1
|
Hashimoto J, Fujita E, Tanimoto K, Kondo S, Matsumoto-Miyai K. Effects of Cardiac Glycoside Digoxin on Dendritic Spines and Motor Learning Performance in Mice. Neuroscience 2024; 541:77-90. [PMID: 38278474 DOI: 10.1016/j.neuroscience.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Synapse formation following the generation of postsynaptic dendritic spines is essential for motor learning and functional recovery after brain injury. The C-terminal fragment of agrin cleaved by neurotrypsin induces dendritic spine formation in the adult hippocampus. Since the α3 subunit of sodium-potassium ATPase (Na/K ATPase) is a neuronal receptor for agrin in the central nervous system, cardiac glycosides might facilitate dendritic spine formation and subsequent improvements in learning. This study investigated the effects of cardiac glycoside digoxin on dendritic spine turnover and learning performance in mice. Golgi-Cox staining revealed that intraperitoneal injection of digoxin less than its IC50 in the brain significantly increased the density of long spines (≥2 µm) in the cerebral cortex in wild-type mice and neurotrypsin-knockout (NT-KO) mice showing impairment of activity-dependent spine formation. Although the motor learning performance of NT-KO mice was significantly lower than control wild-type mice under the control condition, low doses of digoxin enhanced performance to a similar degree in both strains. In NT-KO mice, lower digoxin doses equivalent to clinical doses also significantly improved motor learning performance. These data suggest that lower doses of digoxin could modify dendritic spine formation or recycling and facilitate motor learning in compensation for the disruption of neurotrypsin-agrin pathway.
Collapse
Affiliation(s)
- Junichi Hashimoto
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, 3-7-30 Habikino, Habikino-City, Osaka 583-8555, Japan
| | - Erika Fujita
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, 3-7-30 Habikino, Habikino-City, Osaka 583-8555, Japan
| | - Keisuke Tanimoto
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, 3-7-30 Habikino, Habikino-City, Osaka 583-8555, Japan
| | - Suzuo Kondo
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, 3-7-30 Habikino, Habikino-City, Osaka 583-8555, Japan
| | - Kazumasa Matsumoto-Miyai
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, 3-7-30 Habikino, Habikino-City, Osaka 583-8555, Japan.
| |
Collapse
|
2
|
Mastella MH, Roggia I, Turra BO, de Afonso Bonotto NC, Teixeira CF, Pulcinelli DLF, Meira GM, Azzolin VF, de Morais-Pinto L, Barbisan F, da Cruz IBM. The Protective Effect of Lithium Against Rotenone may be Evolutionarily Conserved: Evidence from Eisenia fetida, a Primitive Animal with a Ganglionic Brain. Neurochem Res 2023; 48:3538-3559. [PMID: 37526866 DOI: 10.1007/s11064-023-04001-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
Chronic exposure to stress is a non-adaptive situation that is associated with mitochondrial dysfunction and the accumulation of reactive oxygen species (ROS), especially superoxide anion (SA). This accumulation of ROS produces damage-associated molecular patterns (DAMPs), which activate chronic inflammatory states and behavioral changes found in several mood disorders. In a previous study, we observed that an imbalance of SA triggered by rotenone (Ro) exposure caused evolutionarily conserved oxi-inflammatory disturbances and behavioral changes in Eisenia fetida earthworms. These results supported our hypothesis that SA imbalance triggered by Ro exposure could be attenuated by lithium carbonate (LC), which has anti-inflammatory properties. The initial protocol exposed earthworms to Ro (30 nM) and four different LC concentrations. LC at a concentration of 12.85 mg/L decreased SA and nitric oxide (NO) levels and was chosen to perform complementary assays: (1) neuromuscular damage evaluated by optical and scanning electron microscopy (SEM), (2) innate immune inefficiency by analysis of Eisenia spp. extracellular neutrophil traps (eNETs), and (3) behavioral changes. Gene expression was also evaluated involving mitochondrial (COII, ND1), inflammatory (EaTLR, AMP), and neuronal transmission (nAchR α5). LC attenuated the high melanized deposits in the circular musculature, fiber disarrangement, destruction of secretory glands, immune inefficiency, and impulsive behavior pattern triggered by Ro exposure. However, the effects of LC and Ro on gene expression were more heterogeneous. In summary, SA imbalance, potentially associated with mitochondrial dysfunction, appears to be an evolutionary component triggering oxidative, inflammatory, and behavioral changes observed in psychiatric disorders that are inhibited by LC exposure.
