1
|
Sziraki A, Zhong Y, Neltner AM, Niedowicz D, Rogers CB, Wilcock DM, Nehra G, Neltner JH, Smith RR, Hartz AM, Cao J, Nelson PT. A high-throughput single-cell RNA expression profiling method identifies human pericyte markers. Neuropathol Appl Neurobiol 2023; 49:e12942. [PMID: 37812061 PMCID: PMC10842535 DOI: 10.1111/nan.12942] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
AIMS We sought to identify and optimise a universally available histological marker for pericytes in the human brain. Such a marker could be a useful tool for researchers. Further, identifying a gene expressed relatively specifically in human pericytes could provide new insights into the biological functions of this fascinating cell type. METHODS We analysed single-cell RNA expression profiles derived from different human and mouse brain regions using a high-throughput and low-cost single-cell transcriptome sequencing method called EasySci. Through this analysis, we were able to identify specific gene markers for pericytes, some of which had not been previously characterised. We then used commercially (and therefore universally) available antibodies to immunolabel the pericyte-specific gene products in formalin-fixed paraffin-embedded (FFPE) human brains and also performed immunoblots to determine whether appropriately sized proteins were recognised. RESULTS In the EasySci data sets, highly pericyte-enriched expression was notable for SLC6A12 and SLC19A1. Antibodies against these proteins recognised bands of approximately the correct size in immunoblots of human brain extracts. Following optimisation of the immunohistochemical technique, staining for both antibodies was strongly positive in small blood vessels and was far more effective than a PDGFRB antibody at staining pericyte-like cells in FFPE human brain sections. In an exploratory sample of other human organs (kidney, lung, liver, muscle), immunohistochemistry did not show the same pericyte-like pattern of staining. CONCLUSIONS The SLC6A12 antibody was well suited for labelling pericytes in human FFPE brain sections, based on the combined results of single-cell RNA-seq analyses, immunoblots and immunohistochemical studies.
Collapse
Affiliation(s)
- Andras Sziraki
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Yu Zhong
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Allison M. Neltner
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Dana Niedowicz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Colin B. Rogers
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Donna M. Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Geetika Nehra
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Janna H. Neltner
- Department of Pathology and Laboratory Science, University of Kentucky, Lexington, Kentucky, USA
| | - Rebecca R. Smith
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Anika M. Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Junyue Cao
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Peter T. Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Pathology and Laboratory Science, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
2
|
Benarroch E. What Are the Roles of Pericytes in the Neurovascular Unit and Its Disorders? Neurology 2023; 100:970-977. [PMID: 37188542 PMCID: PMC10186232 DOI: 10.1212/wnl.0000000000207379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 05/17/2023] Open
|
3
|
Dyatlova AS, Novikova NS, Yushkov BG, Korneva EA, Chereshnev VA. The Blood-Brain Barrier in Neuroimmune Interactions and Pathological Processes. HERALD OF THE RUSSIAN ACADEMY OF SCIENCES 2022; 92:590-599. [PMID: 36340326 PMCID: PMC9628516 DOI: 10.1134/s1019331622050100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/20/2022] [Accepted: 07/01/2022] [Indexed: 06/16/2023]
Abstract
The blood-brain barrier (BBB) is a kind of filter, highly selective in relation to various types of substances. The BBB supports the immune status of the brain and is an important regulator of neuroimmune interactions. Some of the molecular and cellular features of the BBB, as well as the five main pathways of neuroimmune communication mediated by the BBB, are analyzed in this article. The functions of the BBB in neuroimmune interactions in various diseases are discussed: multiple sclerosis and Alzheimer's and Parkinson's diseases. The latest data on BBB dysfunction in COVID-19 coronavirus infection caused by the SARS-CoV-2 virus are considered.
