1
|
Ando H, Shimizu-Okabe C, Okura N, Yafuso T, Kosaka Y, Kobayashi S, Okabe A, Takayama C. Reduced Gene Expression of KCC2 Accelerates Axonal Regeneration and Reduces Motor Dysfunctions after Tibial Nerve Severance and Suturing. Neuroscience 2024; 551:55-68. [PMID: 38788828 DOI: 10.1016/j.neuroscience.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/09/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Gamma-aminobutyric acid and glycine (GABA/Gly) are predominantly inhibitory neurotransmitters in the mature central nervous system; however, they mediate membrane potential depolarization during development. These differences in actions depend on intracellular Cl- concentrations ([Cl-]i), which are primarily regulated by potassium chloride cotransporter 2 (KCC2). After nerve injury, KCC2 expression markedly decreases and GABA/Gly mediate depolarization. Following nerve regeneration, KCC2 expression recovers and GABA/Gly become inhibitory, suggesting that KCC2 reduction and GABA/Gly excitation may be crucial for axonal regeneration. To directly clarify their involvement in regeneration, we analyzed recovery processes after tibial nerve severance and suturing between heterozygous KCC2 knockout mice (HT), whose KCC2 levels are halved, and their wild-type littermates (WT). Compared with WT mice, the sciatic functional index-indicating lower limb motor function-was significantly higher until 28 days after operation (D28) in HT mice. Furthermore, at D7, many neurofilament-positive fibers were elongated into the distal part of the sutured nerve in HT mice only, and myelinated axonal density was significantly higher at D21 and D28 in HT animals. Electron microscopy and galanin immunohistochemistry indicated a shorter nerve degeneration period in HT mice. Moreover, a less severe decrease in choline acetyltransferase was observed in HT mice. These results suggest that nerve degeneration and regeneration proceed more rapidly in HT mice, resulting in milder motor dysfunction. Via similar microglial activation, nerve surgery may reduce KCC2 levels more rapidly in HT mice, followed by earlier increased [Cl-]i and longer-lasting GABA/Gly excitation. Taken together, reduced KCC2 may accelerate nerve regeneration via GABA/Gly excitation.
Collapse
Affiliation(s)
- Hironobu Ando
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Chigusa Shimizu-Okabe
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Nobuhiko Okura
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Tsukasa Yafuso
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Yoshinori Kosaka
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Shiori Kobayashi
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Akihito Okabe
- Department of Nutritional Science, Faculty of Health and Welfare, Seinan Jo Gakuin University, Fukuoka 803-0835, Japan
| | - Chitoshi Takayama
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 9030215, Japan.
| |
Collapse
|
2
|
Devi R, Thakur R, Kapoor S, Joshi SJ, Kumar A. Comparative assessment on lignocellulose degrading enzymes and bioethanol production from spent mushroom substrate of Calocybe indica and Volvariella volvacea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38878-38892. [PMID: 37071368 DOI: 10.1007/s11356-023-26988-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
In the current study, we compared the production of extracellular lignocellulose degrading enzymes and bioethanol from the spent mushroom substrate (SMS) of Calocybe indica and Volvariella volvacea. From SMS at different stages of the mushroom development cycle, ligninolytic and hydrolytic enzymes were analysed. The activities of lignin-degrading enzymes, including lignin peroxidase (LiP), laccase, and manganese peroxidase (MnP) were maximal in the spawn run and primordial stages, while hydrolytic enzymes including xylanase, cellobiohydrolase (CBH), and carboxymethyl cellulase (CMCase) showed higher activity during fruiting bodies development and at the end of the mushroom growth cycle. SMS of V. volvacea showed relatively lower ligninase activity than the SMS of C. indica, but had the maximum activity of hydrolytic enzymes. The enzyme was precipitated with acetone and further purified with the DEAE cellulose column. The maximum yield of reducing sugars was obtained after hydrolysis of NaOH (0.5 M) pretreated SMS with a cocktail of partially purified enzymes (50% v/v). After enzymatic hydrolysis, the total reducing sugars were 18.68 ± 0.34 g/l (SMS of C. indica) and 20.02 ± 0.87 g/l (SMS of V. volvacea). We observed the highest fermentation efficiency and ethanol productivity (54.25%, 0.12 g/l h) obtained from SMS hydrolysate of V. volvacea after 48 h at 30 ± 2 °C, using co-culture of Saccharomyces cerevisiae MTCC 11,815 and Pachysolen tannophilus MTCC 1077.
