1
|
Takano T, Takano C, Funakoshi H, Bando Y. Impact of Neuron-Derived HGF on c-Met and KAI-1 in CNS Glial Cells: Implications for Multiple Sclerosis Pathology. Int J Mol Sci 2024; 25:11261. [PMID: 39457044 PMCID: PMC11509024 DOI: 10.3390/ijms252011261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Demyelination and axonal degeneration are fundamental pathological characteristics of multiple sclerosis (MS), an inflammatory disease of the central nervous system (CNS). Although the molecular mechanisms driving these processes are not fully understood, hepatocyte growth factor (HGF) has emerged as a potential regulator of neuroinflammation and tissue protection in MS. Elevated HGF levels have been reported in MS patients receiving immunomodulatory therapy, indicating its relevance in disease modulation. This study investigated HGF's neuroprotective effects using transgenic mice that overexpressed HGF. The experimental autoimmune encephalomyelitis (EAE) model, which mimics MS pathology, was employed to assess demyelination and axonal damage in the CNS. HGF transgenic mice showed delayed EAE progression, with reduced CNS inflammation, decreased demyelination, and limited axonal degeneration. Scanning electron microscopy confirmed the preservation of myelin and axonal integrity in these mice. In addition, we explored HGF's effects using a cuprizone-induced demyelination model, which operates independently of the immune system. HGF transgenic mice exhibited significant protection against demyelination in this model as well. We also investigated the expression of key HGF receptors, particularly c-Met and KAI-1. While c-Met, which is associated with increased inflammation, was upregulated in EAE, its expression was significantly reduced in HGF transgenic mice, correlating with decreased neuroinflammation. Conversely, KAI-1, which has been linked to axonal protection and stability, showed enhanced expression in HGF transgenic mice, suggesting a protective mechanism against axonal degeneration. These findings underscore HGF's potential in preserving CNS structure and function, suggesting it may be a promising therapeutic target for MS, offering new hope for mitigating disease progression and enhancing neuroprotection.
Collapse
Affiliation(s)
- Takuma Takano
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Neurosurgery, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Chie Takano
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Neurosurgery, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Hiroshi Funakoshi
- Department of Advanced Medical Science, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Yoshio Bando
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-08543, Japan
| |
Collapse
|
2
|
Fusco AF, Pucci LA, Switonski PM, Biswas DD, McCall AL, Kahn AF, Dhindsa JS, Strickland LM, La Spada AR, ElMallah MK. Respiratory dysfunction in a mouse model of spinocerebellar ataxia type 7. Dis Model Mech 2021; 14:dmm048893. [PMID: 34160002 PMCID: PMC8319550 DOI: 10.1242/dmm.048893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is an autosomal-dominant neurodegenerative disorder caused by a CAG repeat expansion in the coding region of the ataxin-7 gene. Infantile-onset SCA7 patients display extremely large repeat expansions (>200 CAGs) and exhibit progressive ataxia, dysarthria, dysphagia and retinal degeneration. Severe hypotonia, aspiration pneumonia and respiratory failure often contribute to death in affected infants. To better understand the features of respiratory and upper airway dysfunction in SCA7, we examined breathing and putative phrenic and hypoglossal neuropathology in a knock-in mouse model of early-onset SCA7 carrying an expanded allele with 266 CAG repeats. Whole-body plethysmography was used to measure awake spontaneously breathing SCA7-266Q knock-in mice at baseline in normoxia and during a hypercapnic/hypoxic respiratory challenge at 4 and 8 weeks, before and after the onset of disease. Postmortem studies included quantification of putative phrenic and hypoglossal motor neurons and microglia, and analysis of ataxin-7 aggregation at end stage. SCA7-266Q mice had profound breathing deficits during a respiratory challenge, exhibiting reduced respiratory output and a greater percentage of time in apnea. Histologically, putative phrenic and hypoglossal motor neurons of SCA7 mice exhibited a reduction in number accompanied by increased microglial activation, indicating neurodegeneration and neuroinflammation. Furthermore, intranuclear ataxin-7 accumulation was observed in cells neighboring putative phrenic and hypoglossal motor neurons in SCA7 mice. These findings reveal the importance of phrenic and hypoglossal motor neuron pathology associated with respiratory failure and upper airway dysfunction, which are observed in infantile-onset SCA7 patients and likely contribute to their early death.
