse
Affiliation(s)
- Concepción García
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Cristina Palomo-Garo
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Yolanda Gómez-Gálvez
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
26
|
Promising cannabinoid-based therapies for Parkinson's disease: motor symptoms to neuroprotection. Mol Neurodegener 2015; 10:17. [PMID: 25888232 PMCID: PMC4404240 DOI: 10.1186/s13024-015-0012-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/23/2015] [Indexed: 11/27/2022] Open
Abstract
Parkinson’s disease (PD) is a slow insidious neurological disorder characterized by a loss of dopaminergic neurons in the midbrain. Although several recent preclinical advances have proposed to treat PD, there is hardly any clinically proved new therapeutic for its cure. Increasing evidence suggests a prominent modulatory function of the cannabinoid signaling system in the basal ganglia. Hence, use of cannabinoids as a new therapeutic target has been recommended as a promising therapy for PD. The elements of the endocannabinoid system are highly expressed in the neural circuit of basal ganglia wherein they bidirectionally interact with dopaminergic, glutamatergic, and GABAergic signaling systems. As the cannabinoid signaling system undergoes a biphasic pattern of change during progression of PD, it explains the motor inhibition typically observed in patients with PD. Cannabinoid agonists such as WIN-55,212-2 have been demonstrated experimentally as neuroprotective agents in PD, with respect to their ability to suppress excitotoxicity, glial activation, and oxidative injury that causes degeneration of dopaminergic neurons. Additional benefits provided by cannabinoid related compounds including CE-178253, oleoylethanolamide, nabilone and HU-210 have been reported to possess efficacy against bradykinesia and levodopa-induced dyskinesia in PD. Despite promising preclinical studies for PD, use of cannabinoids has not been studied extensively at the clinical level. In this review, we reassess the existing evidence suggesting involvement of the endocannabinoid system in the cause, symptomatology, and treatment of PD. We will try to identify future threads of research that will help in the understanding of the potential therapeutic benefits of the cannabinoid system for treating PD.
Collapse
|
27
|
Kluger B, Triolo P, Jones W, Jankovic J. The therapeutic potential of cannabinoids for movement disorders. Mov Disord 2015; 30:313-27. [PMID: 25649017 DOI: 10.1002/mds.26142] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/10/2014] [Accepted: 12/01/2014] [Indexed: 01/12/2023] Open
Abstract
There is growing interest in the therapeutic potential of marijuana (cannabis) and cannabinoid-based chemicals within the medical community and, particularly, for neurological conditions. This interest is driven both by changes in the legal status of cannabis in many areas and increasing research into the roles of endocannabinoids within the central nervous system and their potential as symptomatic and/or neuroprotective therapies. We review basic science as well as preclinical and clinical studies on the therapeutic potential of cannabinoids specifically as it relates to movement disorders. The pharmacology of cannabis is complex, with over 60 neuroactive chemicals identified to date. The endocannabinoid system modulates neurotransmission involved in motor function, particularly within the basal ganglia. Preclinical research in animal models of several movement disorders have shown variable evidence for symptomatic benefits, but more consistently suggest potential neuroprotective effects in several animal models of Parkinson's (PD) and Huntington's disease (HD). Clinical observations and clinical trials of cannabinoid-based therapies suggests a possible benefit of cannabinoids for tics and probably no benefit for tremor in multiple sclerosis or dyskinesias or motor symptoms in PD. Data are insufficient to draw conclusions regarding HD, dystonia, or ataxia and nonexistent for myoclonus or RLS. Despite the widespread publicity about the medical benefits of cannabinoids, further preclinical and clinical research is needed to better characterize the pharmacological, physiological, and therapeutic effects of this class of drugs in movement disorders.
Collapse
Affiliation(s)
- Benzi Kluger
- Movement Disorders Center, Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | | | | |
Collapse
|
28
|
Levodopa/benserazide microsphere (LBM) prevents L-dopa induced dyskinesia by inactivation of the DR1/PKA/P-tau pathway in 6-OHDA-lesioned Parkinson's rats. Sci Rep 2014; 4:7506. [PMID: 25511986 PMCID: PMC4267205 DOI: 10.1038/srep07506] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 11/28/2014] [Indexed: 02/04/2023] Open
Abstract
L-3, 4-dihydroxyphenylalanine (L-dopa) is the gold standard for symptomatic treatment of Parkinson's disease (PD), but long-term therapy is associated with the emergence of L-dopa-induced dyskinesia (LID). In the present study, L-dopa and benserazide were loaded by poly (lactic-co-glycolic acid) microspheres (LBM), which can release levodopa and benserazide in a sustained manner in order to continuous stimulate dopaminergic receptors. We investigated the role of striatal DR1/PKA/P-tau signal transduction in the molecular event underlying LID in the 6-OHDA-lesioned rat model of PD. We found that animals rendered dyskinetic by L-dopa treatment, administration of LBM prevented the severity of AIM score, as well as improvement in motor function. Moreover, we also showed L-dopa elicits profound alterations in the activity of three LID molecular markers, namely DR1/PKA/P-tau (ser396). These modifications are totally prevented by LBM treatment, a similar way to achieve continuous dopaminergic delivery (CDD). In conclusion, our experiments provided evidence that intermittent administration of L-dopa, but not continuous delivery, and DR1/PKA/p-tau (ser396) activation played a critical role in the molecular and behavioural induction of LID in 6-OHDA-lesioned rats. In addition, LBM treatment prevented the development of LID by inhibiting the expression of DR1/PKA/p-tau, as well as PPEB mRNA in dyskintic rats.