Collapse
Affiliation(s)
- A. S. Dyatlova
- Institute of Experimental Medicine (IEM), St. Petersburg, Russia
| | - N. S. Novikova
- Institute of Experimental Medicine (IEM), St. Petersburg, Russia
| | - B. G. Yushkov
- Institute of Immunology and Physiology (IIP), Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
| | - E. A. Korneva
- Institute of Experimental Medicine (IEM), St. Petersburg, Russia
| | - V. A. Chereshnev
- Institute of Immunology and Physiology (IIP), Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
| |
Collapse
|
4
|
Nirwane A, Yao Y. SMA low/undetectable pericytes differentiate into microglia- and macrophage-like cells in ischemic brain. Cell Mol Life Sci 2022; 79:264. [PMID: 35482211 PMCID: PMC11073453 DOI: 10.1007/s00018-022-04322-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/23/2022]
Abstract
Pericytes are multipotent perivascular cells that play important roles in CNS injury. However, controversial findings exist on how pericytes change and whether they differentiated into microglia-like cells after ischemic stroke. This discrepancy is mainly due to the lack of pericyte-specific markers: the "pericyte" population identified in previous studies contained vascular smooth muscle cells (vSMCs) and/or fibroblasts. Therefore, it remains unclear which cell type differentiates into microglia-like cells after stroke. In this study, lineage-tracing technique was used to mark α-smooth muscle actin (SMA)low/undetectable pericytes, vSMCs, and fibroblasts, and their fates were analyzed after ischemic stroke. We found that SMAlow/undetectable pericytes and fibroblasts but not vSMCs substantially proliferated at the subacute phase after injury, and that SMAlow/undetectable pericyte but not vSMCs or fibroblasts differentiated into Iba1+ cells after ischemic stroke. Further imaging flow cytometry analysis revealed that SMAlow/undetectable pericytes differentiated into both microglia and macrophages at day 7 after stroke. These results demonstrate that SMAlow/undetectable pericytes rather than vSMCs or fibroblasts differentiate into both microglia-like and macrophage-like cells after stroke, suggesting that these pericytes may be targeted in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Abhijit Nirwane
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC8, Tampa, FL, 33612, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC8, Tampa, FL, 33612, USA.
| |
Collapse
|
5
|
Sutherland TC, Geoffroy CG. The Influence of Neuron-Extrinsic Factors and Aging on Injury Progression and Axonal Repair in the Central Nervous System. Front Cell Dev Biol 2020; 8:190. [PMID: 32269994 PMCID: PMC7109259 DOI: 10.3389/fcell.2020.00190] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
In the aging western population, the average age of incidence for spinal cord injury (SCI) has increased, as has the length of survival of SCI patients. This places great importance on understanding SCI in middle-aged and aging patients. Axon regeneration after injury is an area of study that has received substantial attention and made important experimental progress, however, our understanding of how aging affects this process, and any therapeutic effort to modulate repair, is incomplete. The growth and regeneration of axons is mediated by both neuron intrinsic and extrinsic factors. In this review we explore some of the key extrinsic influences on axon regeneration in the literature, focusing on inflammation and astrogliosis, other cellular responses, components of the extracellular matrix, and myelin proteins. We will describe how each element supports the contention that axonal growth after injury in the central nervous system shows an age-dependent decline, and how this may affect outcomes after a SCI.
Collapse
Affiliation(s)
- Theresa C Sutherland
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, United States
| | - Cédric G Geoffroy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, United States
| |
Collapse
|
6
|
Yang G, Han Z, Xiong J, Wang S, Wei H, Qin T, Xiao H, Liu Y, Xu L, Qi J, Zhang Z, Jiang R, Zhang J, Li L. Inhibition of intracranial hemangioma growth and hemorrhage by TNFSF15. FASEB J 2019; 33:10505-10514. [PMID: 31242765 DOI: 10.1096/fj.201802758rrr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gui‐Li Yang
- Key Laboratory of Post‐Neuroinjury RepairRegeneration in Central Nervous SystemMinistry of EducationTianjin Neurological InstituteTianjin Medical University General Hospital Tianjin China
