1
|
Piet A, Ponvert N, Ollerenshaw D, Garrett M, Groblewski PA, Olsen S, Koch C, Arkhipov A. Behavioral strategy shapes activation of the Vip-Sst disinhibitory circuit in visual cortex. Neuron 2024; 112:1876-1890.e4. [PMID: 38447579 PMCID: PMC11156560 DOI: 10.1016/j.neuron.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/17/2023] [Accepted: 02/08/2024] [Indexed: 03/08/2024]
Abstract
In complex environments, animals can adopt diverse strategies to find rewards. How distinct strategies differentially engage brain circuits is not well understood. Here, we investigate this question, focusing on the cortical Vip-Sst disinhibitory circuit between vasoactive intestinal peptide-postive (Vip) interneurons and somatostatin-positive (Sst) interneurons. We characterize the behavioral strategies used by mice during a visual change detection task. Using a dynamic logistic regression model, we find that individual mice use mixtures of a visual comparison strategy and a statistical timing strategy. Separately, mice also have periods of task engagement and disengagement. Two-photon calcium imaging shows large strategy-dependent differences in neural activity in excitatory, Sst inhibitory, and Vip inhibitory cells in response to both image changes and image omissions. In contrast, task engagement has limited effects on neural population activity. We find that the diversity of neural correlates of strategy can be understood parsimoniously as the increased activation of the Vip-Sst disinhibitory circuit during the visual comparison strategy, which facilitates task-appropriate responses.
Collapse
Affiliation(s)
- Alex Piet
- Allen Institute, Mindscope Program, Seattle, WA, USA.
| | - Nick Ponvert
- Allen Institute, Mindscope Program, Seattle, WA, USA
| | | | | | | | - Shawn Olsen
- Allen Institute, Mindscope Program, Seattle, WA, USA
| | - Christof Koch
- Allen Institute, Mindscope Program, Seattle, WA, USA
| | | |
Collapse
|
2
|
Chong HR, Ranjbar-Slamloo Y, Ho MZH, Ouyang X, Kamigaki T. Functional alterations of the prefrontal circuit underlying cognitive aging in mice. Nat Commun 2023; 14:7254. [PMID: 37945561 PMCID: PMC10636129 DOI: 10.1038/s41467-023-43142-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Executive function is susceptible to aging. How aging impacts the circuit-level computations underlying executive function remains unclear. Using calcium imaging and optogenetic manipulation during memory-guided behavior, we show that working-memory coding and the relevant recurrent connectivity in the mouse medial prefrontal cortex (mPFC) are altered as early as middle age. Population activity in the young adult mPFC exhibits dissociable yet overlapping patterns between tactile and auditory modalities, enabling crossmodal memory coding concurrent with modality-dependent coding. In middle age, however, crossmodal coding remarkably diminishes while modality-dependent coding persists, and both types of coding decay in advanced age. Resting-state functional connectivity, especially among memory-coding neurons, decreases already in middle age, suggesting deteriorated recurrent circuits for memory maintenance. Optogenetic inactivation reveals that the middle-aged mPFC exhibits heightened vulnerability to perturbations. These findings elucidate functional alterations of the prefrontal circuit that unfold in middle age and deteriorate further as a hallmark of cognitive aging.
Collapse
Affiliation(s)
- Huee Ru Chong
- Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Yadollah Ranjbar-Slamloo
- Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Malcolm Zheng Hao Ho
- Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
- IGP-Neuroscience, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, 308232, Singapore
| | - Xuan Ouyang
- Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Tsukasa Kamigaki
- Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
| |
Collapse
|
3
|
Bastos G, Holmes JT, Ross JM, Rader AM, Gallimore CG, Wargo JA, Peterka DS, Hamm JP. Top-down input modulates visual context processing through an interneuron-specific circuit. Cell Rep 2023; 42:113133. [PMID: 37708021 PMCID: PMC10591868 DOI: 10.1016/j.celrep.2023.113133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/17/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Visual stimuli that deviate from the current context elicit augmented responses in the primary visual cortex (V1). These heightened responses, known as "deviance detection," require local inhibition in the V1 and top-down input from the anterior cingulate area (ACa). Here, we investigated the mechanisms by which the ACa and V1 interact to support deviance detection. Local field potential recordings in mice during an oddball paradigm showed that ACa-V1 synchrony peaks in the theta/alpha band (≈10 Hz). Two-photon imaging in the V1 revealed that mainly pyramidal neurons exhibited deviance detection, while contextually redundant stimuli increased vasoactive intestinal peptide (VIP)-positive interneuron (VIP) activity and decreased somatostatin-positive interneuron (SST) activity. Optogenetic drive of ACa-V1 inputs at 10 Hz activated V1-VIPs but inhibited V1-SSTs, mirroring the dynamics present during the oddball paradigm. Chemogenetic inhibition of V1-VIPs disrupted Aca-V1 synchrony and deviance detection in the V1. These results outline temporal and interneuron-specific mechanisms of top-down modulation that support visual context processing.
