1
|
Luo J, Luo Y, Zhao M, Liu Y, Liu J, Du Z, Gong H, Wang L, Zhao J, Wang X, Gu Z, Zhao W, Liu T, Fan X. Fullerenols Ameliorate Social Deficiency and Rescue Cognitive Dysfunction of BTBR T +Itpr3 tf/J Autistic-Like Mice. Int J Nanomedicine 2024; 19:6035-6055. [PMID: 38911505 PMCID: PMC11192297 DOI: 10.2147/ijn.s459511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
Background Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that affects social interaction and communication and can cause stereotypic behavior. Fullerenols, a type of carbon nanomaterial known for its neuroprotective properties, have not yet been studied for their potential in treating ASD. We aimed to investigate its role in improving autistic behaviors in BTBR T+Itpr3tf/J (BTBR) mice and its underlying mechanism, which could provide reliable clues for future ASD treatments. Methods Our research involved treating C57BL/6J (C57) and BTBR mice with either 0.9% NaCl or fullerenols (10 mg/kg) daily for one week at seven weeks of age. We then conducted ASD-related behavioral tests in the eighth week and used RNA-seq to screen for vital pathways in the mouse hippocampus. Additionally, we used real-time quantitative PCR (RT-qPCR) to verify related pathway genes and evaluated the number of stem cells in the hippocampal dentate gyrus (DG) by Immunofluorescence staining. Results Our findings revealed that fullerenols treatment significantly improved the related ASD-like behaviors of BTBR mice, manifested by enhanced social ability and improved cognitive deficits. Immunofluorescence results showed that fullerenols treatment increased the number of DCX+ and SOX2+/GFAP+ cells in the DG region of BTBR mice, indicating an expanded neural progenitor cell (NPC) pool of BTBR mice. RNA-seq analysis of the mouse hippocampus showed that VEGFA was involved in the rescued hippocampal neurogenesis by fullerenols treatment. Conclusion In conclusion, our findings suggest that fullerenols treatment improves ASD-like behavior in BTBR mice by upregulating VEGFA, making nanoparticle- fullerenols a promising drug for ASD treatment.
Collapse
Affiliation(s)
- Jing Luo
- School of Life Sciences, Chongqing University, Chongqing, 401331, People’s Republic of China
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, People’s Republic of China
| | - Yi Luo
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, People’s Republic of China
| | - Maoru Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Yulong Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, People’s Republic of China
| | - Jiayin Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, People’s Republic of China
| | - Zhulin Du
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, People’s Republic of China
| | - Hong Gong
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, People’s Republic of China
| | - Lian Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, People’s Republic of China
| | - Jinghui Zhao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, People’s Republic of China
| | - Xiaqing Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, People’s Republic of China
| | - Zhanjun Gu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Wenhui Zhao
- School of Life Sciences, Chongqing University, Chongqing, 401331, People’s Republic of China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, People’s Republic of China
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, People’s Republic of China
| |
Collapse
|
2
|
Murata Y, Yoshimitsu S, Senoura C, Araki T, Kanayama S, Mori M, Ohe K, Mine K, Enjoji M. Sleep rebound leads to marked recovery of prolonged sleep deprivation-induced adversities in the stress response and hippocampal neuroplasticity of male rats. J Affect Disord 2024; 355:478-486. [PMID: 38574868 DOI: 10.1016/j.jad.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Sleep disturbances are not only frequent symptoms, but also risk factors for major depressive disorder. We previously reported that depressed patients who experienced "Hypersomnia" showed a higher and more rapid response rate under paroxetine treatment, but the underlying mechanism remains unclear. The present study was conducted to clarify the beneficial effects of sleep rebound through an experimental "Hypersomnia" rat model on glucocorticoid and hippocampal neuroplasticity associated with antidepressive potency. METHODS Thirty-four male Sprague-Dawley rats were subjected to sham treatment, 72-h sleep deprivation, or sleep deprivation and subsequent follow-up for one week. Approximately half of the animals were sacrificed to evaluate adrenal weight, plasma corticosterone level, hippocampal content of mRNA isoforms, and protein of the brain-derived neurotrophic factor (Bdnf) gene. In the other half of the rats, Ki-67- and doublecortin (DCX)-positive cells in the hippocampus were counted via immunostaining to quantify adult neurogenesis. RESULTS Prolonged sleep deprivation led to adrenal hypertrophy and an increase in the plasma corticosterone level, which had returned to normal after one week follow-up. Of note, sleep deprivation-induced decreases in hippocampal Bdnf transcripts containing exons II, IV, VI, and IX and BDNF protein levels, Ki-67-(+)-proliferating cells, and DCX-(+)-newly-born neurons were not merely reversed, but overshot their normal levels with sleep rebound. LIMITATIONS The present study did not record electroencephalogram or assess behavioral changes of the sleep-deprived rats. CONCLUSIONS The present study demonstrated that prolonged sleep deprivation-induced adversities are reversed or recovered by sleep rebound, which supports "Hypersomnia" in depressed patients as having a beneficial pharmacological effect.