Collapse
|
29
|
Martinez AA, Morgese MG, Pisanu A, Macheda T, Paquette MA, Seillier A, Cassano T, Carta AR, Giuffrida A. Activation of PPAR gamma receptors reduces levodopa-induced dyskinesias in 6-OHDA-lesioned rats. Neurobiol Dis 2014; 74:295-304. [PMID: 25486547 DOI: 10.1016/j.nbd.2014.11.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 11/18/2014] [Accepted: 11/26/2014] [Indexed: 01/31/2023] Open
Abstract
Long-term administration of l-3,4-dihydroxyphenylalanine (levodopa), the mainstay treatment for Parkinson's disease (PD), is accompanied by fluctuations in its duration of action and motor complications (dyskinesia) that dramatically affect the quality of life of patients. Levodopa-induced dyskinesias (LID) can be modeled in rats with unilateral 6-OHDA lesions via chronic administration of levodopa, which causes increasingly severe axial, limb, and orofacial abnormal involuntary movements (AIMs) over time. In previous studies, we showed that the direct activation of CB1 cannabinoid receptors alleviated rat AIMs. Interestingly, elevation of the endocannabinoid anandamide by URB597 (URB), an inhibitor of endocannabinoid catabolism, produced an anti-dyskinetic response that was only partially mediated via CB1 receptors and required the concomitant blockade of transient receptor potential vanilloid type-1 (TRPV1) channels by capsazepine (CPZ) (Morgese et al., 2007). In this study, we showed that the stimulation of peroxisome proliferator-activated receptors (PPAR), a family of transcription factors activated by anandamide, contributes to the anti-dyskinetic effects of URB+CPZ, and that the direct activation of the PPARγ subtype by rosiglitazone (RGZ) alleviates levodopa-induced AIMs in 6-OHDA rats. AIM reduction was associated with an attenuation of levodopa-induced increase of dynorphin, zif-268, and of ERK phosphorylation in the denervated striatum. RGZ treatment did not decrease striatal levodopa and dopamine bioavailability, nor did it affect levodopa anti-parkinsonian activity. Collectively, these data indicate that PPARγ may represent a new pharmacological target for the treatment of LID.
Collapse
Affiliation(s)
- A A Martinez
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - M G Morgese
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; Department of Clinical and Experimental Medicine, University of Foggia, Viale Luigi Pinto 1, Foggia 71100, Italy
| | - A Pisanu
- Institute of Neuroscience, National Research Council of Italy (CNR), Cagliari, Italy
| | - T Macheda
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - M A Paquette
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - A Seillier
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - T Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Luigi Pinto 1, Foggia 71100, Italy
| | - A R Carta
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - A Giuffrida
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
30
|
Röpke J, Busanello A, Leal CQ, de Moraes Reis E, de Freitas CM, Villarinho JG, Figueira FH, Mello CF, Ferreira J, Fachinetto R. Anandamide attenuates haloperidol-induced vacuous chewing movements in rats. Prog Neuropsychopharmacol Biol Psychiatry 2014; 54:195-9. [PMID: 24747871 DOI: 10.1016/j.pnpbp.2014.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 03/26/2014] [Accepted: 04/09/2014] [Indexed: 11/26/2022]
Abstract
Antipsychotics may cause tardive dyskinesia in humans and orofacial dyskinesia in rodents. Although the dopaminergic system has been implicated in these movement disorders, which involve the basal ganglia, their underlying pathomechanisms remain unclear. CB1 cannabinoid receptors are highly expressed in the basal ganglia, and a potential role for endocannabinoids in the control of basal ganglia-related movement disorders has been proposed. Therefore, this study investigated whether CB1 receptors are involved in haloperidol-induced orofacial dyskinesia in rats. Adult male rats were treated for four weeks with haloperidol decanoate (38mg/kg, intramuscularly - i.m.). The effect of anandamide (6nmol, intracerebroventricularly - i.c.v.) and/or the CB1 receptor antagonist SR141716A (30μg, i.c.v.) on haloperidol-induced vacuous chewing movements (VCMs) was assessed 28days after the start of the haloperidol treatment. Anandamide reversed haloperidol-induced VCMs; SR141716A (30μg, i.c.v.) did not alter haloperidol-induced VCM per se but prevented the effect of anandamide on VCM in rats. These results suggest that CB1 receptors may prevent haloperidol-induced VCMs in rats, implicating CB1 receptor-mediated cannabinoid signaling in orofacial dyskinesia.