Collapse
Affiliation(s)
- Anna F. Fusco
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Logan A. Pucci
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Pawel M. Switonski
- Department of Pathology & Laboratory Medicine, and Department of Neurology, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
- Department of Neurology, School of Medicine, Duke University, Durham, NC 27708, USA
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland
| | - Debolina D. Biswas
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Angela L. McCall
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Amanda F. Kahn
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Justin S. Dhindsa
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Laura M. Strickland
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Albert R. La Spada
- Department of Pathology & Laboratory Medicine, and Department of Neurology, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
- Department of Neurology, School of Medicine, Duke University, Durham, NC 27708, USA
- UCI Institute for Neurotherapeutics, Department of Neurology, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Mai K. ElMallah
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27708, USA
| |
Collapse
|
3
|
Neves-Carvalho A, Duarte-Silva S, Teixeira-Castro A, Maciel P. Polyglutamine spinocerebellar ataxias: emerging therapeutic targets. Expert Opin Ther Targets 2020; 24:1099-1119. [PMID: 32962458 DOI: 10.1080/14728222.2020.1827394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Six of the most frequent dominantly inherited spinocerebellar ataxias (SCAs) worldwide - SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17 - are caused by an expansion of a polyglutamine (polyQ) tract in the corresponding proteins. While the identification of the causative mutation has advanced knowledge on the pathogenesis of polyQ SCAs, effective therapeutics able to mitigate the severe clinical manifestation of these highly incapacitating disorders are not yet available. AREAS COVERED This review provides a comprehensive and critical perspective on well-established and emerging therapeutic targets for polyQ SCAs; it aims to inspire prospective drug discovery efforts. EXPERT OPINION The landscape of polyQ SCAs therapeutic targets and strategies includes (1) the mutant genes and proteins themselves, (2) enhancement of endogenous protein quality control responses, (3) abnormal protein-protein interactions of the mutant proteins, (4) disturbed neuronal function, (5) mitochondrial function, energy availability and oxidative stress, and (6) glial dysfunction, growth factor or hormone imbalances. Challenges include gaining a clearer definition of therapeutic targets for the drugs in clinical development, the discovery of novel drug-like molecules for challenging key targets, and the attainment of a stronger translation of preclinical findings to the clinic.
Collapse
Affiliation(s)
- Andreia Neves-Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| |
Collapse
|
4
|
Pérez-Luz S, Loria F, Katsu-Jiménez Y, Oberdoerfer D, Yang OL, Lim F, Muñoz-Blanco JL, Díaz-Nido J. Altered Secretome and ROS Production in Olfactory Mucosa Stem Cells Derived from Friedreich's Ataxia Patients. Int J Mol Sci 2020; 21:ijms21186662. [PMID: 32933002 PMCID: PMC7555998 DOI: 10.3390/ijms21186662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Friedreich’s ataxia is the most common hereditary ataxia for which there is no cure or approved treatment at present. However, therapeutic developments based on the understanding of pathological mechanisms underlying the disease have advanced considerably, with the implementation of cellular models that mimic the disease playing a crucial role. Human olfactory ecto-mesenchymal stem cells represent a novel model that could prove useful due to their accessibility and neurogenic capacity. Here, we isolated and cultured these stem cells from Friedreich´s ataxia patients and healthy donors, characterizing their phenotype and describing disease-specific features such as reduced cell viability, impaired aconitase activity, increased ROS production and the release of cytokines involved in neuroinflammation. Importantly, we observed a positive effect on patient-derived cells, when frataxin levels were restored, confirming the utility of this in vitro model to study the disease. This model will improve our understanding of Friedreich´s ataxia pathogenesis and will help in developing rationally designed therapeutic strategies.