Collapse
Affiliation(s)
- Yusuke Murata
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Sakuya Yoshimitsu
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Chiyo Senoura
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Toshiki Araki
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Saki Kanayama
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Masayoshi Mori
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kenji Ohe
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kazunori Mine
- Faculty of Neurology and Psychiatry, BOOCS CLINIC FUKUOKA, 6F Random Square Bldg., 6-18, Tenya-Machi, Hakata-ku, Fukuoka 812-0025, Japan
| | - Munechika Enjoji
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
3
|
Zhang M, Jiao H, Wang C, Qu Y, Lv S, Zhao D, Zhong X. Physical activity, sleep disorders, and type of work in the prevention of cognitive function decline in patients with hypertension. BMC Public Health 2023; 23:2431. [PMID: 38057774 PMCID: PMC10699000 DOI: 10.1186/s12889-023-17343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Hypertensive patients are likelier to have cognitive function decline (CFD). This study aimed to explore physical activity level, sleep disorders, and type of work that influenced intervention effects on cognitive function decline in hypertensive patients and to establish a decision tree model to analyze their predictive significance on the incidence of CFD in hypertensive patients. METHODS This cross-sectional study recruited patients with essential hypertension from several hospitals in Shandong Province from May 2022 to December 2022. Subject exclusion criteria included individuals diagnosed with congestive heart failure, valvular heart disease, cardiac surgery, hepatic and renal dysfunction, and malignancy. Recruitment is through multiple channels such as hospital medical and surgical outpatient clinics, wards, and health examination centers. Cognitive function was assessed using the Mini-Mental State Examination (MMSE), and sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI). Moreover, we obtained information on the patients' type of work through a questionnaire and their level of physical activity through the International Physical Activity Questionnaire (IPAQ). RESULTS The logistic regression analysis results indicate that sleep disorder is a significant risk factor for CFD in hypertension patients(OR:1.85, 95%CI:[1.16,2.94]), mental workers(OR:0.12, 95%CI: [0.04,0.37]) and those who perform both manual and mental workers(OR: 0.5, 95%CI: [0.29,0.86]) exhibit protective effects against CFD. Compared to low-intensity, moderate physical activity(OR: 0.53, 95%CI: [0.32,0.87]) and high-intensity physical activity(OR: 0.26, 95%CI: [0.12,0.58]) protects against CFD in hypertension patients. The importance of predictors in the decision tree model was ranked as follows: physical activity level (54%), type of work (27%), and sleep disorders (19%). The area under the ROC curves the decision tree model predicted was 0.72 [95% CI: 0.68 to 0.76]. CONCLUSION Moderate and high-intensity physical activity may reduce the risk of developing CFD in hypertensive patients. Sleep disorders is a risk factor for CFD in hypertensive patients. Hypertensive patients who engage in mental work and high-intensity physical activity effectively mitigate the onset of CFD in hypertensive patients.
Collapse
Affiliation(s)
- Mengdi Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huachen Jiao
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42, Wenhua West Road, Lixia District, Jinan, Shandong, China.
| | - Cong Wang
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42, Wenhua West Road, Lixia District, Jinan, Shandong, China
| | - Ying Qu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shunxin Lv
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dongsheng Zhao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xia Zhong
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Zhou Y, Li H, Liu X, Chi X, Gu Z, Cui B, Bergquist J, Wang B, Tian G, Yang C, Xu F, Mi J. The Combination of Quantitative Proteomics and Systems Genetics Analysis Reveals that PTN Is Associated with Sleep-Loss-Induced Cognitive Impairment. J Proteome Res 2023; 22:2936-2949. [PMID: 37611228 DOI: 10.1021/acs.jproteome.3c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Sleep loss is associated with cognitive dysfunction. However, the detailed mechanisms remain unclear. In this study, we established a para-chlorophenylalanine (PCPA)-induced insomniac mouse model with impaired cognitive function. Mass-spectrometry-based proteomics showed that the expression of 164 proteins was significantly altered in the hippocampus of the PCPA mice. To identify critical regulators among the potential markers, a transcriptome-wide association screening was performed in the BXD mice panel. Among the candidates, the expression of pleiotrophin (Ptn) was significantly associated with cognitive functions, indicating that Ptn-mediates sleep-loss-induced cognitive impairment. Gene co-expression analysis further revealed the potential mechanism by which Ptn mediates insomnia-induced cognitive impairment via the MAPK signaling pathway; that is, the decreased secretion of Ptn induced by insomnia leads to reduced binding to Ptprz1 on the postsynaptic membrane with the activation of the MAPK pathway via Fos and Nr4a1, further leading to the apoptosis of neurons. In addition, Ptn is genetically trans-regulated in the mouse hippocampus and implicated in neurodegenerative diseases in human genome-wide association studies. Our study provides a novel biomarker for insomnia-induced cognitive impairment and a new strategy for seeking neurological biomarkers by the integration of proteomics and systems genetics.
Collapse
Affiliation(s)
- Yutong Zhou
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Hui Li
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Xiaoya Liu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Xiaodong Chi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Zhaoxi Gu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Binsen Cui
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Jonas Bergquist
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
- Department of Chemistry-BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala 75124, Sweden
| | - Binsheng Wang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Geng Tian
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Chunhua Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Fuyi Xu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Jia Mi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong 264003, China
| |
Collapse
|
5
|
Wang W, Liu T, Zhang Y. An integrated targeted metabolomics and network pharmacology approach to exploring the mechanism of ellagic acid against sleep deprivation-induced memory impairment and anxiety. Digit Health 2023; 9:20552076231169846. [PMID: 37101588 PMCID: PMC10123898 DOI: 10.1177/20552076231169846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/29/2023] [Indexed: 04/28/2023] Open
Abstract
Background As a neuroprotective agent, ellagic acid (EA) is extremely beneficial. Our previous study found that EA can alleviate sleep deprivation (SD)-induced abnormal behaviors, although the mechanisms underlying this protective effect have not yet been fully elucidated. Objective An integrated network pharmacology and targeted metabolomics approach was utilized in this study to investigate the mechanism of EA against SD-induced memory impairment and anxiety. Methods Behavioral tests were conducted on mice after 72 h of SD. Hematoxylin and eosin staining and nissl staining were then carried out. Integration of network pharmacology and targeted metabolomics was performed. Eventually, the putative targets were further verified using molecular docking analyses and immunoblotting assays. Results The present study findings confirmed that EA ameliorated the behavioral abnormalities induced by SD and prevented histopathological and morphological damage to hippocampal neurons. Through multivariate analysis, clear clustering was obtained among different groups, and potential biomarkers were identified. Four key targets, catechol-O-methyltransferase (COMT), cytochrome P450 1B1 (CYP1B1), glutathione S-transferase A2 (GSTA2), and glutathione S-transferase P1 (GSTP1), as well as the related potential metabolites and metabolic pathways, were determined by further integrated analysis. Meanwhile, in-silico studies revealed that EA is well located inside the binding site of CYP1B1 and COMT. The experimental results further demonstrated that EA significantly reduced the increased expression of CYP1B1 and COMT caused by SD. Conclusion The findings of this study extended our understanding of the underlying mechanisms by which EA treats SD-induced memory impairment and anxiety, and suggested a novel approach to address the increased health risks associated with sleep loss.