Collapse
Affiliation(s)
- Rajni Devi
- Department of Microbiology, Punjab Agricultural University, 141004, Ludhiana, Punjab, India
| | - Richa Thakur
- Department of Biochemistry, Punjab Agricultural University, 141004, Ludhiana, Punjab, India
| | - Shammi Kapoor
- Department of Microbiology, Punjab Agricultural University, 141004, Ludhiana, Punjab, India
| | - Sanket J Joshi
- Oil & Gas Research Center, and Central Analytical and Applied Research Unit, Sultan Qaboos University, 123, Muscat, Oman.
| | - Amit Kumar
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| |
Collapse
|
3
|
Liang X, Wei S, Xu Y, Yin L, Wang R, Li P, Liu K. Construction and Characterization of Fitting Equations for a New Wheat Straw Pulping Method. Polymers (Basel) 2023; 15:4637. [PMID: 38139890 PMCID: PMC10748100 DOI: 10.3390/polym15244637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The pretreatment of pulp with enzymes has been extensively studied in the laboratory. However, due to cost constraints, the application of enzymes in the pulp and paper industry is very limited. In this paper, an environment-friendly and efficient pulping method is proposed as an alternative to traditional pulping and papermaking methods. This new method overcomes the low efficiency and extreme pollution problems associated with traditional pulping methods. In addition, fitting equations for the new pulping method are constructed using data on enzyme treatments, which reflect the effect of enzymes and enable the realization of real-time control of the pulping process. The experimental results show that the efficiency of the pulping and papermaking process can be improved using biological enzymes, and the separation of cellulose can be facilitated using mixed enzymes, which have a better effect than single enzymes.
Collapse
Affiliation(s)
- Xiaoli Liang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.L.); (Y.X.); (R.W.); (P.L.)
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Shan Wei
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Yanpeng Xu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.L.); (Y.X.); (R.W.); (P.L.)
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Liang Yin
- Gansu Engineering Technology Research Center for Microalgae, Hexi University, Zhangye 734000, China;
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.L.); (Y.X.); (R.W.); (P.L.)
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.L.); (Y.X.); (R.W.); (P.L.)
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Kaiquan Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.L.); (Y.X.); (R.W.); (P.L.)
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| |
Collapse
|
4
|
Lu X, Li F, Zhou X, Hu J, Liu P. Biomass, lignocellulolytic enzyme production and lignocellulose degradation patterns by Auricularia auricula during solid state fermentation of corn stalk residues under different pretreatments. Food Chem 2022; 384:132622. [DOI: 10.1016/j.foodchem.2022.132622] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022]
|
5
|
Cai Z, Zhang W, Zhang J, Zhang J, Ji D, Gao W. Effect of Ammoniated Fiber Explosion Combined with H 2O 2 Pretreatment on the Hydrogen Production Capacity of Herbaceous and Woody Waste. ACS OMEGA 2022; 7:21433-21443. [PMID: 35785293 PMCID: PMC9244924 DOI: 10.1021/acsomega.2c00598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/03/2022] [Indexed: 05/28/2023]
Abstract
An appropriate pretreatment process is an important part of the preparation of biomass energy from agricultural and forestry waste. Compared to physical and chemical pretreatments alone, the combined ammoniated fiber explosion (AFEX) + hydrogen peroxide (H2O2) pretreatment process can significantly improve the lignin degradation rate and saccharification efficiency, thus improving the hydrogen production capacity during medium-temperature dark fermentation. This study showed that the combined pretreatment increased the saccharification efficiency of herbaceous, hardwood, and softwood biomass by 58.7, 39.5, and 20.6% and the corresponding gas production reached 145.49, 80.75, and 57.52 mL/g, respectively. In addition, X-ray diffraction, scanning electron microscopy, and Fourier-transform infrared spectroscopy showed that AFEX + H2O2 disrupted the structure of the feedstock and was more favorable for lignin removal. Soluble metabolites indicated that AFEX + H2O2 pretreatment enhanced the butyrate metabolic pathway of the substrate and biohydrogen generation and increased the levels of extracellular polymers and microbial community structure.