Collapse
Affiliation(s)
- Georgia Bastos
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA; Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA
| | - Jacob T Holmes
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA
| | - Jordan M Ross
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA; Center for Behavioral Neuroscience, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA
| | - Anna M Rader
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA; Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA
| | - Connor G Gallimore
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA
| | - Joseph A Wargo
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA
| | - Darcy S Peterka
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Jordan P Hamm
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA; Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA; Center for Behavioral Neuroscience, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, USA.
| |
Collapse
|
4
|
Cutler AJ, Mattingly GW, Maletic V. Understanding the mechanism of action and clinical effects of neuroactive steroids and GABAergic compounds in major depressive disorder. Transl Psychiatry 2023; 13:228. [PMID: 37365161 PMCID: PMC10293235 DOI: 10.1038/s41398-023-02514-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/12/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
The pathophysiology of major depressive disorder (MDD) is thought to result from impaired connectivity between key brain networks. Gamma-aminobutyric acid (GABA) is the key inhibitory neurotransmitter in the brain, working primarily via GABAA receptors, with an important role in virtually all physiologic functions in the brain. Some neuroactive steroids (NASs) are positive allosteric modulators (PAMs) of GABAA receptors and potentiate phasic and tonic inhibitory responses via activation of synaptic and extrasynaptic GABAA receptors, respectively. This review first discusses preclinical and clinical data that support the association of depression with diverse defects in the GABAergic system of neurotransmission. Decreased levels of GABA and NASs have been observed in adults with depression compared with healthy controls, while treatment with antidepressants normalized the altered levels of GABA and NASs. Second, as there has been intense interest in treatment approaches for depression that target dysregulated GABAergic neurotransmission, we discuss NASs approved or currently in clinical development for the treatment of depression. Brexanolone, an intravenous NAS and a GABAA receptor PAM, is approved by the U.S. Food and Drug Administration for the treatment of postpartum depression (PPD) in patients 15 years and older. Other NASs include zuranolone, an investigational oral GABAA receptor PAM, and PH10, which acts on nasal chemosensory receptors; clinical data to date have shown improvement in depressive symptoms with these investigational NASs in adults with MDD or PPD. Finally, the review discusses how NAS GABAA receptor PAMs may potentially address the unmet need for novel and effective treatments with rapid and sustained antidepressant effects in patients with MDD.
Collapse
|
5
|
Ribeiro FM, Castelo-Branco M, Gonçalves J, Martins J. Visual Cortical Plasticity: Molecular Mechanisms as Revealed by Induction Paradigms in Rodents. Int J Mol Sci 2023; 24:ijms24054701. [PMID: 36902131 PMCID: PMC10003432 DOI: 10.3390/ijms24054701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Assessing the molecular mechanism of synaptic plasticity in the cortex is vital for identifying potential targets in conditions marked by defective plasticity. In plasticity research, the visual cortex represents a target model for intense investigation, partly due to the availability of different in vivo plasticity-induction protocols. Here, we review two major protocols: ocular-dominance (OD) and cross-modal (CM) plasticity in rodents, highlighting the molecular signaling pathways involved. Each plasticity paradigm has also revealed the contribution of different populations of inhibitory and excitatory neurons at different time points. Since defective synaptic plasticity is common to various neurodevelopmental disorders, the potentially disrupted molecular and circuit alterations are discussed. Finally, new plasticity paradigms are presented, based on recent evidence. Stimulus-selective response potentiation (SRP) is one of the paradigms addressed. These options may provide answers to unsolved neurodevelopmental questions and offer tools to repair plasticity defects.