Collapse
Affiliation(s)
- Wenjun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianlong Liu
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Yi Zhang, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
6
|
Vaseghi S, Mostafavijabbari A, Alizadeh MS, Ghaffarzadegan R, Kholghi G, Zarrindast MR. Intricate role of sleep deprivation in modulating depression: focusing on BDNF, VEGF, serotonin, cortisol, and TNF-α. Metab Brain Dis 2023; 38:195-219. [PMID: 36399239 DOI: 10.1007/s11011-022-01124-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022]
Abstract
In this review article, we aimed to discuss intricate roles of SD in modulating depression in preclinical and clinical studies. Decades of research have shown the inconsistent effects of SD on depression, focusing on SD duration. However, inconsistent role of SD seems to be more complicated, and SD duration cannot be the only one factor. Regarding this issue, we chose some important factors involved in the effects of SD on cognitive functions and mood including brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), serotonin, cortisol, and tumor necrosis factor-alpha (TNF-α). It was concluded that SD has a wide-range of inconsistent effects on BDNF, VEGF, serotonin, and cortisol levels. It was noted that BDNF diurnal rhythm is significantly involved in the modulatory role of SD in depression. Furthermore, the important role of VEGF in blood-brain barrier permeability which is involved in modulating depression was discussed. It was also noted that there is a negative correlation between cortisol and BDNF that modulates depression. Eventually, it was concluded that TNF-α regulates sleep/wake cycle and is involved in the vulnerability to cognitive and behavioral impairments following SD. TNF-α also increases the permeability of the blood-brain barrier which is accompanied by depressive behavior. In sum, it was suggested that future studies should focus on these mechanisms/factors to better investigate the reasons behind intricate roles of SD in modulating depression.
Collapse
Affiliation(s)
- Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| | | | - Mohammad-Sadegh Alizadeh
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
- Department of Cellular and Molecular Sciences, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reza Ghaffarzadegan
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Recovery Sleep Immediately after Prolonged Sleep Deprivation Stimulates the Transcription of Integrated Stress Response-Related Genes in the Liver of Male Rats. Clocks Sleep 2022; 4:623-632. [PMID: 36412581 PMCID: PMC9680379 DOI: 10.3390/clockssleep4040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
Sleep loss induces performance impairment and fatigue. The reactivation of human herpesvirus-6, which is related to the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), is one candidate for use as an objective biomarker of fatigue. Phosphorylated eIF2α is a key regulator in integrated stress response (ISR), an intracellular stress response system. However, the relation between sleep/sleep loss and ISR is unclear. The purpose of the current study was to evaluate the effect of prolonged sleep deprivation and recovery sleep on ISR-related gene expression in rat liver. Eight-week-old male Sprague-Dawley rats were subjected to a 96-hour sleep deprivation using a flowerpot technique. The rats were sacrificed, and the liver was collected immediately or 6 or 72 h after the end of the sleep deprivation. RT-qPCR was used to analyze the expression levels of ISR-related gene transcripts in the rat liver. The transcript levels of the Atf3, Ddit3, Hmox-1, and Ppp15a1r genes were markedly increased early in the recovery sleep period after the termination of sleep deprivation. These results indicate that both activation and inactivation of ISRs in the rat liver occur simultaneously in the early phase of recovery sleep.
Collapse
|
8
|
Associations of environmental and lifestyle factors with spatial navigation in younger and older adults. J Int Neuropsychol Soc 2022; 29:377-387. [PMID: 36039948 PMCID: PMC9971349 DOI: 10.1017/s1355617722000303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Advanced age is associated with prominent impairment in allocentric navigation dependent on the hippocampus. This study examined whether age-related impairment in allocentric navigation and strategy selection was associated with sleep disruption or circadian rest-activity fragmentation. Further, we examined whether associations with navigation were moderated by perceived stress and physical activity. METHOD Sleep fragmentation and total sleep time over the course of 1 week were assayed in younger (n = 42) and older (n = 37) adults via wrist actigraphy. Subsequently, participants completed cognitive mapping and route learning tasks, as well a measure of spontaneous navigation strategy selection. Measurements of perceived stress and an actigraphy-based index of physical activity were also obtained. Circadian rest-activity fragmentation was estimated via actigraphy post-hoc. RESULTS Age was associated with reduced cognitive mapping, route learning, allocentric strategy use, and total sleep time (ps < .01), replicating prior findings. Novel findings included that sleep fragmentation increased with advancing age (p = .009) and was associated with lower cognitive mapping (p = .022) within the older adult cohort. Total sleep time was not linearly associated with the navigation tasks (ps > .087). Post-hoc analyses revealed that circadian rest-activity fragmentation increased with advancing age within the older adults (p = .026) and was associated with lower cognitive mapping across the lifespan (p = .001) and within older adults (p = .005). Neither stress nor physical activity were robust moderators of sleep fragmentation associations with the navigation tasks (ps > .113). CONCLUSION Sleep fragmentation and circadian rest-activity fragmentation are potential contributing factors to age effects on cognitive mapping within older adults.