Collapse
Affiliation(s)
- Ziyuan Cai
- College
of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, Shandong, P. R. China
| | - Weihua Zhang
- Institute
of Vegetables and Flowers, Shandong Academy
of Agricultural Sciences, Jinan 250100, Shandong, P. R. China
- Shandong
Green Fertilizer Technology Innovation Center, Linyi 276700, Shandong, P. R. China
| | - Jingjing Zhang
- College
of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, Shandong, P. R. China
| | - Jilin Zhang
- College
of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, Shandong, P. R. China
| | - Dandan Ji
- College
of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, Shandong, P. R. China
- Shandong
Green Fertilizer Technology Innovation Center, Linyi 276700, Shandong, P. R. China
| | - Wensheng Gao
- Shandong
Agricultural Technology Extension Center, Jinan 250003, Shandong, P. R. China
- Shandong
Green Fertilizer Technology Innovation Center, Linyi 276700, Shandong, P. R. China
| |
Collapse
|
6
|
Lu X, Wang C, Li Y, Liu P. Improved production and antioxidant activity of exopolysaccharides by submerged culture of Lentinula edodes by the addition of lignocellulose. J Biosci Bioeng 2022; 134:162-166. [PMID: 35649960 DOI: 10.1016/j.jbiosc.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
Abstract
The objective of this study was to investigate the effect of addition of four different lignocellulose (water-treated corn straw, water-treated xylosma sawdust, alkali-treated corn straw and alkali-treated xylosma sawdust) on the production and antioxidant activity of exopolysaccharides by Lentinula edodes. To evaluate the antioxidant activity of polysaccharides, the analyses of 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical-scavenging activity, lipid peroxidation inhibition rate and erythrocyte hemolysis inhibition rate were carried out. The result clearly indicated that the exo-polysaccharide production and antioxidant activity by L. edodes mycelium was enhanced in varying degrees via the decomposition of lignocellulose. The yield of exo-polysaccharide in alkali-treated corn straw group was the highest (0.351 g/L), which was 31.06% higher than that in control group after 5 days of submerged fermentation. High DPPH radical scavenging activity was observed in water-treated xylosma sawdust group, which decreased with the extension of fermentation time (23.15%-44.06%). Alkali-treated groups performed better than water-treated groups in terms of lipid peroxidation inhibitory activity. As for hemolysis inhibition activity toward erythrocytes, xylosma sawdust groups showed stronger oxidation resistance than corn straw groups.
Collapse
Affiliation(s)
- Xiaohong Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Chunhong Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yiming Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ping Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
7
|
Gai L, Ren EF, Tian W, Niu D, Sun W, Hang F, Li K. Ultrasonic-Assisted Dual-Alkali Pretreatment and Enzymatic Hydrolysis of Sugarcane Bagasse Followed by Candida tropicalis Fermentation to Produce Xylitol. Front Nutr 2022; 9:913106. [PMID: 35662948 PMCID: PMC9159370 DOI: 10.3389/fnut.2022.913106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
In this work, the investigation mainly focused on ultrasonic-assisted dual-alkali pretreatment and enzymatic hydrolysis of sugarcane bagasse followed by Candida tropicalis fermentation to produce xylitol. The results showed that the combination of NaOH and ammonia water had the best effect by comparing the effects of the four single-alkali (NaOH, KOH, ammonia water, Ca(OH)2) and their mixed double-alkali pretreatments on xylose content. Then, the optimal conditions for ultrasonic-assisted pretreatment and enzymatic hydrolysis of sugarcane bagasse were obtained by response surface methodology. When the ratio of NaOH and ammonia water was 2:1, the mixed alkali concentration (v/v) was 17%, the ultrasonic temperature was 45°C, the ultrasonic power was 300 W, and the ultrasonic time was 40 min, the content of xylose reached a maximum of 2.431 g/L. Scanning electron microscopy showed that sugarcane bagasse by ultrasonic-assisted alkali pretreatment aggravated with more folds and furrows. Moreover, the fermentation results showed that the concentration ratio of enzymatic hydrolysate of sugarcane bagasse affected the xylitol yield, and when concentrated three times, the highest yield of xylitol (54.42%) was obtained.