Collapse
Affiliation(s)
- Moisés Henrique Mastella
- Graduate Program of Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
- Biogenomics Lab, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Av. Roraima 1000, Building 19, 97105-900, Brazil.
| | - Isabel Roggia
- Biogenomics Lab, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Av. Roraima 1000, Building 19, 97105-900, Brazil
| | - Bárbara Osmarin Turra
- Graduate Program of Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Biogenomics Lab, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Av. Roraima 1000, Building 19, 97105-900, Brazil
| | - Nathália Cardoso de Afonso Bonotto
- Graduate Program of Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Biogenomics Lab, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Av. Roraima 1000, Building 19, 97105-900, Brazil
| | - Cibele Ferreira Teixeira
- Graduate Program of Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Biogenomics Lab, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Av. Roraima 1000, Building 19, 97105-900, Brazil
| | - Débora Luisa Filipetto Pulcinelli
- Biogenomics Lab, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Av. Roraima 1000, Building 19, 97105-900, Brazil
| | - Graziela Moro Meira
- Biogenomics Lab, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Av. Roraima 1000, Building 19, 97105-900, Brazil
| | - Verônica Farina Azzolin
- Center for Research, Teaching and Technological Development (Gerontec/FUnATI), Manaus, Amazonas, Brazil
- Graduate Program of Gerontology, Center for Physical Education and Sports, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Luciano de Morais-Pinto
- Anatomical Design Laboratory, Morphology Department, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Fernanda Barbisan
- Graduate Program of Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Biogenomics Lab, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Av. Roraima 1000, Building 19, 97105-900, Brazil
- Graduate Program of Gerontology, Center for Physical Education and Sports, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Ivana Beatrice Mânica da Cruz
- Graduate Program of Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Biogenomics Lab, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Av. Roraima 1000, Building 19, 97105-900, Brazil
- Graduate Program of Gerontology, Center for Physical Education and Sports, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
3
|
Markina AA, Kazanskaya RB, Timoshina JA, Zavialov VA, Abaimov DA, Volnova AB, Fedorova TN, Gainetdinov RR, Lopachev AV. Na +,K +-ATPase and Cardiotonic Steroids in Models of Dopaminergic System Pathologies. Biomedicines 2023; 11:1820. [PMID: 37509460 PMCID: PMC10377002 DOI: 10.3390/biomedicines11071820] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, enough evidence has accumulated to assert that cardiotonic steroids, Na+,K+-ATPase ligands, play an integral role in the physiological and pathophysiological processes in the body. However, little is known about the function of these compounds in the central nervous system. Endogenous cardiotonic steroids are involved in the pathogenesis of affective disorders, including depression and bipolar disorder, which are linked to dopaminergic system dysfunction. Animal models have shown that the cardiotonic steroid ouabain induces mania-like behavior through dopamine-dependent intracellular signaling pathways. In addition, mutations in the alpha subunit of Na+,K+-ATPase lead to the development of neurological pathologies. Evidence from animal models confirms the neurological consequences of mutations in the Na+,K+-ATPase alpha subunit. This review is dedicated to discussing the role of cardiotonic steroids and Na+,K+-ATPase in dopaminergic system pathologies-both the evidence supporting their involvement and potential pathways along which they may exert their effects are evaluated. Since there is an association between affective disorders accompanied by functional alterations in the dopaminergic system and neurological disorders such as Parkinson's disease, we extend our discussion to the role of Na+,K+-ATPase and cardiotonic steroids in neurodegenerative diseases as well.