| | - Zhenying Han
- Key Laboratory of Post‐Neuroinjury RepairRegeneration in Central Nervous SystemMinistry of EducationTianjin Neurological InstituteTianjin Medical University General Hospital Tianjin China
| | - Jianhua Xiong
- Key Laboratory of Post‐Neuroinjury RepairRegeneration in Central Nervous SystemMinistry of EducationTianjin Neurological InstituteTianjin Medical University General Hospital Tianjin China
| | - Shizhao Wang
- Key Laboratory of Post‐Neuroinjury RepairRegeneration in Central Nervous SystemMinistry of EducationTianjin Neurological InstituteTianjin Medical University General Hospital Tianjin China
| | - Huijie Wei
- Key Laboratory of Post‐Neuroinjury RepairRegeneration in Central Nervous SystemMinistry of EducationTianjin Neurological InstituteTianjin Medical University General Hospital Tianjin China
| | - Ting‐Ting Qin
- Tianjin Medical UniversityCancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin's Clinical Research Center for Cancer Tianjin China
| | - Huaiyuan Xiao
- Tianjin Medical UniversityCancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin's Clinical Research Center for Cancer Tianjin China
| | - Ye Liu
- Key Laboratory of Post‐Neuroinjury RepairRegeneration in Central Nervous SystemMinistry of EducationTianjin Neurological InstituteTianjin Medical University General Hospital Tianjin China
| | - Li‐Xia Xu
- State Key Laboratory of Medicinal Chemical BiologyNankai University College of PharmacyTianjin Key Laboratory of Molecular Drug Research Tianjin China
| | - Jian‐Wei Qi
- State Key Laboratory of Medicinal Chemical BiologyNankai University College of PharmacyTianjin Key Laboratory of Molecular Drug Research Tianjin China
| | - Zhi‐Song Zhang
- State Key Laboratory of Medicinal Chemical BiologyNankai University College of PharmacyTianjin Key Laboratory of Molecular Drug Research Tianjin China
| | - Rongcai Jiang
- Key Laboratory of Post‐Neuroinjury RepairRegeneration in Central Nervous SystemMinistry of EducationTianjin Neurological InstituteTianjin Medical University General Hospital Tianjin China
| | - Jianning Zhang
- Key Laboratory of Post‐Neuroinjury RepairRegeneration in Central Nervous SystemMinistry of EducationTianjin Neurological InstituteTianjin Medical University General Hospital Tianjin China
| | - Lu‐Yuan Li
- State Key Laboratory of Medicinal Chemical BiologyNankai University College of PharmacyTianjin Key Laboratory of Molecular Drug Research Tianjin China
| |
Collapse
|
7
|
Gollihue JL, Patel SP, Eldahan KC, Cox DH, Donahue RR, Taylor BK, Sullivan PG, Rabchevsky AG. Effects of Mitochondrial Transplantation on Bioenergetics, Cellular Incorporation, and Functional Recovery after Spinal Cord Injury. J Neurotrauma 2018; 35:1800-1818. [PMID: 29648982 DOI: 10.1089/neu.2017.5605] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Our previous studies reported that pharmacological maintenance of mitochondrial bioenergetics after experimental spinal cord injury (SCI) provided functional neuroprotection. Recent evidence indicates that endogenous mitochondrial transfer is neuroprotective as well, and, therefore, we extended these studies with a novel approach to transplanting exogenous mitochondria into the injured rat spinal cord. Using a rat model of L1/L2 contusion SCI, we herein report that transplantation of exogenous mitochondria derived from either cell culture or syngeneic leg muscle maintained acute bioenergetics of the injured spinal cord in a concentration-dependent manner. Moreover, transplanting transgenically labeled turbo green fluorescent (tGFP) PC12-derived mitochondria allowed for visualization of their incorporation in both a time-dependent and cell-specific manner at 24 h, 48 h, and 7 days post-injection. tGFP mitochondria co-localized with multiple resident cell types, although they were absent in neurons. Despite their contribution to the maintenance of normal bioenergetics, mitochondrial transplantation did not yield long-term functional neuroprotection as assessed by overall tissue sparing or recovery of motor and sensory functions. These experiments are the first to investigate mitochondrial transplantation as a therapeutic approach to treating spinal cord injury. Our initial bioenergetic results are encouraging, and although they did not translate into improved long-term outcome measures, caveats and technical hurdles are discussed that can be addressed in future studies to potentially increase long-term efficacy of transplantation strategies.