Collapse
Affiliation(s)
- Lili Gai
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Er-Fang Ren
- Guangxi Subtropical Crops Research Institute, Nanning, China
| | - Wen Tian
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Debao Niu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
- *Correspondence: Debao Niu
| | - Weidong Sun
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Fangxue Hang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| |
Collapse
|
8
|
Yafuso T, Kosaka Y, Shimizu-Okabe C, Okura N, Kobayashi S, Kim J, Matsuda K, Kinjo D, Okabe A, Takayama C. Slow progression of sciatic nerve degeneration and regeneration after loose ligation through microglial activation and decreased KCC2 levels in the mouse spinal cord ventral horn. Neurosci Res 2022; 177:52-63. [PMID: 34757085 DOI: 10.1016/j.neures.2021.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/17/2021] [Accepted: 10/25/2021] [Indexed: 10/20/2022]
Abstract
Peripheral nerve injury affects motor functions. To reveal the mechanisms underlying motor dysfunction and recovery after nerve compression, which have not been precisely examined, we investigated the temporal relationship among changes in motor function, nerve histopathology, and marker molecule expression in the spinal cord after loose ligation of the mouse sciatic nerve. After ligation, sciatic motor function suddenly declined, and axons gradually degenerated. During degeneration, galanin was localized in motor neuron cell bodies. Then, in the ventral horn, microglia were activated, and expression of choline acetyltransferase (ChAT), a synthetic enzyme of acetylcholine, and potassium chloride co-transporter 2 (KCC2), which shifts the action of γ-amino butyric acid (GABA) and glycine to inhibitory, decreased. Motor function recovery was insufficient although axonal regeneration was complete. ChAT levels gradually recovered during axonal regeneration. When regeneration was nearly complete, microglial activation declined, and KCC2 expression started to increase. The KCC2 level sufficiently recovered when axonal regeneration was complete, suggesting that the excitatory action of GABA/glycine may participate in axonal regeneration. Furthermore, these changes proceeded slower than those after severance, suggesting that loose ligation, compression, may mediate slower progression of degeneration and regeneration than severance, and these changes may cause the motor dysfunction and its recovery.
Collapse
Affiliation(s)
- Tsukasa Yafuso
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 9030215, Japan
| | - Yoshinori Kosaka
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 9030215, Japan
| | - Chigusa Shimizu-Okabe
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 9030215, Japan
| | - Nobuhiko Okura
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 9030215, Japan
| | - Shiori Kobayashi
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 9030215, Japan
| | - Jeongtae Kim
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 9030215, Japan; Department of Anatomy, Kosin University College of Medicine, Busan, 49267, Republic of Korea
| | - Koyata Matsuda
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 9030215, Japan
| | - Daichi Kinjo
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 9030215, Japan
| | - Akihito Okabe
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 9030215, Japan; Department of Nutritional Science, Faculty of Health and Welfare, Seinan Jo Gakuin University, Fukuoka, 803-0835, Japan
| | - Chitoshi Takayama
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 9030215, Japan.
| |
Collapse
|
9
|
Bioethanol Production by Enzymatic Hydrolysis from Different Lignocellulosic Sources. Molecules 2021; 26:molecules26030753. [PMID: 33535536 PMCID: PMC7867074 DOI: 10.3390/molecules26030753] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
As the need for non-renewable sources such as fossil fuels has increased during the last few decades, the search for sustainable and renewable alternative sources has gained growing interest. Enzymatic hydrolysis in bioethanol production presents an important step, where sugars that are fermented are obtained in the final fermentation process. In the process of enzymatic hydrolysis, more and more new effective enzymes are being researched to ensure a more cost-effective process. There are many different enzyme strategies implemented in hydrolysis protocols, where different lignocellulosic biomass, such as wood feedstocks, different agricultural wastes, and marine algae are being used as substrates for an efficient bioethanol production. This review investigates the very recent enzymatic hydrolysis pathways in bioethanol production from lignocellulosic biomass.
Collapse
|
10
|
Tulloch AJ, Teo S, Carvajal BV, Tessier-Lavigne M, Jaworski A. Diverse spinal commissural neuron populations revealed by fate mapping and molecular profiling using a novel Robo3 Cre mouse. J Comp Neurol 2019; 527:2948-2972. [PMID: 31152445 DOI: 10.1002/cne.24720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/22/2019] [Accepted: 05/21/2019] [Indexed: 12/19/2022]
Abstract
The two sides of the nervous system coordinate and integrate information via commissural neurons, which project axons across the midline. Commissural neurons in the spinal cord are a highly heterogeneous population of cells with respect to their birthplace, final cell body position, axonal trajectory, and neurotransmitter phenotype. Although commissural axon guidance during development has been studied in great detail, neither the developmental origins nor the mature phenotypes of commissural neurons have been characterized comprehensively, largely due to lack of selective genetic access to these neurons. Here, we generated mice expressing Cre recombinase from the Robo3 locus specifically in commissural neurons. We used Robo3 Cre mice to characterize the transcriptome and various origins of developing commissural neurons, revealing new details about their extensive heterogeneity in molecular makeup and developmental lineage. Further, we followed the fate of commissural neurons into adulthood, thereby elucidating their settling positions and molecular diversity and providing evidence for possible functions in various spinal cord circuits. Our studies establish an important genetic entry point for further analyses of commissural neuron development, connectivity, and function.