Collapse
Affiliation(s)
- Sara Pérez-Luz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
- Molecular Genetics Unit, Institute of Rare Diseases Research, Institute of Health Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km 2,200, 28220 Madrid, Spain
| | - Frida Loria
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Calle Budapest 1, 28922 Madrid, Spain
- Correspondence: ; Tel.: +34-911-964-594
| | - Yurika Katsu-Jiménez
- Karolinska Institutet, Department of Microbiology Tumor and Cell Biology, Solnaväjen 1, 171 77 Stockholm, Sweden;
| | - Daniel Oberdoerfer
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
| | - Oscar-Li Yang
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
| | - Filip Lim
- Department of Molecular Biology, Autonomous University of Madrid, Francisco Tomás y Valiente 7, 28049 Madrid, Spain;
| | - José Luis Muñoz-Blanco
- Department of Neurology, Hospital Universitario Gregorio Marañón, Dr. Esquerdo 46, 28007 Madrid, Spain;
| | - Javier Díaz-Nido
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
| |
Collapse
|
5
|
Lalonde R, Strazielle C. Motor Performances of Spontaneous and Genetically Modified Mutants with Cerebellar Atrophy. THE CEREBELLUM 2019; 18:615-634. [PMID: 30820866 DOI: 10.1007/s12311-019-01017-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chance discovery of spontaneous mutants with atrophy of the cerebellar cortex has unearthed genes involved in optimizing motor coordination. Rotorod, stationary beam, and suspended wire tests are useful in delineating behavioral phenotypes of spontaneous mutants with cerebellar atrophy such as Grid2Lc, Grid2ho, Rorasg, Agtpbp1pcd, Relnrl, and Dab1scm. Likewise, transgenic or null mutants serving as experimental models of spinocerebellar ataxia (SCA) are phenotyped with the same tests. Among experimental models of autosomal dominant SCA, rotorod deficits were reported in SCA1 to 3, SCA5 to 8, SCA14, SCA17, and SCA27 and stationary beam deficits in SCA1 to 3, SCA5, SCA6, SCA13, SCA17, and SCA27. Beam tests are sensitive to experimental therapies of various kinds including molecules affecting glutamate signaling, mesenchymal stem cells, anti-oligomer antibodies, lentiviral vectors carrying genes, interfering RNAs, or neurotrophic factors, and interbreeding with other mutants.
Collapse
Affiliation(s)
- Robert Lalonde
- Department of Psychology, University of Rouen, 76821, Mont-Saint-Aignan Cedex, France.
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, and Pathogens EA7300, and CHRU of Nancy, University of Lorraine, 54500, Vandoeuvre-les-Nancy, France
| |
Collapse
|
6
|
Niewiadomska-Cimicka A, Trottier Y. Molecular Targets and Therapeutic Strategies in Spinocerebellar Ataxia Type 7. Neurotherapeutics 2019; 16:1074-1096. [PMID: 31432449 PMCID: PMC6985300 DOI: 10.1007/s13311-019-00778-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is a rare autosomal dominant neurodegenerative disorder characterized by progressive neuronal loss in the cerebellum, brainstem, and retina, leading to cerebellar ataxia and blindness as major symptoms. SCA7 is due to the expansion of a CAG triplet repeat that is translated into a polyglutamine tract in ATXN7. Larger SCA7 expansions are associated with earlier onset of symptoms and more severe and rapid disease progression. Here, we summarize the pathological and genetic aspects of SCA7, compile the current knowledge about ATXN7 functions, and then focus on recent advances in understanding the pathogenesis and in developing biomarkers and therapeutic strategies. ATXN7 is a bona fide subunit of the multiprotein SAGA complex, a transcriptional coactivator harboring chromatin remodeling activities, and plays a role in the differentiation of photoreceptors and Purkinje neurons, two highly vulnerable neuronal cell types in SCA7. Polyglutamine expansion in ATXN7 causes its misfolding and intranuclear accumulation, leading to changes in interactions with native partners and/or partners sequestration in insoluble nuclear inclusions. Studies of cellular and animal models of SCA7 have been crucial to unveil pathomechanistic aspects of the disease, including gene deregulation, mitochondrial and metabolic dysfunctions, cell and non-cell autonomous protein toxicity, loss of neuronal identity, and cell death mechanisms. However, a better understanding of the principal molecular mechanisms by which mutant ATXN7 elicits neurotoxicity, and how interconnected pathogenic cascades lead to neurodegeneration is needed for the development of effective therapies. At present, therapeutic strategies using nucleic acid-based molecules to silence mutant ATXN7 gene expression are under development for SCA7.