Collapse
Affiliation(s)
- Alisa A Markina
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
| | - Rogneda B Kazanskaya
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| | - Julia A Timoshina
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
- Biological Department, Lomonosov Moscow State University, Leninskiye Gory 1, 119991 Moscow, Russia
| | - Vladislav A Zavialov
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
| | - Denis A Abaimov
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| | - Anna B Volnova
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
| | - Tatiana N Fedorova
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Saint Petersburg University Hospital, 199034 Saint Petersburg, Russia
| | - Alexander V Lopachev
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| |
Collapse
|
4
|
van Verseveld M, Mocking RJT, Scheepens D, Ten Doesschate F, Westra M, Schoevers RA, Schene AH, van Wingen GA, van Waarde JA, Ruhé HG. Polyunsaturated fatty acids changes during electroconvulsive therapy in major depressive disorder. J Psychiatr Res 2023; 160:232-239. [PMID: 36868104 DOI: 10.1016/j.jpsychires.2023.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/13/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) have important electrochemical properties and have been implicated in the pathophysiology of major depressive disorder (MDD) and its treatment. However, the relation of PUFAs with electroconvulsive therapy (ECT) has never been investigated. Therefore, we aimed to explore the associations between PUFA concentrations and response to ECT in patients with MDD. We included 45 patients with unipolar MDD in a multicentre study. To determine PUFA concentrations, we collected blood samples at the first (T0) and twelfth (T12) ECT-session. We assessed depression severity using the Hamilton Rating Scale for Depression (HAM-D) at T0, T12 and at the end of the ECT-course. ECT-response was defined as 'early response' (at T12), 'late response' (after ECT-course) and 'no' response (after the ECT-course). The PUFA chain length index (CLI), unsaturation index (UI) and peroxidation index (PI) and three individual PUFAs (eicosapentaenoic acid [EPA], docosahexaenoic acid [DHA] and nervonic acid [NA]) were associated with response to ECT using linear mixed models. Results showed a significant higher CLI in 'late responders' compared to 'non responders'. For NA, 'late responders' showed significantly higher concentrations compared to 'early'- and 'non responders'. In conclusion, this study provides the first indication that PUFAs are associated with the efficacy of ECT. This indicates that PUFAs' influence on neuronal electrochemical properties and neurogenesis may affect ECT outcomes. Thereby, PUFAs form a potentially modifiable factor predicting ECT outcomes, that warrants further investigation in other ECT-cohorts.
Collapse
Affiliation(s)
- M van Verseveld
- Rijnstate Hospital, Department of Psychiatry, Wagnerlaan 55, 6815, AD, Arnhem, the Netherlands.