Collapse
|
9
|
Interaction of lithium and sleep deprivation on memory performance and anxiety-like behavior in male Wistar rats. Behav Brain Res 2022; 428:113890. [DOI: 10.1016/j.bbr.2022.113890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/12/2022] [Accepted: 04/07/2022] [Indexed: 12/28/2022]
|
10
|
Carrier M, Šimončičová E, St-Pierre MK, McKee C, Tremblay MÈ. Psychological Stress as a Risk Factor for Accelerated Cellular Aging and Cognitive Decline: The Involvement of Microglia-Neuron Crosstalk. Front Mol Neurosci 2021; 14:749737. [PMID: 34803607 PMCID: PMC8599581 DOI: 10.3389/fnmol.2021.749737] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
The relationship between the central nervous system (CNS) and microglia is lifelong. Microglia originate in the embryonic yolk sac during development and populate the CNS before the blood-brain barrier forms. In the CNS, they constitute a self-renewing population. Although they represent up to 10% of all brain cells, we are only beginning to understand how much brain homeostasis relies on their physiological functions. Often compared to a double-edged sword, microglia hold the potential to exert neuroprotective roles that can also exacerbate neurodegeneration once compromised. Microglia can promote synaptic growth in addition to eliminating synapses that are less active. Synaptic loss, which is considered one of the best pathological correlates of cognitive decline, is a distinctive feature of major depressive disorder (MDD) and cognitive aging. Long-term psychological stress accelerates cellular aging and predisposes to various diseases, including MDD, and cognitive decline. Among the underlying mechanisms, stress-induced neuroinflammation alters microglial interactions with the surrounding parenchymal cells and exacerbates oxidative burden and cellular damage, hence inducing changes in microglia and neurons typical of cognitive aging. Focusing on microglial interactions with neurons and their synapses, this review discusses the disrupted communication between these cells, notably involving fractalkine signaling and the triggering receptor expressed on myeloid cells (TREM). Overall, chronic stress emerges as a key player in cellular aging by altering the microglial sensome, notably via fractalkine signaling deficiency. To study cellular aging, novel positron emission tomography radiotracers for TREM and the purinergic family of receptors show interest for human study.
Collapse
Affiliation(s)
- Micaël Carrier
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Eva Šimončičová
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Marie-Kim St-Pierre
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
| | - Chloe McKee
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Molecular Medicine, Université Laval, Québec City, QC, Canada.,Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Zhu S, Zhang S, Pang L, Ou G, Zhu L, Ma J, Li R, Liu Y, Wang L, Wang L, Du L, Jin Y. Effects of armodafinil nanocrystal nasal hydrogel on recovery of cognitive function in sleep-deprived rats. Int J Pharm 2021; 597:120343. [DOI: 10.1016/j.ijpharm.2021.120343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 12/19/2022]
|
12
|
Subba R, Sandhir R, Singh SP, Mallick BN, Mondal AC. Pathophysiology linking depression and type 2 diabetes: Psychotherapy, physical exercise, and fecal microbiome transplantation as damage control. Eur J Neurosci 2021; 53:2870-2900. [PMID: 33529409 DOI: 10.1111/ejn.15136] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/10/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Diabetes increases the likelihood of developing depression and vice versa. Research on this bidirectional association has somewhat managed to delineate the interplay among implicated physiological processes. Still, further exploration is required in this context. This review addresses the comorbidity by investigating suspected common pathophysiological mechanisms. One such factor is psychological stress which disturbs the hypothalamic-pituitary-adrenal axis causing hormonal imbalance. This includes elevated cortisol levels, a common biomarker of both depression and diabetes. Disrupted insulin signaling drives the hampered neurotransmission of serotonin, dopamine, and norepinephrine. Also, adipokine hormones such as adiponectin, leptin, and resistin and the orexigenic hormone, ghrelin, are involved in both depression and T2DM. This disarray further interferes with physiological processes encompassing sleep, the gut-brain axis, metabolism, and mood stability. Behavioral coping mechanisms, such as unhealthy eating, mediate disturbed glucose homeostasis, and neuroinflammation. This is intricately linked to oxidative stress, redox imbalance, and mitochondrial dysfunction. However, interventions such as psychotherapy, physical exercise, fecal microbiota transplantation, and insulin-sensitizing agents can help to manage the distressing condition. The possibility of glucagon-like peptide 1 possessing a therapeutic role has also been discussed. Nonetheless, there stands an urgent need for unraveling new correlating targets and biological markers for efficient treatment.