Collapse
Affiliation(s)
- Jenna L Gollihue
- 1 Department of Physiology, University of Kentucky , Lexington, Kentucky.,2 Spinal Cord & Brain Injury Research Center, University of Kentucky , Lexington, Kentucky
| | - Samir P Patel
- 1 Department of Physiology, University of Kentucky , Lexington, Kentucky.,2 Spinal Cord & Brain Injury Research Center, University of Kentucky , Lexington, Kentucky
| | - Khalid C Eldahan
- 1 Department of Physiology, University of Kentucky , Lexington, Kentucky.,2 Spinal Cord & Brain Injury Research Center, University of Kentucky , Lexington, Kentucky
| | - David H Cox
- 2 Spinal Cord & Brain Injury Research Center, University of Kentucky , Lexington, Kentucky
| | - Renee R Donahue
- 1 Department of Physiology, University of Kentucky , Lexington, Kentucky
| | - Bradley K Taylor
- 1 Department of Physiology, University of Kentucky , Lexington, Kentucky.,2 Spinal Cord & Brain Injury Research Center, University of Kentucky , Lexington, Kentucky
| | - Patrick G Sullivan
- 2 Spinal Cord & Brain Injury Research Center, University of Kentucky , Lexington, Kentucky.,3 Department of Neuroscience, University of Kentucky , Lexington, Kentucky
| | - Alexander G Rabchevsky
- 1 Department of Physiology, University of Kentucky , Lexington, Kentucky.,2 Spinal Cord & Brain Injury Research Center, University of Kentucky , Lexington, Kentucky
| |
Collapse
|
8
|
Maherally Z, Fillmore HL, Tan SL, Tan SF, Jassam SA, Quack FI, Hatherell KE, Pilkington GJ. Real-time acquisition of transendothelial electrical resistance in an all-human, in vitro, 3-dimensional, blood-brain barrier model exemplifies tight-junction integrity. FASEB J 2017; 32:168-182. [PMID: 28883042 PMCID: PMC5731124 DOI: 10.1096/fj.201700162r] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/21/2017] [Indexed: 12/02/2022]
Abstract
The blood–brain barrier (BBB) consists of endothelial cells, astrocytes, and pericytes embedded in basal lamina (BL). Most in vitro models use nonhuman, monolayer cultures for therapeutic-delivery studies, relying on transendothelial electrical resistance (TEER) measurements without other tight-junction (TJ) formation parameters. We aimed to develop reliable, reproducible, in vitro 3-dimensional (3D) models incorporating relevant human, in vivo cell types and BL proteins. The 3D BBB models were constructed with human brain endothelial cells, human astrocytes, and human brain pericytes in mono-, co-, and tricultures. TEER was measured in 3D models using a volt/ohmmeter and cellZscope. Influence of BL proteins—laminin, fibronectin, collagen type IV, agrin, and perlecan—on adhesion and TEER was assessed using an electric cell-substrate impedance–sensing system. TJ protein expression was assessed by Western blotting (WB) and immunocytochemistry (ICC). Perlecan (10 µg/ml) evoked unreportedly high, in vitro TEER values (1200 Ω) and the strongest adhesion. Coculturing endothelial cells with astrocytes yielded the greatest resistance over time. ICC and WB results correlated with resistance levels, with evidence of prominent occludin expression in cocultures. BL proteins exerted differential effects on TEER, whereas astrocytes in contact yielded higher TEER values and TJ expression.—Maherally, Z., Fillmore, H. L., Tan, S. L., Tan, S. F., Jassam, S. A., Quack, F. I., Hatherell, K. E., Pilkington, G. J. Real-time acquisition of transendothelial electrical resistance in an all-human, in vitro, 3-dimensional, blood–brain barrier model exemplifies tight-junction integrity.