| | - R J T Mocking
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Meibergdreef 5, 1105, AZ, Amsterdam, the Netherlands
| | - D Scheepens
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Meibergdreef 5, 1105, AZ, Amsterdam, the Netherlands
| | - F Ten Doesschate
- Rijnstate Hospital, Department of Psychiatry, Wagnerlaan 55, 6815, AD, Arnhem, the Netherlands
| | - M Westra
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - R A Schoevers
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - A H Schene
- Radboud University Medical Center, Department of Psychiatry, Reinier Postlaan 4, 6525 GC, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University, Kapittelweg 29, 6525 EN, Nijmegen, Netherlands
| | - G A van Wingen
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Meibergdreef 5, 1105, AZ, Amsterdam, the Netherlands
| | - J A van Waarde
- Rijnstate Hospital, Department of Psychiatry, Wagnerlaan 55, 6815, AD, Arnhem, the Netherlands
| | - H G Ruhé
- Radboud University Medical Center, Department of Psychiatry, Reinier Postlaan 4, 6525 GC, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University, Kapittelweg 29, 6525 EN, Nijmegen, Netherlands
| |
Collapse
|
5
|
Matcha Tea Powder's Antidepressant-like Effect through the Activation of the Dopaminergic System in Mice Is Dependent on Social Isolation Stress. Nutrients 2023; 15:nu15030581. [PMID: 36771286 PMCID: PMC9921318 DOI: 10.3390/nu15030581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/02/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Matcha tea powder is believed to have various physiological benefits; however, its detailed mechanism of action has been poorly understood. Here, we investigated whether the mental state of mice, due to social isolation stress, affects the antidepressant-like effect of Matcha tea powder by using the tail suspension test. Oral administration of Matcha tea powder reduced the duration of immobility in the stress-susceptible C57BL/6J strain, but not in BALB/c strain. In C57BL/6J mice, SCH23390, a dopamine D1 receptor blocker, prevented Matcha tea powder from exerting its antidepressant-like effect. Matcha tea powder also increased the number of c-Fos-positive cells in the prefrontal cortex (PFC) region and the nucleus accumbens (NAc) region in C57BL/6J mice, but not in BALB/c mice. In contrast, Matcha tea powder did not change the number of c-Fos-positive cells in the ventral tegmental area (VTA) region. Notably, C57BL/6J mice with a shorter immobility time had a higher number of c-Fos-positive cells in the PFC, NAc, and VTA regions. However, no such correlation was observed in the stress-tolerant BALB/c mice. These results suggest that Matcha tea powder exerts an antidepressant-like effect through the activation of the dopaminergic system including the PFC-NAc-VTA circuit and that mental states are important factors affecting the physiological benefits of Matcha tea powder.
Collapse
|
6
|
Kinoshita PF, Orellana AM, Andreotti DZ, de Souza GA, de Mello NP, de Sá Lima L, Kawamoto EM, Scavone C. Consequences of the Lack of TNFR1 in Ouabain Response in the Hippocampus of C57BL/6J Mice. Biomedicines 2022; 10:biomedicines10112937. [PMID: 36428505 PMCID: PMC9688030 DOI: 10.3390/biomedicines10112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Ouabain is a cardiac glycoside that has a protective effect against neuroinflammation at low doses through Na+/K+-ATPase signaling and that can activate tumor necrosis factor (TNF) in the brain. TNF plays an essential role in neuroinflammation and regulates glutamate receptors by acting on two different receptors (tumor necrosis factor receptor 1 [TNFR1] and TNFR2) that have distinct functions and expression. The activation of constitutively and ubiquitously expressed TNFR1 leads to the expression of pro-inflammatory cytokines. Thus, this study aimed to elucidate the effects of ouabain in a TNFR1 knockout (KO) mouse model. Interestingly, the hippocampus of TNFR1 KO mice showed a basal increase in both TNFR2 membrane expression and brain-derived neurotrophic factor (BDNF) release, suggesting a compensatory mechanism. Moreover, ouabain activated TNF-α-converting enzyme/a disintegrin and metalloprotease 17 (TACE/ADAM17), decreased N-methyl-D-aspartate (NMDA) receptor subunit 2A (NR2A) expression, and induced anxiety-like behavior in both genotype animals, independent of the presence of TNFR1. However, ouabain induced an increase in interleukin (IL)-1β in the hippocampus, a decrease in IL-6 in serum, and an increase in NMDA receptor subunit 1 (NR1) only in wild-type (WT) mice, indicating that TNFR1 or TNFR2 expression may be important for some effects of ouabain. Collectively, our results indicate a connection between ouabain signaling and TNFR1, with the effect of ouabain partially dependent on TNFR1.