Collapse
Affiliation(s)
- Alastair J Tulloch
- Department of Neuroscience, Brown University, Providence, Rhode Island.,Robert J. and Nancy D. Carney Institute for Brain Science, Providence, Rhode Island
| | - Shaun Teo
- Laboratory of Brain Development and Repair, The Rockefeller University, New York, New York
| | | | - Marc Tessier-Lavigne
- Laboratory of Brain Development and Repair, The Rockefeller University, New York, New York.,Department of Biology, Stanford University, Stanford, California
| | - Alexander Jaworski
- Department of Neuroscience, Brown University, Providence, Rhode Island.,Robert J. and Nancy D. Carney Institute for Brain Science, Providence, Rhode Island
| |
Collapse
|
11
|
Restović I, Bočina I, Vukojević K, Kero D, Filipović N, Raonić J, Vučinić J, Vukmirović F, Vučković L, Saraga-Babić M. Time course and expression pattern of the neuronal markers in the developing human spinal cord. Int J Dev Neurosci 2019; 74:1-10. [PMID: 30753937 DOI: 10.1016/j.ijdevneu.2019.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/16/2019] [Accepted: 02/01/2019] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to examine the spatio-temporal appearance of different neuronal cell subtypes by analyzing expression patterns of several neuronal markers (calretinin, neurofilament 200 (NF200), vanilloid receptor 1(VR1) and calcitonin gene-related peptide (CGRP)) of the embryonic human spinal cord (SC). Developing human SCs from 11 human conceptuses beetwen 5-10 developmental weeks (DW) were examined by light and electron microscopy and immunofluorescence. Light and electron microscopy revealed different embryonic stages of recognizable structure of the SC. NF200, CGRP and VR1 positive cells were observed in SCs during 5th-6th DW. NF200 was predominantly expressed in the ventral part, indicating presence of motoneurons. As development advanced, NF200 was mainly expressed in the marginal zone. Expression of CGRP was intense during all of the investigated periods, predominantly during the 5th-6th DW pointing to neural sensory differentiation, as opposed to the last DW when reduced expression of CGRP in the marginal layer indicated the terminations of the sensory afferents. Expression of VR1 was highest in the intermediate zone, at the beginning and at the end of the investigated periods, pointing to VR1 spatial pattern in the visceral afferents in the grey matter, while the first signs of calretinin were found in the 9th-10th DW ventrally. Delineating the relationships between factors involved in processes of neuronal differentiation as well as spatial and temporal arrangement of SC interrelated neurons can provide a useful information about normal SC development as well as the insight in possible causes of anomalies and disorders during embryonic life.
Collapse
Affiliation(s)
- Ivana Restović
- Faculty of Humanities and Social Sciences, University of Split, Poljička cesta 35, 21 000 Split, Croatia.
| | - Ivana Bočina
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21 000, Split, Croatia.
| | - Katarina Vukojević
- School of Medicine, University of Split, Department of Anatomy, Histology and Embryology, Laboratory for Early Human Development, Šoltanska 2, 21000, Split, Croatia.
| | - Darko Kero
- School of Medicine, University of Split, Department of Anatomy, Histology and Embryology, Laboratory for Early Human Development, Šoltanska 2, 21000, Split, Croatia.
| | - Natalija Filipović
- School of Medicine, University of Split, Department of Anatomy, Histology and Embryology, Laboratory for Early Human Development, Šoltanska 2, 21000, Split, Croatia; School of Medicine, University of Split, Department of Anatomy, Histology and Embryology, Laboratory Neurocardiology, Šoltanska 2, 21000, Split, Croatia.
| | - Janja Raonić
- Department of Histology and Embryology, Faculty of Medicine, University of Montenegro, Podgorica, Montenegro.
| | - Jelena Vučinić
- Department of Histology and Embryology, Faculty of Medicine, University of Montenegro, Podgorica, Montenegro.
| | - Filip Vukmirović
- Department of Pathology, Faculty of Medicine, University of Montenegro, Podgorica, Montenegro.