Collapse
Affiliation(s)
- Anna Niewiadomska-Cimicka
- Institute of Genetic and Molecular and Cellular Biology (IGBMC), Centre National de la Recherche Scientifique (UMR7104), Institut National de la Santé et de la Recherche Médicale (U1258), University of Strasbourg, Illkirch, France
| | - Yvon Trottier
- Institute of Genetic and Molecular and Cellular Biology (IGBMC), Centre National de la Recherche Scientifique (UMR7104), Institut National de la Santé et de la Recherche Médicale (U1258), University of Strasbourg, Illkirch, France.
| |
Collapse
|
7
|
Dela Peña IJI, Botanas CJ, de la Peña JB, Custodio RJ, Dela Peña I, Ryoo ZY, Kim BN, Ryu JH, Kim HJ, Cheong JH. The Atxn7-overexpressing mice showed hyperactivity and impulsivity which were ameliorated by atomoxetine treatment: A possible animal model of the hyperactive-impulsive phenotype of ADHD. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:311-319. [PMID: 30125623 DOI: 10.1016/j.pnpbp.2018.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/25/2018] [Accepted: 08/14/2018] [Indexed: 01/29/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a heterogeneous neurodevelopmental disorder characterized by varying levels of hyperactivity, inattention, and impulsivity. Patients with ADHD are often classified as (1) predominantly hyperactive-impulsive, (2) predominantly inattentive, and (3) combined type. There is a growing interest in developing specific animal models that would recapitulate specific clinical forms of ADHD, with the goal of developing specific therapeutic strategies. In our previous study, we have identified Ataxin-7 (Atxn7) as a hyperactivity-associated gene. Here, we generated Atxn7 overexpressing (Atxn7 OE) mice to investigate whether the increased Atxn7 expression in the brain correlates with ADHD-like behaviors. Quantitative real-time polymerase chain reaction and immunofluorescence confirmed overexpression of the Atxn7 gene and protein in the prefrontal cortex (PFC) and striatum (STR) of the Atxn7 OE mice. The Atxn7 OE mice displayed hyperactivity and impulsivity, but not inattention. Interestingly, treatment with the ADHD drug, atomoxetine (3 mg/kg, intraperitoneal), attenuated ADHD-like behaviors and reduced Atxn7 gene expression in the PFC and STR of these mice. These findings suggest that Atxn7 plays a role in the pathophysiology of ADHD, and that the Atxn7 OE mice can be used as an animal model of the hyperactive-impulsive phenotype of this disorder. Although confirmatory studies are warranted, the present study provides valuable information regarding the potential genetic underpinnings of ADHD.
Collapse
Affiliation(s)
- Irene Joy I Dela Peña
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 139-742, Republic of Korea
| | - Chrislean Jun Botanas
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 139-742, Republic of Korea
| | - June Bryan de la Peña
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 139-742, Republic of Korea
| | - Raly James Custodio
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 139-742, Republic of Korea
| | - Ike Dela Peña
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University, CA 92350, USA
| | - Zae Young Ryoo
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu 41566, Republic of Korea
| | - Bung-Nyun Kim
- Department of Research Planning, Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 139-742, Republic of Korea.
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 139-742, Republic of Korea.