Collapse
Affiliation(s)
- Paula Fernanda Kinoshita
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Ana Maria Orellana
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Diana Zukas Andreotti
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Giovanna Araujo de Souza
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Natalia Prudente de Mello
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Larissa de Sá Lima
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
- Correspondence:
| |
Collapse
|
7
|
Crofton EJ, Nenov MN, Zhang Y, Tapia CM, Donnelly J, Koshy S, Laezza F, Green TA. Topographic transcriptomics of the nucleus accumbens shell: Identification and validation of fatty acid binding protein 5 as target for cocaine addiction. Neuropharmacology 2021; 183:108398. [PMID: 33181146 PMCID: PMC7755097 DOI: 10.1016/j.neuropharm.2020.108398] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/09/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022]
Abstract
Substance use disorders for cocaine are major public health concerns with few effective treatment options. Therefore, identification of novel pharmacotherapeutic targets is critical for future therapeutic development. Evolution has ensured that genes are expressed largely only where they are needed. Therefore, examining the gene expression landscape of the nucleus accumbens shell (NAcSh), a brain region important for reward related behaviors, may lead to the identification of novel targets for cocaine use disorder. In this study, we conducted a novel two-step topographic transcriptomic analysis using five seed transcripts with enhanced expression in the NAcSh to identify transcripts with similarly enhanced expression utilizing the correlation feature to search the more than 20,000 in situ hybridization experiments of the Allen Mouse Brain Atlas. Transcripts that correlated with at least three seed transcripts were analyzed with Ingenuity Pathway Analysis (IPA). We identified 7-fold more NAcSh-enhanced transcripts than our previous analysis using single voxels in the NAcSh as the seed. Analysis of the resulting transcripts with IPA identified many previously identified signaling pathways such as retinoic acid signaling as well as novel pathways. Manipulation of the retinoic acid pathway specifically in the NAcSh of male rats via viral vector-mediated RNA interference targeting fatty acid binding protein 5 (FABP5) decreased cocaine self-administration and modulates excitability of medium spiny neurons in the NAcSh. These results not only validate the prospective strategy of conducting a topographic transcriptomic analysis, but also further validate retinoic acid signaling as a promising pathway for pharmacotherapeutic development against cocaine use disorder.
Collapse
Affiliation(s)
- Elizabeth J Crofton
- Dept. of Pharmacology and Toxicology, Center for Addiction Research, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA; Neuroscience Graduate Program University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Miroslav N Nenov
- Dept. of Pharmacology and Toxicology, Center for Addiction Research, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Yafang Zhang
- Dept. of Pharmacology and Toxicology, Center for Addiction Research, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA; Pharmacology and Toxicology Graduate Program University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Cynthia M Tapia
- Dept. of Pharmacology and Toxicology, Center for Addiction Research, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA; Pharmacology and Toxicology Graduate Program University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Joseph Donnelly
- Dept. of Pharmacology and Toxicology, Center for Addiction Research, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Shyny Koshy
- Dept. of Pharmacology and Toxicology, Center for Addiction Research, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Fernanda Laezza
- Dept. of Pharmacology and Toxicology, Center for Addiction Research, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Thomas A Green
- Dept. of Pharmacology and Toxicology, Center for Addiction Research, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
8
|