Collapse
Affiliation(s)
- Francisco M. Ribeiro
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Joana Gonçalves
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence:
| | - João Martins
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
6
|
Bastos G, Holmes JT, Ross JM, Rader AM, Gallimore CG, Peterka DS, Hamm JP. A frontosensory circuit for visual context processing is synchronous in the theta/alpha band. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.530044. [PMID: 36865311 PMCID: PMC9980180 DOI: 10.1101/2023.02.25.530044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Visual processing is strongly influenced by context. Stimuli that deviate from contextual regularities elicit augmented responses in primary visual cortex (V1). These heightened responses, known as "deviance detection," require both inhibition local to V1 and top-down modulation from higher areas of cortex. Here we investigated the spatiotemporal mechanisms by which these circuit elements interact to support deviance detection. Local field potential recordings in mice in anterior cingulate area (ACa) and V1 during a visual oddball paradigm showed that interregional synchrony peaks in the theta/alpha band (6-12 Hz). Two-photon imaging in V1 revealed that mainly pyramidal neurons exhibited deviance detection, while vasointestinal peptide-positive interneurons (VIPs) increased activity and somatostatin-positive interneurons (SSTs) decreased activity (adapted) to redundant stimuli (prior to deviants). Optogenetic drive of ACa-V1 inputs at 6-12 Hz activated V1-VIPs but inhibited V1-SSTs, mirroring the dynamics present during the oddball paradigm. Chemogenetic inhibition of VIP interneurons disrupted ACa-V1 synchrony and deviance detection responses in V1. These results outline spatiotemporal and interneuron-specific mechanisms of top-down modulation that support visual context processing.
Collapse
Affiliation(s)
- Georgia Bastos
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
| | - Jacob T Holmes
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
| | - Jordan M Ross
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
- Center for Behavioral Neuroscience, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
| | - Anna M Rader
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
| | - Connor G Gallimore
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
| | - Darcy S Peterka
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Jordan P Hamm
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
- Center for Behavioral Neuroscience, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303
| |
Collapse
|
7
|
Dysfunction of Trio GEF1 involves in excitatory/inhibitory imbalance and autism-like behaviors through regulation of interneuron migration. Mol Psychiatry 2021; 26:7621-7640. [PMID: 33963279 DOI: 10.1038/s41380-021-01109-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/24/2021] [Accepted: 04/08/2021] [Indexed: 02/03/2023]
Abstract
Autism spectrum disorders (ASDs) are a group of highly inheritable neurodevelopmental disorders. Functional mutations in TRIO, especially in the GEF1 domain, are strongly implicated in ASDs, whereas the underlying neurobiological pathogenesis and molecular mechanisms remain to be clarified. Here we characterize the abnormal morphology and behavior of embryonic migratory interneurons (INs) upon Trio deficiency or GEF1 mutation in mice, which are mediated by the Trio GEF1-Rac1 activation and involved in SDF1α/CXCR4 signaling. In addition, the migration deficits are specifically associated with altered neural microcircuit, decreased inhibitory neurotransmission, and autism-like behaviors, which are reminiscent of some features observed in patients with ASDs. Furthermore, restoring the excitatory/inhibitory (E/I) imbalance via activation of GABA signaling rescues autism-like deficits. Our findings demonstrate a critical role of Trio GEF1 mediated signaling in IN migration and E/I balance, which are related to autism-related behavioral phenotypes.
Collapse
|
8
|
Jobson DD, Hase Y, Clarkson AN, Kalaria RN. The role of the medial prefrontal cortex in cognition, ageing and dementia. Brain Commun 2021; 3:fcab125. [PMID: 34222873 PMCID: PMC8249104 DOI: 10.1093/braincomms/fcab125] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 01/18/2023] Open
Abstract
Humans require a plethora of higher cognitive skills to perform executive functions, such as reasoning, planning, language and social interactions, which are regulated predominantly by the prefrontal cortex. The prefrontal cortex comprises the lateral, medial and orbitofrontal regions. In higher primates, the lateral prefrontal cortex is further separated into the respective dorsal and ventral subregions. However, all these regions have variably been implicated in several fronto-subcortical circuits. Dysfunction of these circuits has been highlighted in vascular and other neurocognitive disorders. Recent advances suggest the medial prefrontal cortex plays an important regulatory role in numerous cognitive functions, including attention, inhibitory control, habit formation and working, spatial or long-term memory. The medial prefrontal cortex appears highly interconnected with subcortical regions (thalamus, amygdala and hippocampus) and exerts top-down executive control over various cognitive domains and stimuli. Much of our knowledge comes from rodent models using precise lesions and electrophysiology readouts from specific medial prefrontal cortex locations. Although, anatomical disparities of the rodent medial prefrontal cortex compared to the primate homologue are apparent, current rodent models have effectively implicated the medial prefrontal cortex as a neural substrate of cognitive decline within ageing and dementia. Human brain connectivity-based neuroimaging has demonstrated that large-scale medial prefrontal cortex networks, such as the default mode network, are equally important for cognition. However, there is little consensus on how medial prefrontal cortex functional connectivity specifically changes during brain pathological states. In context with previous work in rodents and non-human primates, we attempt to convey a consensus on the current understanding of the role of predominantly the medial prefrontal cortex and its functional connectivity measured by resting-state functional MRI in ageing associated disorders, including prodromal dementia states, Alzheimer's disease, post-ischaemic stroke, Parkinsonism and frontotemporal dementia. Previous cross-sectional studies suggest that medial prefrontal cortex functional connectivity abnormalities are consistently found in the default mode network across both ageing and neurocognitive disorders such as Alzheimer's disease and vascular cognitive impairment. Distinct disease-specific patterns of medial prefrontal cortex functional connectivity alterations within specific large-scale networks appear to consistently feature in the default mode network, whilst detrimental connectivity alterations are associated with cognitive impairments independently from structural pathological aberrations, such as grey matter atrophy. These disease-specific patterns of medial prefrontal cortex functional connectivity also precede structural pathological changes and may be driven by ageing-related vascular mechanisms. The default mode network supports utility as a potential biomarker and therapeutic target for dementia-associated conditions. Yet, these associations still require validation in longitudinal studies using larger sample sizes.