Collapse
Affiliation(s)
- Rhea Subba
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rajat Sandhir
- Dept. of Biochemistry, Panjab University, Chandigarh, Punjab, India
| | - Surya Pratap Singh
- Dept. of Biochemistry, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | | | |
Collapse
|
13
|
Lyu X, Wang G, Pi Z, Wu L. Acute sleep deprivation leads to growth hormone (GH) resistance in rats. Gen Comp Endocrinol 2020; 296:113545. [PMID: 32622934 DOI: 10.1016/j.ygcen.2020.113545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/04/2020] [Accepted: 06/26/2020] [Indexed: 11/21/2022]
Abstract
Sleep is an essential physiological process that is required by all higher animals. Sleep has many important physiological functions. Previous studies have focused on the relationship between sleep and growth hormone secretion patterns. However, to date, whether sleep affects the biological activities of GH remains unclear. Here, we investigated this issue by evaluating the growth hormone receptor (GHR)-mediated intracellular signalling pathway in a sleep-deprived rat model. The results showed that GH's signalling ability is decreased in an acute sleep deprivation rat model. JAK2-STAT signalling was decreased significantly compared to that in control rats. We further analysed the possible molecular mechanism of GH signal inhibition in sleep-deprived rats. The results showed that the protein expression levels of SOCS3 (suppressors of cytokine signalling 3, which functions as the negative regulatory molecule of GH's signalling) increased; however, other negative regulatory proteins, such as protein phosphatase (PTP1B), did not change. In addition, acute sleep deprivation results in a significant increase in serum FFA (free fatty acid) level, which is also one of the factors contributing to GH inhibition. These findings suggest that GH signal resistance may be caused by a combination of factors. This study could serve as an important reference for related studies on the effect of sleep deprivation on endocrine systems.
Collapse
Affiliation(s)
- Xintong Lyu
- Department of Pediatric Gastroenterology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Guohua Wang
- Department of Neonatology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Zhuang Pi
- Department of Pediatric Gastroenterology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Lan Wu
- Department of Pediatric Gastroenterology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China.
| |
Collapse
|
14
|
Abstract
Sleep maintains the function of the entire body through homeostasis. Chronic sleep deprivation (CSD) is a prime health concern in the modern world. Previous reports have shown that CSD has profound negative effects on brain vasculature at both the cellular and molecular levels, and that this is a major cause of cognitive dysfunction and early vascular ageing. However, correlations among sleep deprivation (SD), brain vascular changes and ageing have barely been looked into. This review attempts to correlate the alterations in the levels of major neurotransmitters (acetylcholine, adrenaline, GABA and glutamate) and signalling molecules (Sirt1, PGC1α, FOXO, P66shc, PARP1) in SD and changes in brain vasculature, cognitive dysfunction and early ageing. It also aims to connect SD-induced loss in the number of dendritic spines and their effects on alterations in synaptic plasticity, cognitive disabilities and early vascular ageing based on data available in scientific literature. To the best of our knowledge, this is the first article providing a pathophysiological basis to link SD to brain vascular ageing.
Collapse
|
15
|
Erfanizadeh M, Noorafshan A, Namavar MR, Karbalay-Doust S, Talaei-Khozani T. Curcumin prevents neuronal loss and structural changes in the superior cervical (sympathetic) ganglion induced by chronic sleep deprivation, in the rat model. Biol Res 2020; 53:31. [PMID: 32650839 PMCID: PMC7350621 DOI: 10.1186/s40659-020-00300-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Background In modern societies, sleep deprivation is a serious health problem. This problem could be induced by a variety of reasons, including lifestyle habits or neurological disorders. Chronic sleep deprivation (CSD) could have complex biological consequences, such as changes in neural autonomic control, increased oxidative stress, and inflammatory responses. The superior cervical ganglion (SCG) is an important sympathetic component of the autonomic nervous system. CSD can lead to a wide range of neurological consequences in SCG, which mainly supply innervations to circadian system and other structures. As the active component of Curcuma longa, curcumin possesses many therapeutic properties; including neuroprotective. This study aimed to evaluate the effect of CSD on the SCG histomorphometrical changes and the protective effect of curcumin in preventing these changes. Methods Thirty-six male rats were randomly assigned to the control, curcumin, CSD, CSD + curcumin, grid floor control, and grid floor + curcumin groups. The CSD was induced by a modified multiple platform apparatus for 21 days and animals were sacrificed at the end of CSD or treatment, and their SCGs removed for stereological and TUNEL evaluations and also spatial arrangement of neurons in this structure. Results Concerning stereological findings, CSD significantly reduced the volume of SCG and its total number of neurons and satellite glial cells in comparison with the control animals (P < 0.05). Treatment of CSD with curcumin prevented these decreases. Furthermore, TUNEL evaluation showed significant apoptosis in the SCG cells in the CSD group, and treatment with curcumin significantly decreased this apoptosis (P < 0.01). This decrease in apoptosis was observed in all control groups that received curcumin. CSD also changed the spatial arrangement of ganglionic neurons into a random pattern, whereas treatment with curcumin preserved its regular pattern. Conclusions CSD could potentially induce neuronal loss and structural changes including random spatial distribution in the SCG neurons. Deleterious effects of sleep deprivation could be prevented by the oral administration of curcumin. Furthermore, the consumption of curcumin in a healthy person might lead to a reduction of cell death.
Collapse
Affiliation(s)
- Mahboobeh Erfanizadeh
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Noorafshan
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. .,Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, 71348-45794, Shiraz, Iran.
| | - Mohammad Reza Namavar
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. .,Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, 71348-45794, Shiraz, Iran. .,Clinical Neurology Research Center, Shiraz University of Medical Sciences, 71348-45794, Shiraz, Iran.