Reis AS, Paltian JJ, Domingues WB, Costa GP, Alves D, Giongo JL, Campos VF, Luchese C, Wilhelm EA. Pharmacological modulation of Na +, K +-ATPase as a potential target for OXA-induced neurotoxicity: Correlation between anxiety and cognitive decline and beneficial effects of 7-chloro-4-(phenylselanyl) quinoline. Brain Res Bull 2020; 162:282-290. [PMID: 32628972 DOI: 10.1016/j.brainresbull.2020.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/21/2020] [Accepted: 06/29/2020] [Indexed: 01/04/2023]
Abstract
Growing evidence demonstrates that Oxaliplatin (OXA) is commonly associated with neurotoxicity that leads to emotional and cognitive impairments. The aim of the present study was to evaluate the OXA and Na+, K+-ATPase interaction and to correlate anxious behavior and cognitive impairment induced by this chemotherapeutic in Swiss mice. Also, considering the pharmacological modulation of Na+, K+-ATPase as a potential target for OXA-induced neurotoxicity, the therapeutic potential of 7-chloro-4-(phenylselanyl) quinoline (4-PSQ) was evaluated. Mice received OXA (10 mg kg-1) or vehicle by intraperitoneal route (days 0 and 2). Oral administration of 4-PSQ (1 mg kg-1) or vehicle was performed from days 2-14. Behavioral tasks started from day 12 onwards. On day 15, the animals were sacrificed, and the tissues collected. The effects of OXA and 4-PSQ on activity and expression level of Na+, K+-ATPase in the hippocampus and cerebral cortex, and the plasmatic corticosterone levels were determined. The findings demonstrated a significant positive correlation between anxious behavior and cognitive impairment induced by OXA. OXA caused an increase on the plasmatic corticosterone levels and reduced activity and expression level of Na+, K+-ATPase. 4-PSQ reduced both anxious behavior and cognitive impairment induced by OXA. 4-PSQ effect seems to be due to the modulation of Na+, K+-ATPase and reduction of corticosterone levels. Our results helped to expand knowledge about the mechanisms involved in the physiopathology of the OXA-induced neurotoxicity and strongly indicated that 4-PSQ may be a good prototype for the treatment of anxious behavior and cognitive impairment induced by OXA exposure.
Collapse
Affiliation(s)
- Angélica S Reis
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96010-900, Pelotas, RS, Brazil
| | - Jaini J Paltian
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96010-900, Pelotas, RS, Brazil
| | - William B Domingues
- Programa de Pós-graduação em Biotecnologia, Laboratório de Genômica Estrutural, Biotecnologia - Universidade Federal de Pelotas, UFPel - CEP, 96010-900, Pelotas, RS, Brazil
| | - Gabriel P Costa
- Programa de Pós-graduação em Química, Laboratório de Síntese Orgânica Limpa, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96010-900, Pelotas, RS, Brazil
| | - Diego Alves
- Programa de Pós-graduação em Química, Laboratório de Síntese Orgânica Limpa, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96010-900, Pelotas, RS, Brazil
| | - Janice L Giongo
- Pharmacy Department, Faculdade Anhanguera - CEP - 96055000, Pelotas, RS, Brazil
| | - Vinicius F Campos
- Programa de Pós-graduação em Biotecnologia, Laboratório de Genômica Estrutural, Biotecnologia - Universidade Federal de Pelotas, UFPel - CEP, 96010-900, Pelotas, RS, Brazil
| | - Cristiane Luchese
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96010-900, Pelotas, RS, Brazil.
| | - Ethel A Wilhelm
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96010-900, Pelotas, RS, Brazil.
| |
Collapse
|
9
|
Blaustein MP, Hamlyn JM. Ouabain, endogenous ouabain and ouabain-like factors: The Na + pump/ouabain receptor, its linkage to NCX, and its myriad functions. Cell Calcium 2020; 86:102159. [PMID: 31986323 DOI: 10.1016/j.ceca.2020.102159] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 12/12/2022]
Abstract
In this brief review we discuss some aspects of the Na+ pump and its roles in mediating the effects of ouabain and endogenous ouabain (EO): i) in regulating the cytosolic Ca2+ concentration ([Ca2+]CYT) via Na/Ca exchange (NCX), and ii) in activating a number of protein kinase (PK) signaling cascades that control a myriad of cell functions. Importantly, [Ca2+]CYT and the other signaling pathways intersect at numerous points because of the influence of Ca2+ and calmodulin in modulating some steps in those other pathways. While both mechanisms operate in virtually all cells and tissues, this article focuses primarily on their functions in the cardiovascular system, the central nervous system (CNS) and the kidneys.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