Collapse
Affiliation(s)
- Jivago Röpke
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Alcindo Busanello
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | | | - Elizete de Moraes Reis
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | | | | | | | - Carlos Fernando Mello
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Juliano Ferreira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
| | - Roselei Fachinetto
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil.
| |
Collapse
|
31
|
Finlay CJ, Duty S, Vernon AC. Brain morphometry and the neurobiology of levodopa-induced dyskinesias: current knowledge and future potential for translational pre-clinical neuroimaging studies. Front Neurol 2014; 5:95. [PMID: 24971074 PMCID: PMC4053925 DOI: 10.3389/fneur.2014.00095] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 05/29/2014] [Indexed: 11/29/2022] Open
Abstract
Dopamine replacement therapy in the form of levodopa results in a significant proportion of patients with Parkinson’s disease developing debilitating dyskinesia. This significantly complicates further treatment and negatively impacts patient quality of life. A greater understanding of the neurobiological mechanisms underlying levodopa-induced dyskinesia (LID) is therefore crucial to develop new treatments to prevent or mitigate LID. Such investigations in humans are largely confined to assessment of neurochemical and cerebrovascular blood flow changes using positron emission tomography and functional magnetic resonance imaging. However, recent evidence suggests that LID is associated with specific morphological changes in the frontal cortex and midbrain, detectable by structural MRI and voxel-based morphometry. Current human neuroimaging methods however lack sufficient resolution to reveal the biological mechanism driving these morphological changes at the cellular level. In contrast, there is a wealth of literature from well-established rodent models of LID documenting detailed post-mortem cellular and molecular measurements. The combination therefore of advanced neuroimaging methods and rodent LID models offers an exciting opportunity to bridge these currently disparate areas of research. To highlight this opportunity, in this mini-review, we provide an overview of the current clinical evidence for morphological changes in the brain associated with LID and identify potential cellular mechanisms as suggested from human and animal studies. We then suggest a framework for combining small animal MRI imaging with rodent models of LID, which may provide important mechanistic insights into the neurobiology of LID.
Collapse
Affiliation(s)
- Clare J Finlay
- Wolfson Centre for Age-related Diseases, King's College London , London , UK
| | - Susan Duty
- Wolfson Centre for Age-related Diseases, King's College London , London , UK
| | - Anthony C Vernon
- Department of Neuroscience, James Black Centre, Institute of Psychiatry, King's College London , London , UK
| |
Collapse
|
32
|
Niccolini F, Loane C, Politis M. Dyskinesias in Parkinson's disease: views from positron emission tomography studies. Eur J Neurol 2014; 21:694-9, e39-43. [PMID: 24471508 DOI: 10.1111/ene.12362] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/17/2013] [Indexed: 11/27/2022]
Abstract
Levodopa-induced dyskinesias (LIDs) and graft-induced dyskinesias (GIDs) are serious and common complications of Parkinson's disease (PD) management following chronic treatment with levodopa or intrastriatal transplantation with dopamine-rich foetal ventral mesencephalic tissue, respectively. Positron emission tomography (PET) molecular imaging provides a powerful in vivo tool that has been employed over the past 20 years for the elucidation of mechanisms underlying the development of LIDs and GIDs in PD patients. PET used together with radioligands tagging molecular targets has allowed the functional investigation of several systems in the brain including the dopaminergic, serotonergic, glutamatergic, opioid, endocannabinoid, noradrenergic and cholinergic systems. In this article the role of PET imaging in unveiling pathophysiological mechanisms underlying the development of LIDs and GIDs in PD patients is reviewed.