| | - Saied Karbalay-Doust
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, 71348-45794, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Laboratory for Stem Cell Research, Department of Anatomical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Rezaie M, Nasehi M, Vaseghi S, Mohammadi-Mahdiabadi-Hasani MH, Zarrindast MR, Nasiri Khalili MA. The protective effect of alpha lipoic acid (ALA) on social interaction memory, but not passive avoidance in sleep-deprived rats. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:2081-2091. [PMID: 32583046 DOI: 10.1007/s00210-020-01916-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/02/2020] [Indexed: 12/14/2022]
Abstract
Sleep is involved in maintaining energy, regulating heat, and recovering tissues. Furthermore, proper cognitive functions need sufficient sleep. Many studies have revealed the impairment effect of sleep deprivation (SD) on cognitive functions including learning and memory. Alpha lipoic acid (ALA) is a potent free radical scavenger, biological antioxidant, and neuroprotective agent. Furthermore, ALA improves learning and memory performance, decreases oxidative stress, and enhances antioxidant biomarkers. In this study, we aimed to investigate the effect of ALA on social interaction and passive avoidance memories in sleep-deprived rats. Total sleep deprivation (TSD) apparatus was used to induce SD (for 24 h). Three-chamber paradigm test and shuttle box apparatus were used to evaluate social interaction and passive avoidance memory, respectively. Rats' locomotor apparatus was used to assess locomotion. ALA was administered intraperitoneally at doses of 17 and 35 mg/kg for 3 consecutive days. The results showed SD impaired both types of memories. ALA at the dose of 35 mg/kg restored social interaction memory in sleep-deprived rats; while, at the dose of 17 mg/kg attenuated impairment effect of SD. Moreover, ALA at the dose of 35 mg/kg impaired passive avoidance memory in sham-SD rats and at both doses did not rescue passive avoidance memory in sleep-deprived rats. In conclusion, ALA showed impairment effect on passive avoidance memory, while improved social interaction memory in sleep-deprived rats.
Collapse
Affiliation(s)
- Maede Rezaie
- Department of Bioscience and Biotechnology, Malek Ashtar University of Technology, P.O. Box: 13145-784, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Nasiri Khalili
- Department of Bioscience and Biotechnology, Malek Ashtar University of Technology, P.O. Box: 13145-784, Tehran, Iran.
| |
Collapse
|
17
|
Owen JE, Veasey SC. Impact of sleep disturbances on neurodegeneration: Insight from studies in animal models. Neurobiol Dis 2020; 139:104820. [PMID: 32087293 PMCID: PMC7593848 DOI: 10.1016/j.nbd.2020.104820] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/31/2020] [Accepted: 02/18/2020] [Indexed: 01/18/2023] Open
Abstract
Chronic short sleep or extended wake periods are commonly observed in most industrialized countries. Previously neurobehavioral impairment following sleep loss was considered to be a readily reversible occurrence, normalized upon recovery sleep. Recent clinical studies suggest that chronic short sleep and sleep disruption may be risk factors for neurodegeneration. Animal models have been instrumental in determining whether disturbed sleep can injure the brain. We now understand that repeated periods of extended wakefulness across the typical sleep period and/or sleep fragmentation can have lasting effects on neurogenesis and select populations of neurons and glia. Here we provide a comprehensive overview of the advancements made using animal models of sleep loss to understand the extent and mechanisms of chronic short sleep induced neural injury.
Collapse
Affiliation(s)
- Jessica E Owen
- Chronobiology and Sleep Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sigrid C Veasey
- Chronobiology and Sleep Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Hwang L, Ko IG, Jin JJ, Kim SH, Kim CJ, Chang B, Rho JH, Moon EJ, Yi JW. Dexmedetomidine ameliorates memory impairment in sleep-deprived mice. Anim Cells Syst (Seoul) 2019; 23:371-379. [PMID: 31853373 PMCID: PMC6913667 DOI: 10.1080/19768354.2019.1688185] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023] Open
Abstract
The selective α2-adrenergic receptor agonist dexmedetomidine acts as an analgesic, sedative, and anesthetic adjuvant. The most common consequence of sleep deprivation is memory impairment. We investigated whether dexmedetomidine can counteract memory impairment caused by sleep deprivation and suppress the production of inflammatory factors. For inducing sleep deprivation, adult male mice were placed inside a water cage containing 15 platforms immersed in water up to 1 cm for 7 days. One day after sleep deprivation, dexmedetomidine at the respective dosage (5, 10, and 20 μg/kg) and α2-adrenoceptor antagonist atipamezole (250 μg/kg) were intraperitoneally injected into the mice, once per day for six days. The step-down avoidance task and the Morris water maze test were performed. Western blot analysis was performed to determine the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, brain-derived neurotrophic factor (BDNF), tyrosine kinase B (TrkB), nuclear transcription factor-κB (NF-κB), inhibitor of κBα (IκBα), and ionized calcium binding adapter molecule I (Iba-1) in the hippocampus. Immunohistochemistry was performed for the determination of Ki-67 and glial fibrillary acidic protein (GFAP) expression in the hippocampal dentate gyrus. Dexmedetomidine ameliorated sleep deprivation-induced deterioration of short-term memory and spatial learning ability. Dexmedetomidine inhibited production of inflammatory mediators caused by sleep deprivation. Dexmedetomidine also prevented the decrease in BDNF, TrkB expression, and cell proliferation induced by sleep deprivation. Dexmedetomidine could be used to counteract the neuropathological effects of sleep deprivation.
Collapse
Affiliation(s)
- Lakkyong Hwang
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Il-Gyu Ko
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jun-Jang Jin
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sang-Hoon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Boksoon Chang
- Department of Pulmonary and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jeong Ho Rho
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Eun-Jin Moon
- Department of Anesthesiology and Pain Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Woo Yi
- Department of Anesthesiology and Pain Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Shao XC. Effect of dexmedetomidine and sufentanil on sleep quality and incidence of nausea and vomiting in patients with analgesia after laparoscopic surgery. Shijie Huaren Xiaohua Zazhi 2019; 27:1290-1294. [DOI: 10.11569/wcjd.v27.i20.1290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Due to the advantages of minimal invasion, quick recovery, and fewer complications, laparoscopic technique has been widely used in clinical practice, especially in gynecological surgery. Opioid analgesics are commonly used for postoperative analgesia. However, despite good effects, opioid analgesics can result in sleep disorder and neuroendocrine and cardiovascular complications. Therefore, it is essential to find analgesics with good analgesia effects and few side effects.