10
|
Intracerebroventricular injection of ouabain causes mania-like behavior in mice through D2 receptor activation. Sci Rep 2019; 9:15627. [PMID: 31666560 PMCID: PMC6821712 DOI: 10.1038/s41598-019-52058-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/11/2019] [Indexed: 01/07/2023] Open
Abstract
Intracerebroventricular (ICV) administration of ouabain, an inhibitor of the Na, K-ATPase, is an approach used to study the physiological functions of the Na, K-ATPase and cardiotonic steroids in the central nervous system, known to cause mania-like hyperactivity in rats. We describe a mouse model of ouabain-induced mania-like behavior. ICV administration of 0.5 µl of 50 µM (25 pmol, 14.6 ng) ouabain into each lateral brain ventricle results in increased locomotor activity, stereotypical behavior, and decreased anxiety level an hour at minimum. Fast-scan cyclic voltammetry showed that administration of 50 µM ouabain causes a drastic drop in dopamine uptake rate, confirmed by elevated concentrations of dopamine metabolites detected in the striatum 1 h after administration. Ouabain administration also caused activation of Akt, deactivation of GSK3β and activation of ERK1/2 in the striatum of ouabain-treated mice. All of the abovementioned effects are attenuated by haloperidol (70 µg/kg intraperitoneally). Observed effects were not associated with neurotoxicity, since no dystrophic neuron changes in brain structures were demonstrated by histological analysis. This newly developed mouse model of ouabain-induced mania-like behavior could provide a perspective tool for studying the interactions between the Na,K-ATPase and the dopaminergic system.
Collapse
|
11
|
Hodes A, Rosen H, Cohen-Ben Ami H, Lichtstein D. Na +, K +-ATPase α3 isoform in frontal cortex GABAergic neurons in psychiatric diseases. J Psychiatr Res 2019; 115:21-28. [PMID: 31082653 DOI: 10.1016/j.jpsychires.2019.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/14/2019] [Accepted: 04/18/2019] [Indexed: 12/19/2022]
Abstract
Na+, K+-ATPase is an essential membrane transporter. In the brain, the α3 isoform of Na+, K+-ATPase is vital for neuronal function. The enzyme and its regulators, endogenous cardiac steroids (ECS), were implicated in neuropsychiatric disorders. GABAergic neurotransmission was also studied extensively in diseases such as schizophrenia and bipolar disorder (BD). Post mortem brain samples from subjects with depression, schizophrenia or BD and non-psychiatric controls were provided by the Stanley Medical Research Institute. ECS levels were determined by ELISA. Expression levels of the three Na+, K+-ATPase-α isoforms, α1, α2 and α3, were determined by Western blot analysis. The α3 levels in GABAergic neurons in different regions of the brain were quantified by fluorescence immunohistochemistry. The results show that Na+, K+ -ATPase α3 isoform levels were lower in GABAergic neurons in the frontal cortex in BD and schizophrenia as compared with the controls (n = 15 subjects per group). A study on a 'mini-cohort' (n = 3 subjects per group) showed that the α3 isoform levels were also lower in GABAergic neurons in the hippocampus, but not amygdala, of bipolar and schizophrenic subjects. In the temporal cortex, higher Na+, K+ -ATPase α3 protein levels were found in the three psychiatric groups. No significant differences in ECS levels were found in this brain area. This is the first report on the distribution of α3 in specific neurons in the human brain in association with mental illness. These results strengthen the hypothesis for the involvement of Na+, K+ -ATPase in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Anastasia Hodes
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Israel
| | - Haim Rosen
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Israel
| | - Hagit Cohen-Ben Ami
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Israel
| | - David Lichtstein
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Israel.
| |
Collapse
|
12
|
Kurauchi Y, Yamada T, Hisatsune A, Seki T, Katsuki H. Chronic memantine administration prevents ouabain-induced hyperactivity in mice via maintenance of Na+, K+-ATPase activity in the hippocampus. J Pharmacol Sci 2019; 140:295-299. [DOI: 10.1016/j.jphs.2019.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/23/2019] [Accepted: 06/12/2019] [Indexed: 12/16/2022] Open
|