| |
Collapse
|
8
|
Karam A, Trottier Y. Molecular Mechanisms and Therapeutic Strategies in Spinocerebellar Ataxia Type 7. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:197-218. [DOI: 10.1007/978-3-319-71779-1_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
dela Peña IJI, dela Peña I, de la Peña JB, Kim HJ, Sohn A, Shin CY, Han DH, Kim BN, Ryu JH, Cheong JH. Transcriptional profiling of SHR/NCrl prefrontal cortex shows hyperactivity-associated genes responsive to amphetamine challenge. GENES BRAIN AND BEHAVIOR 2017; 16:664-674. [DOI: 10.1111/gbb.12388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/05/2017] [Accepted: 04/16/2017] [Indexed: 12/15/2022]
Affiliation(s)
- I. J. I. dela Peña
- Uimyung Research Institute for Neuroscience, Department of Pharmacy; Sahmyook University; Seoul Republic of Korea
| | - I. dela Peña
- Department of Pharmaceutical and Administrative Sciences; Loma Linda University; Loma Linda CA USA
| | - J. B. de la Peña
- Uimyung Research Institute for Neuroscience, Department of Pharmacy; Sahmyook University; Seoul Republic of Korea
| | - H. J. Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy; Sahmyook University; Seoul Republic of Korea
| | - A. Sohn
- Uimyung Research Institute for Neuroscience, Department of Pharmacy; Sahmyook University; Seoul Republic of Korea
| | - C. Y. Shin
- Department of Neuroscience, School of Medicine; Konkuk University; Seoul Republic of Korea
| | - D. H. Han
- Department of Psychiatry; Chung-Ang University Medical School; Seoul Republic of Korea
| | - B.-N. Kim
- Department of Research Planning, Mental Health Research Institute; National Center for Mental Health; Seoul Republic of Korea
| | - J. H. Ryu
- Department of Life and Nanopharmaceutical Science; College of Pharmacy, Kyung Hee University; Seoul Republic of Korea
- Department of Oriental Pharmaceutical Science; College of Pharmacy, Kyung Hee University; Seoul Republic of Korea
| | - J. H. Cheong
- Uimyung Research Institute for Neuroscience, Department of Pharmacy; Sahmyook University; Seoul Republic of Korea
| |
Collapse
|
10
|
Suto N, Mieda T, Iizuka A, Nakamura K, Hirai H. Morphological and Functional Attenuation of Degeneration of Peripheral Neurons by Mesenchymal Stem Cell-Conditioned Medium in Spinocerebellar Ataxia Type 1-Knock-in Mice. CNS Neurosci Ther 2016; 22:670-6. [PMID: 27140210 DOI: 10.1111/cns.12560] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022] Open
Abstract
AIMS Spinocerebellar ataxia type 1 (SCA1) is caused by the ataxin-1 protein (ATXN1) with an abnormally expanded polyglutamine tract and is characterized by progressive neurodegeneration. We previously showed that intrathecal injection of mesenchymal stem cells (MSCs) during the nonsymptomatic stage mitigates the degeneration of the peripheral nervous system (PNS) neurons in SCA1-knock-in (SCA1-KI) mice. We tested in this study whether the therapeutic effects of MSCs in SCA1-KI mice could be reproduced with MSC-releasing factor(s). METHODS To test the effects of MSC-releasing factor(s), we used MSC-conditioned medium (MSC-CM). MSC-CM was intrathecally and/or intravenously injected into young SCA1-KI mice, and the therapeutic effects were assessed in the PNS at later ages using immunostaining, electrophysiology, and behavioral tests. RESULTS MSC-CM attenuated the degeneration of axons and myelin of spinal motor neurons. Consequently, the injected SCA1-KI mice exhibited smaller reductions in nerve conduction velocity in spinal motor neurons and reduced motor incoordination than the untreated mice. CONCLUSIONS These results suggest that factors released from MSC mitigate the morphological and functional abnormalities in the PNS that are observed in SCA1-KI mice in a paracrine manner.
Collapse
Affiliation(s)
- Nana Suto
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tokue Mieda
- Department of Orthopedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Akira Iizuka
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kazuhiro Nakamura
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
11
|
Chrobak AA, Soltys Z. Bergmann Glia, Long-Term Depression, and Autism Spectrum Disorder. Mol Neurobiol 2016; 54:1156-1166. [PMID: 26809583 PMCID: PMC5310553 DOI: 10.1007/s12035-016-9719-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/12/2016] [Indexed: 12/22/2022]
Abstract
Bergmann glia (BG), a specific type of radial astrocytes in the cerebellum, play a variety of vital functions in the development of this structure. However, the possible role of BG in the development of abnormalities observed in individuals with autism spectrum disorder (ASD) seems to be underestimated. One of the most consistent findings observed in ASD patients is loss of Purkinje cells (PCs). Such a defect may be caused by dysregulation of glutamate homeostasis, which is maintained mainly by BG. Moreover, these glial cells are involved in long-term depression (LTD), a form of plasticity which can additionally subserve neuroprotective functions. The aim of presented review is to summarize the current knowledge about interactions which occur between PC and BG, with special emphasis on those which are relevant to the survival and proper functioning of cerebellar neurons.