AIM To observe the effect of dexmedetomidine and sufentanil on sleep quality and incidence of nausea and vomiting in patients with analgesia after laparoscopic surgery.
METHODS From June 2017 to June 2019, 60 patients who underwent gynecological laparoscopic surgery at our hospital were selected and randomly divided into either a control group or an observation group, with 30 cases in each group. Anesthesia induction was adopted in both groups of patients, and a vein analgesia pump was applied 30 min before the completion of surgery. Both groups were given sufentanil 2.0 μg/kg, and the observation group was additionally given dexmedetomidine 200 μg/kg. The pain degree, sedation degree, sufentanil cumulative consumption, subjective score of sleep quality, average daily sleep time, sleep problem index (SPI), and postoperative incidence of nausea and vomiting in the two groups were compared.
RESULTS Compared with the control group, postoperative vision algetic standard scores at different time points significantly decreased (P < 0.05), Ramsay sedation scale scores increased significantly (P < 0.05), and sufentanil cumulative consumption decreased significantly (P < 0.05); postoperative subjective sleep quality scores on the first and second nights as well as average daily sleep time in the first week after surgery significantly increased (P < 0.05), and SPI significantly decreased (P < 0.05); and the incidence of nausea and vomiting at different postoperative points was significantly reduced (P < 0.05) in the observation group.
CONCLUSION Dexmedetomidine and sufentanil can improve the analgesic effect after gynecological laparoscopic surgery, significantly improve the sleep quality of patients and reduce the incidence of adverse reactions of nausea and vomiting, which is conducive to the rapid recovery of patients.
Collapse
Affiliation(s)
- Xue-Cheng Shao
- Department of Anesthesiology, Maternal and Child Health Hospital of Dongyang, Zhejiang Province, Dongyang 322100, Zhejiang Province, China
| |
Collapse
|
20
|
Rosa JM, Pazini FL, Olescowicz G, Camargo A, Moretti M, Gil-Mohapel J, Rodrigues ALS. Prophylactic effect of physical exercise on Aβ 1-40-induced depressive-like behavior: Role of BDNF, mTOR signaling, cell proliferation and survival in the hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109646. [PMID: 31078612 DOI: 10.1016/j.pnpbp.2019.109646] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is characterized by progressive cognitive impairments as well as non-cognitive symptoms such as depressed mood. Physical exercise has been proposed as a preventive strategy against AD and depression, an effect that may be related, at least partially, to its ability to prevent impairments on cell proliferation and neuronal survival in the hippocampus, a structure implicated in both cognition and affective behavior. Here, we investigated the ability of treadmill exercise (4 weeks) to counteract amyloid β1-40 peptide-induced depressive-like and anxiety-like behavior in mice. Moreover, we addressed the role of the BDNF/mTOR intracellular signaling pathway as well as hippocampal cell proliferation and survival in the effects of physical exercise and/or Aβ1-40. Aβ1-40 administration (400 pmol/mouse, i.c.v.) increased immobility time and reduced the latency to immobility in the forced swim test, a finding indicative of depressive-like behavior. In addition, Aβ1-40 administration also decreased time spent in the center of the open field and increased grooming and defecation, alterations indicative of anxiety-like behavior. These behavioral alterations were accompanied by a reduction in the levels of mature BDNF and mTOR (Ser2448) phosphorylation in the hippocampus. In addition, Aß1-40 administration reduced cell proliferation and survival in the ventral, dorsal and entire dentate gyrus of the hippocampus. Importantly, most of these behavioral, neurochemical and structural impairments induced by Aβ1-40 were not observed in mice subjected to 4 weeks of treadmill exercise. These findings indicate that physical exercise has the potential to prevent the occurrence of early emotional disturbances associated with AD and this appears to be mediated, at least in part, by modulation of hippocampal BDNF and mTOR signaling as well as through promotion of cell proliferation and survival in the hippocampal DG.
Collapse
Affiliation(s)
- Julia M Rosa
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Francis L Pazini
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Gislaine Olescowicz
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Anderson Camargo
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Morgana Moretti
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Joana Gil-Mohapel
- Division of Medical Sciences, University of Victoria, Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, British Columbia, Canada
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina 88040-900, Brazil.
| |
Collapse
|
21
|
The orphan nuclear receptor TLX: an emerging master regulator of cross-talk between microglia and neural precursor cells. Neuronal Signal 2019; 3:NS20180208. [PMID: 32271856 PMCID: PMC7104320 DOI: 10.1042/ns20180208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation and neurogenesis have both been the subject of intensive investigation over the past 20 years. The sheer complexity of their regulation and their ubiquity in various states of health and disease have sometimes obscured the progress that has been made in unraveling their mechanisms and regulation. A recent study by Kozareva et al. (Neuronal Signaling (2019) 3), provides evidence that the orphan nuclear receptor TLX is central to communication between microglia and neural precursor cells and could help us understand how inflammation, mediated by microglia, influences the development of new neurons in the adult hippocampus. Here, we put recent studies on TLX into the context of what is known about adult neurogenesis and microglial activation in the brain, along with the many hints that these processes must be inter-related.