Collapse
Affiliation(s)
- Dan D Jobson
- Translational and Clinical Research Institute,
Newcastle University, Campus for Ageing & Vitality,
Newcastle upon Tyne NE4 5PL, UK
| | - Yoshiki Hase
- Translational and Clinical Research Institute,
Newcastle University, Campus for Ageing & Vitality,
Newcastle upon Tyne NE4 5PL, UK
| | - Andrew N Clarkson
- Department of Anatomy, Brain Health Research Centre
and Brain Research New Zealand, University of Otago, Dunedin 9054,
New Zealand
| | - Rajesh N Kalaria
- Translational and Clinical Research Institute,
Newcastle University, Campus for Ageing & Vitality,
Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
9
|
Guet-McCreight A, Skinner FK, Topolnik L. Common Principles in Functional Organization of VIP/Calretinin Cell-Driven Disinhibitory Circuits Across Cortical Areas. Front Neural Circuits 2020; 14:32. [PMID: 32581726 PMCID: PMC7296096 DOI: 10.3389/fncir.2020.00032] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022] Open
Abstract
In the brain, there is a vast diversity of different structures, circuitries, cell types, and cellular genetic expression profiles. While this large diversity can often occlude a clear understanding of how the brain works, careful analyses of analogous studies performed across different brain areas can hint at commonalities in neuronal organization. This in turn can yield a fundamental understanding of necessary circuitry components that are crucial for how information is processed across the brain. In this review, we outline recent in vivo and in vitro studies that have been performed in different cortical areas to characterize the vasoactive intestinal polypeptide (VIP)- and/or calretinin (CR)-expressing cells that specialize in inhibiting GABAergic interneurons. In doing so, we make the case that, across cortical structures, interneuron-specific cells commonly specialize in the synaptic disinhibition of excitatory neurons, which can ungate the integration and plasticity of external inputs onto excitatory neurons. In line with this, activation of interneuron- specific cells enhances animal performance across a variety of behavioral tasks that involve learning, memory formation, and sensory discrimination, and may represent a key target for therapeutic interventions under different pathological conditions. As such, interneuron-specific cells across different cortical structures are an essential network component for information processing and normal brain function.
Collapse
Affiliation(s)
- Alexandre Guet-McCreight
- Krembil Brain Institute - Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Frances K Skinner
- Krembil Brain Institute - Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| | - Lisa Topolnik
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, QC, Canada.,Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, QC, Canada
| |
Collapse
|
10
|
Kamigaki T. Prefrontal circuit organization for executive control. Neurosci Res 2018; 140:23-36. [PMID: 30227166 DOI: 10.1016/j.neures.2018.08.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/21/2018] [Accepted: 08/29/2018] [Indexed: 10/28/2022]
Abstract
The essential role of executive control is to select the most appropriate behavior among other candidates depending on the sensory information (exogenous information) and on the subject's internal state (endogenous information). Here I review series of the evidence implicating that the rodent prefrontal cortex (PFC) evaluates and compares the expected outcome for candidate actions that are automatically primed by exogenous and endogenous information, and selects the most appropriate action while inhibiting the others, with different PFC subregions contributing to distinct aspects of the computation via differential recruitments of the distributed networks. The recurrent nature of the PFC networks further facilitates the computation by integrating bottom-up signals over a long timescale. I also overview the local circuit organization in the PFC, where vasoactive intestinal peptide-positive (VIP) GABAergic interneurons are tightly linked with the cholinergic system and play significant roles in regulating executive control signals. The empirical evidence inspires the disinhibitory module hypothesis of the PFC organization that a group of pyramidal neurons and interneurons forms a disinhibitory module with similar task-variable selectivity in the PFC, and long-range inputs and neuromodulations in these modules exert a distributed gain modulation of the ongoing executive control signals by adjusting VIP neuron activity.
Collapse
Affiliation(s)
- Tsukasa Kamigaki
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|