Collapse
Affiliation(s)
- Zaynah Maherally
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom; and
| | - Helen L Fillmore
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom; and
| | - Sim Ling Tan
- Department of Medicine, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Suk Fei Tan
- Department of Medicine, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Samah A Jassam
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom; and
| | - Friederike I Quack
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom; and
| | - Kathryn E Hatherell
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom; and
| | - Geoffrey J Pilkington
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom; and
| |
Collapse
|
9
|
Neurotrauma: The Crosstalk between Neurotrophins and Inflammation in the Acutely Injured Brain. Int J Mol Sci 2017; 18:ijms18051082. [PMID: 28524074 PMCID: PMC5454991 DOI: 10.3390/ijms18051082] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/25/2017] [Accepted: 05/11/2017] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality among young individuals worldwide. Understanding the pathophysiology of neurotrauma is crucial for the development of more effective therapeutic strategies. After the trauma occurs, immediate neurologic damage is produced by the traumatic forces; this primary injury triggers a secondary wave of biochemical cascades together with metabolic and cellular changes, called secondary neural injury. In the scenario of the acutely injured brain, the ongoing secondary injury results in ischemia and edema culminating in an uncontrollable increase in intracranial pressure. These areas of secondary injury progression, or areas of “traumatic penumbra”, represent crucial targets for therapeutic interventions. Neurotrophins are a class of signaling molecules that promote survival and/or maintenance of neurons. They also stimulate axonal growth, synaptic plasticity, and neurotransmitter synthesis and release. Therefore, this review focuses on the role of neurotrophins in the acute post-injury response. Here, we discuss possible endogenous neuroprotective mechanisms of neurotrophins in the prevailing environment surrounding the injured areas, and highlight the crosstalk between neurotrophins and inflammation with focus on neurovascular unit cells, particularly pericytes. The perspective is that neurotrophins may represent promising targets for research on neuroprotective and neurorestorative processes in the short-term following TBI.
Collapse
|
10
|
|
11
|
Cai W, Liu H, Zhao J, Chen LY, Chen J, Lu Z, Hu X. Pericytes in Brain Injury and Repair After Ischemic Stroke. Transl Stroke Res 2016; 8:107-121. [PMID: 27837475 DOI: 10.1007/s12975-016-0504-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/09/2016] [Accepted: 10/13/2016] [Indexed: 01/02/2023]
Abstract
Pericytes are functional components of the neurovascular unit (NVU). They provide support to other NVU components and maintain normal physiological functions of the blood-brain barrier (BBB). The brain ischemia and reperfusion result in pathological alterations in pericytes. The intimate anatomical and functional interactions between pericytes and other NVU components play pivotal roles in the progression of stroke pathology. In this review, we depict the biology and functions of pericytes in the normal brain and discuss their effects in brain injury and repair after ischemia/reperfusion. Since ischemic stroke occurs mostly in elderly people, we also review age-related changes in pericytes and how these changes predispose aged brains to ischemic/reperfusion injury. Strategies targeting pericyte responses after ischemia and reperfusion may provide new therapies for ischemic stroke.
Collapse
Affiliation(s)
- Wei Cai
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA.,Department of Neurology, The Third Affiliated Hospital of Sun Yatsen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Huan Liu
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA
| | - Jingyan Zhao
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA
| | - Lily Y Chen
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA
| | - Jun Chen
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yatsen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China.
| | - Xiaoming Hu
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, SBST 506, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
12
|
Combined effects of pericytes in the tumor microenvironment. Stem Cells Int 2015; 2015:868475. [PMID: 26000022 PMCID: PMC4427118 DOI: 10.1155/2015/868475] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/28/2015] [Indexed: 12/25/2022] Open
Abstract
Pericytes are multipotent perivascular cells whose involvement in vasculature development is well established. Evidences in the literature also suggest that pericytes display immune properties and that these cells may serve as an in vivo reservoir of stem cells, contributing to the regeneration of diverse tissues. Pericytes are also capable of tumor homing and are important cellular components of the tumor microenvironment (TME). In this review, we highlight the contribution of pericytes to some classical hallmarks of cancer, namely, tumor angiogenesis, growth, metastasis, and evasion of immune destruction, and discuss how collectively these hallmarks could be tackled by therapies targeting pericytes, providing a rationale for cancer drugs aiming at the TME.
Collapse
|
13
|
Nugue G, Wion D. Generation of brain cancer stem cells: the dark side of brain pericytes? Neurosci Res 2014; 85:69. [PMID: 24874004 DOI: 10.1016/j.neures.2014.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 11/24/2022]
Affiliation(s)
- Guillaume Nugue
- INSERM U1167, CLINATEC, Centre de recherche Edmond J Safra, MINATEC Campus CEA, Université Joseph Fourier, 38054 Grenoble, France
| | - Didier Wion
- INSERM U1167, CLINATEC, Centre de recherche Edmond J Safra, MINATEC Campus CEA, Université Joseph Fourier, 38054 Grenoble, France.
| |
Collapse
|