Collapse
|
22
|
Feng F, Yu S, Wang Z, Wang J, Park J, Wilson G, Deng M, Hu Y, Yan B, Kong J. Non-pharmacological and pharmacological interventions relieve insomnia symptoms by modulating a shared network: A controlled longitudinal study. Neuroimage Clin 2019; 22:101745. [PMID: 30878612 PMCID: PMC6423470 DOI: 10.1016/j.nicl.2019.101745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/10/2019] [Accepted: 03/02/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Primary insomnia (PI) is one of the most common complaints among the general population. Both non-pharmacological and pharmacological therapies have proven effective in treating primary insomnia. However, the underlying mechanism of treatment remains unclear, and no studies have compared the underlying mechanisms of different treatments. METHODS In this study, we investigated gray matter volume (GMV) and resting-state functional connectivity (rsFC) changes following both pharmacological and non-pharmacological treatments in patients with PI. A total of 67 PI patients were randomized into benzodiazepine treatment, cupping treatment, or a wait-list control group for 4 weeks. The Pittsburgh Sleep Quality Index (PSQI), gray matter volume (GMV), and resting-state functional connectivity (rsFC) of the hippocampus were measured at the beginning and end of the experiment. RESULTS We found 1) significantly decreased PSQI scores in the cupping and benzodiazepine treatment groups compared to the control group with no significant differences between the two treatment groups; 2) significant GMV increases in the cupping group compared to the control group at the right hippocampus after 4 weeks of treatment; 3) significantly increased rsFC between the right hippocampus and left rostral anterior cingulate cortex/medial prefrontal cortex (rACC/mPFC) in the two treatment groups, which was significantly associated with PSQI score decreases. DISCUSSION Our findings suggest that benzodiazepine and cupping may share a common mechanism to relieve the symptoms of patients with PI.
Collapse
Affiliation(s)
- Fen Feng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Siyi Yu
- Department of Acupuncture & Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Psychiatry, Massachusetts General Hospital, Charlestown 02129, MA, USA
| | - Zhengyan Wang
- Sichuan Integrative Medicine Hospital, Chengdu 610041, China
| | - Jialin Wang
- College of nursing, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Joel Park
- Department of Psychiatry, Massachusetts General Hospital, Charlestown 02129, MA, USA
| | - Georgia Wilson
- Department of Psychiatry, Massachusetts General Hospital, Charlestown 02129, MA, USA
| | - Mou Deng
- Department of mathematics and statistics, Sichuan Institute of Industrial Technology, Deyang 618005, Sichuan, China
| | - Youping Hu
- Department of Acupuncture & Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Bohua Yan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Charlestown 02129, MA, USA.
| |
Collapse
|
23
|
Murata Y, Matsuda H, Mikami Y, Hirose S, Mori M, Ohe K, Mine K, Enjoji M. Chronic administration of quetiapine stimulates dorsal hippocampal proliferation and immature neurons of male rats, but does not reverse psychosocial stress-induced hyponeophagic behavior. Psychiatry Res 2019; 272:411-418. [PMID: 30611957 DOI: 10.1016/j.psychres.2018.12.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/25/2018] [Accepted: 12/26/2018] [Indexed: 12/14/2022]
Abstract
Quetiapine, an atypical antipsychotic, has been used for the treatment of several neuropsychiatric disorders. However, the underlying mechanism of the broad therapeutic range of quetiapine remains unknown. We previously reported that several aversive conditions affect dorsal/ventral hippocampal neurogenesis differentially. This study was aimed to elucidate the positive effects of chronic treatment with quetiapine on regional differences in hippocampal proliferation and immature neurons and behavioral changes under psychosocial stress using the Resident-Intruder paradigm. Twenty-three male Sprague-Dawley rats were intraperitoneally administered a vehicle or quetiapine (10 mg/kg) once daily for 28 days. Two weeks after starting the injections, animals were exposed to intermittent social defeat (four times over two weeks). The behavioral effects of stress and quetiapine were evaluated by the Novelty-Suppressed Feeding (NSF) test. The stereological quantification of hippocampal neurogenesis was estimated using immunostaining with Ki-67 and doublecortin (DCX). Chronic quetiapine treatment stimulated the Ki-67- and DCX-positive cells in the dorsal hippocampus, but not in the ventral subregion. The stress-induced changes in neurogenesis and hyponeophagic behavior were not reversed by repeated administration of quetiapine. Future study with additional behavioral tests is needed to elucidate the functional significance of the quetiapine-induced increase in dorsal hippocampal neurogenesis.
Collapse
Affiliation(s)
- Yusuke Murata
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Hiroko Matsuda
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Yoko Mikami
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Shiori Hirose
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Masayoshi Mori
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kenji Ohe
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kazunori Mine
- Faculty of Neurology and Psychiatry, Mito Hospital, 4-1-1, Shime-Higashi, Shime-Machi, Kasuya-Gun, Fukuoka 811-2243, Japan
| | - Munechika Enjoji
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
24
|
Koyanagi I, Akers KG, Vergara P, Srinivasan S, Sakurai T, Sakaguchi M. Memory consolidation during sleep and adult hippocampal neurogenesis. Neural Regen Res 2019; 14:20-23. [PMID: 30531064 PMCID: PMC6263001 DOI: 10.4103/1673-5374.243695] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In anticipation of the massive burden of neurodegenerative disease within super-aged societies, great efforts have been made to utilize neural stem and progenitor cells for regenerative medicine. The capacity of intrinsic neural stem and progenitor cells to regenerate damaged brain tissue remains unclear, due in part to the lack of knowledge about how these newly born neurons integrate into functional circuitry. As sizable integration of adult-born neurons naturally occurs in the dentate gyrus region of the hippocampus, clarifying the mechanisms of this process could provide insights for applying neural stem and progenitor cells in clinical settings. There is convincing evidence of functional correlations between adult-born neurons and memory consolidation and sleep; therefore, we describe some new advances that were left untouched in our recent review.
Collapse
Affiliation(s)
- Iyo Koyanagi
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| | | | - Pablo Vergara
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| | - Sakthivel Srinivasan
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takeshi Sakurai
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masanori Sakaguchi
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|