Collapse
Affiliation(s)
- Adrian Andrzej Chrobak
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, Gronostajowa St. 9, Cracow, 30-387, Poland. .,Faculty of Medicine, Jagiellonian University Medical College, Kopernika St. 21A, Cracow, 31-501, Poland.
| | - Zbigniew Soltys
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, Gronostajowa St. 9, Cracow, 30-387, Poland
| |
Collapse
|
12
|
Ding Y, Adachi H, Katsuno M, Huang Z, Jiang YM, Kondo N, Iida M, Tohnai G, Nakatsuji H, Funakoshi H, Nakamura T, Sobue G. Overexpression of hepatocyte growth factor in SBMA model mice has an additive effect on combination therapy with castration. Biochem Biophys Res Commun 2015; 468:677-83. [PMID: 26551462 DOI: 10.1016/j.bbrc.2015.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/03/2015] [Indexed: 11/20/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA) is an inherited motor neuron disease caused by the expansion of a polyglutamine (polyQ)-encoding tract within the androgen receptor (AR) gene. The pathologic features of SBMA are motor neuron loss in the spinal cord and brainstem and diffuse nuclear accumulation and nuclear inclusions of mutant AR in residual motor neurons and certain visceral organs. Hepatocyte growth factor (HGF) is a polypeptide growth factor which has neuroprotective properties. To investigate whether HGF overexpression can affect disease progression in a mouse model of SBMA, we crossed SBMA transgenic model mice expressing an AR gene with an expanded CAG repeat with mice overexpressing HGF. Here, we report that high expression of HGF induces Akt phosphorylation and modestly ameliorated motor symptoms in an SBMA transgenic mouse model treated with or without castration. These findings suggest that HGF overexpression can provide a potential therapeutic avenue as a combination therapy with disease-modifying therapies in SBMA.
Collapse
Affiliation(s)
- Ying Ding
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroaki Adachi
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Department of Neurology, University of Occupational and Environmental Health School of Medicine, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan.
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Zhe Huang
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Department of Neurology, University of Occupational and Environmental Health School of Medicine, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan
| | - Yue-Mei Jiang
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Naohide Kondo
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Madoka Iida
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Genki Tohnai
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hideaki Nakatsuji
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroshi Funakoshi
- Center for Advanced Research and Education, Asahikawa Medical University, 1-1-1- Higashinijo Midorigaoka, Asahikawa 078-8510, Japan
| | | | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
13
|
Figiel M, Krzyzosiak WJ, Switonski PM, Szlachcic WJ. Mouse Models of SCA3 and Other Polyglutamine Repeat Ataxias. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
14
|
HGF-Met Pathway in Regeneration and Drug Discovery. Biomedicines 2014; 2:275-300. [PMID: 28548072 PMCID: PMC5344275 DOI: 10.3390/biomedicines2040275] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/15/2014] [Accepted: 10/13/2014] [Indexed: 12/26/2022] Open
Abstract
Hepatocyte growth factor (HGF) is composed of an α-chain and a β-chain, and these chains contain four kringle domains and a serine protease-like structure, respectively. Activation of the HGF–Met pathway evokes dynamic biological responses that support morphogenesis (e.g., epithelial tubulogenesis), regeneration, and the survival of cells and tissues. Characterizations of conditional Met knockout mice have indicated that the HGF–Met pathway plays important roles in regeneration, protection, and homeostasis in various cells and tissues, which includes hepatocytes, renal tubular cells, and neurons. Preclinical studies designed to address the therapeutic significance of HGF have been performed on injury/disease models, including acute tissue injury, chronic fibrosis, and cardiovascular and neurodegenerative diseases. The promotion of cell growth, survival, migration, and morphogenesis that is associated with extracellular matrix proteolysis are the biological activities that underlie the therapeutic actions of HGF. Recombinant HGF protein and the expression vectors for HGF are biological drug candidates for the treatment of patients with diseases and injuries that are associated with impaired tissue function. The intravenous/systemic administration of recombinant HGF protein has been well tolerated in phase I/II clinical trials. The phase-I and phase-I/II clinical trials of the intrathecal administration of HGF protein for the treatment of patients with amyotrophic lateral sclerosis and spinal cord injury, respectively, are ongoing.