| | - Ljiljana Vučković
- Department of Histology and Embryology, Faculty of Medicine, University of Montenegro, Podgorica, Montenegro.
| | - Mirna Saraga-Babić
- School of Medicine, University of Split, Department of Anatomy, Histology and Embryology, Laboratory for Early Human Development, Šoltanska 2, 21000, Split, Croatia.
| |
Collapse
|
12
|
Kim J, Kobayashi S, Shimizu-Okabe C, Okabe A, Moon C, Shin T, Takayama C. Changes in the expression and localization of signaling molecules in mouse facial motor neurons during regeneration of facial nerves. J Chem Neuroanat 2018; 88:13-21. [PMID: 29113945 DOI: 10.1016/j.jchemneu.2017.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 11/20/2022]
Abstract
After injury, peripheral axons usually re-extend toward their target, and neuronal functions recover. Previous studies have reported that expression of various molecules are transiently altered in motor neurons after nerve injury, but the time course of these changes and their relationship with functional recovery have not been clearly demonstrated. We used the mouse facial nerve transection and suturing model, and examined the changes in expression of five molecules, choline acetyl transferase (ChAT), galanin, calcitonin gene-related protein (CGRP), gephyrin, and potassium chloride co-transporter 2 (KCC2) in the facial motor neurons after surgery until recovery. Number of ChAT-positive neurons was markedly decreased at days 3 and 7, and recovered to the normal level by day 60, when facial motor functions recovered. Localization of two neuropeptides, CGRP and galanin, was increased in the perikarya and axons during regeneration, and returned to the normal levels by days 60 and 28, respectively. Expression of two postsynaptic elements of γ-amino butyric acid synapses, gephyrin and KCC2, was decreased at days 3 and 7, and recovered by day 60. These results suggest that ChAT, CGRP, and KCC2 may be objective indicators of regeneration, and altering their expression may be related to the functional recovery and axonal re-extension.
Collapse
Affiliation(s)
- Jeongtae Kim
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan; Laboratory of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University, Jeju 63243, South Korea
| | - Shiori Kobayashi
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Chigusa Shimizu-Okabe
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Akihito Okabe
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, South Korea
| | - Taekyun Shin
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University, Jeju 63243, South Korea
| | - Chitoshi Takayama
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan.
| |
Collapse
|
13
|
Abdelalim EM, Bellier JP, Tooyama I. Localization of Brain Natriuretic Peptide Immunoreactivity in Rat Spinal Cord. Front Neuroanat 2016; 10:116. [PMID: 27994541 PMCID: PMC5133262 DOI: 10.3389/fnana.2016.00116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/18/2016] [Indexed: 12/31/2022] Open
Abstract
Brain natriuretic peptide (BNP) exerts its functions through NP receptors. Recently, BNP has been shown to be involved in a wide range of functions. Previous studies reported BNP expression in the sensory afferent fibers in the dorsal horn (DH) of the spinal cord. However, BNP expression and function in the neurons of the central nervous system are still controversial. Therefore, in this study, we investigated BNP expression in the rat spinal cord in detail using reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. RT-PCR analysis showed that BNP mRNA was present in the spinal cord and dorsal root ganglion (DRG). BNP immunoreactivity was observed in different structures of the spinal cord, including the neuronal cell bodies and neuronal processes. BNP immunoreactivity was observed in the DH of the spinal cord and in the neurons of the intermediate column (IC) and ventral horn (VH). Double-immunolabeling showed a high level of BNP expression in the afferent fibers (laminae I–II) labeled with calcitonin gene-related peptide (CGRP), suggesting BNP involvement in sensory function. In addition, BNP was co-localized with CGRP and choline acetyltransferase (ChAT) in the motor neurons of the VH. Together, these results indicate that BNP is expressed in sensory and motor systems of the spinal cord, suggesting its involvement in several biological actions on sensory and motor neurons via its binding to NP receptor-A (NPR-A) and/or NP receptor-B (NPR-B) at the spinal cord level.
Collapse
Affiliation(s)
- Essam M Abdelalim
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar FoundationDoha, Qatar; Molecular Neuroscience Research Center, Shiga University of Medical ScienceOtsu, Japan; Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal UniversityIsmailia, Egypt
| | - Jean-Pierre Bellier
- Molecular Neuroscience Research Center, Shiga University of Medical Science Otsu, Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science Otsu, Japan
| |
Collapse
|