Collapse
Affiliation(s)
- F Niccolini
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK; Neurodegeneration Imaging Group, Department of Clinical Neuroscience, King's College London, London, UK
| | | | | |
Collapse
|
33
|
Azkona G, Marcilla I, López de Maturana R, Sousa A, Pérez-Navarro E, Luquin MR, Sanchez-Pernaute R. Sustained Increase of PKA Activity in the Postcommissural Putamen of Dyskinetic Monkeys. Mol Neurobiol 2014; 50:1131-41. [DOI: 10.1007/s12035-014-8688-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/23/2014] [Indexed: 01/14/2023]
|
34
|
Wang Y, Zhang QJ, Wang HS, Wang T, Liu J. Genome-wide microarray analysis identifies a potential role for striatal retrograde endocannabinoid signaling in the pathogenesis of experimentall-DOPA-induced dyskinesia. Synapse 2014; 68:332-43. [DOI: 10.1002/syn.21740] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Yong Wang
- Department of Physiology and Pathophysiology, School of Medicine; Xi'an Jiaotong University; Xi'an 710061 China
| | - Qiao Jun Zhang
- Department of Rehabilitation Medicine, The Second Hospital; Xi'an Jiaotong University; Xi'an 710004 China
| | - Hui Sheng Wang
- Department of Physiology and Pathophysiology, School of Medicine; Xi'an Jiaotong University; Xi'an 710061 China
| | - Tao Wang
- Department of Physiology and Pathophysiology, School of Medicine; Xi'an Jiaotong University; Xi'an 710061 China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Medicine; Xi'an Jiaotong University; Xi'an 710061 China
| |
Collapse
|
35
|
Oleoylethanolamide reduces L-DOPA-induced dyskinesia via TRPV1 receptor in a mouse model of Parkinson´s disease. Neurobiol Dis 2014; 62:416-25. [DOI: 10.1016/j.nbd.2013.10.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/02/2013] [Accepted: 10/06/2013] [Indexed: 01/10/2023] Open
|
36
|
Dissanayake DW, Mason R, Marsden CA. Sensory gating, Cannabinoids and Schizophrenia. Neuropharmacology 2013; 67:66-77. [DOI: 10.1016/j.neuropharm.2012.10.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/10/2012] [Accepted: 10/20/2012] [Indexed: 12/12/2022]
|
37
|
Huot P, Johnston TH, Koprich JB, Fox SH, Brotchie JM. The Pharmacology of l-DOPA-Induced Dyskinesia in Parkinson’s Disease. Pharmacol Rev 2013; 65:171-222. [DOI: 10.1124/pr.111.005678] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
38
|
New insights on endocannabinoid transmission in psychomotor disorders. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:51-8. [PMID: 22521335 PMCID: PMC3389227 DOI: 10.1016/j.pnpbp.2012.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/26/2012] [Accepted: 04/01/2012] [Indexed: 11/21/2022]
Abstract
The endocannabinoids are lipid signaling molecules that bind to cannabinoid CB(1) and CB(2) receptors and other metabotropic and ionotropic receptors. Anandamide and 2-arachidonoyl glycerol, the two best-characterized examples, are released on demand in a stimulus-dependent manner by cleavage of membrane phospholipid precursors. Together with their receptors and metabolic enzymes, the endocannabinoids play a key role in modulating neurotransmission and synaptic plasticity in the basal ganglia and other brain areas involved in the control of motor functions and motivational aspects of behavior. This mini-review provides an update on the contribution of the endocannabinoid system to the regulation of psychomotor behaviors and its possible involvement in the pathophysiology of Parkinson's disease and schizophrenia.
Collapse
|
39
|
Morera-Herreras T, Miguelez C, Aristieta A, Ruiz-Ortega JÁ, Ugedo L. Endocannabinoid modulation of dopaminergic motor circuits. Front Pharmacol 2012; 3:110. [PMID: 22701427 PMCID: PMC3372848 DOI: 10.3389/fphar.2012.00110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 05/22/2012] [Indexed: 01/17/2023] Open
Abstract
There is substantial evidence supporting a role for the endocannabinoid system as a modulator of the dopaminergic activity in the basal ganglia, a forebrain system that integrates cortical information to coordinate motor activity regulating signals. In fact, the administration of plant-derived, synthetic or endogenous cannabinoids produces several effects on motor function. These effects are mediated primarily through the CB(1) receptors that are densely located in the dopamine-enriched basal ganglia networks, suggesting that the motor effects of endocannabinoids are due, at least in part, to modulation of dopaminergic transmission. On the other hand, there are profound changes in CB(1) receptor cannabinoid signaling in the basal ganglia circuits after dopamine depletion (as happens in Parkinson's disease) and following l-DOPA replacement therapy. Therefore, it has been suggested that endocannabinoid system modulation may constitute an important component in new therapeutic approaches to the treatment of motor disturbances. In this article we will review studies supporting the endocannabinoid modulation of dopaminergic motor circuits.
Collapse
Affiliation(s)
- Teresa Morera-Herreras
- Faculty of Medicine and Dentistry, Department of Pharmacology, University of the Basque Country Leioa, Spain
| | | | | | | | | |
Collapse
|