Collapse
|
15
|
Nonallele specific silencing of ataxin-7 improves disease phenotypes in a mouse model of SCA7. Mol Ther 2014; 22:1635-42. [PMID: 24930601 DOI: 10.1038/mt.2014.108] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 05/07/2014] [Indexed: 11/08/2022] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is a late-onset neurodegenerative disease characterized by ataxia and vision loss with no effective treatments in the clinic. The most striking feature is the degeneration of Purkinje neurons of the cerebellum caused by the presence of polyglutamine-expanded ataxin-7. Ataxin-7 is part of a transcriptional complex, and, in the setting of mutant ataxin-7, there is misregulation of target genes. Here, we designed RNAi sequences to reduce the expression of both wildtype and mutant ataxin-7 to test if reducing ataxin-7 in Purkinje cells is both tolerated and beneficial in an animal model of SCA7. We observed sustained reduction of both wildtype and mutant ataxin-7 as well as a significant improvement of ataxia phenotypes. Furthermore, we observed a reduction in cerebellar molecular layer thinning and nuclear inclusions, a hallmark of SCA7. In addition, we observed recovery of cerebellar transcripts whose expression is disrupted in the presence of mutant ataxin-7. These data demonstrate that reduction of both wildtype and mutant ataxin-7 by RNAi is well tolerated, and contrary to what may be expected from reducing a component of the Spt-Taf9-Gcn5 acetyltransferase complex, is efficacious in the SCA7 mouse.
Collapse
|
16
|
Figiel M, Szlachcic WJ, Switonski PM, Gabka A, Krzyzosiak WJ. Mouse models of polyglutamine diseases: review and data table. Part I. Mol Neurobiol 2012; 46:393-429. [PMID: 22956270 PMCID: PMC3461215 DOI: 10.1007/s12035-012-8315-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 07/29/2012] [Indexed: 12/23/2022]
Abstract
Polyglutamine (polyQ) disorders share many similarities, such as a common mutation type in unrelated human causative genes, neurological character, and certain aspects of pathogenesis, including morphological and physiological neuronal alterations. The similarities in pathogenesis have been confirmed by findings that some experimental in vivo therapy approaches are effective in multiple models of polyQ disorders. Additionally, mouse models of polyQ diseases are often highly similar between diseases with respect to behavior and the features of the disease. The common features shared by polyQ mouse models may facilitate the investigation of polyQ disorders and may help researchers explore the mechanisms of these diseases in a broader context. To provide this context and to promote the understanding of polyQ disorders, we have collected and analyzed research data about the characterization and treatment of mouse models of polyQ diseases and organized them into two complementary Excel data tables. The data table that is presented in this review (Part I) covers the behavioral, molecular, cellular, and anatomic characteristics of polyQ mice and contains the most current knowledge about polyQ mouse models. The structure of this data table is designed in such a way that it can be filtered to allow for the immediate retrieval of the data corresponding to a single mouse model or to compare the shared and unique aspects of many polyQ models. The second data table, which is presented in another publication (Part II), covers therapeutic research in mouse models by summarizing all of the therapeutic strategies employed in the treatment of polyQ disorders, phenotypes that are used to examine the effects of the therapy, and therapeutic outcomes.
Collapse
Affiliation(s)
- Maciej Figiel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | | | | | | | | |
Collapse
|
17
|
Switonski PM, Szlachcic WJ, Gabka A, Krzyzosiak WJ, Figiel M. Mouse models of polyglutamine diseases in therapeutic approaches: review and data table. Part II. Mol Neurobiol 2012; 46:430-66. [PMID: 22944909 PMCID: PMC3461214 DOI: 10.1007/s12035-012-8316-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 07/29/2012] [Indexed: 12/13/2022]
Abstract
Mouse models of human diseases are created both to understand the pathogenesis of the disorders and to find successful therapies for them. This work is the second part in a series of reviews of mouse models of polyglutamine (polyQ) hereditary disorders and focuses on in vivo experimental therapeutic approaches. Like part I of the polyQ mouse model review, this work is supplemented with a table that contains data from experimental studies of therapeutic approaches in polyQ mouse models. The aim of this review was to characterize the benefits and outcomes of various therapeutic strategies in mouse models. We examine whether the therapeutic strategies are specific to a single disease or are applicable to more than one polyQ disorder in mouse models. In addition, we discuss the suitability of mouse models in therapeutic approaches. Although the majority of therapeutic studies were performed in mouse models of Huntington disease, similar strategies were also used in other disease models.
Collapse
Affiliation(s)
- Pawel M Switonski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | | | | | | | | |
Collapse
|