1
|
Prakash P, Randolph CE, Walker KA, Chopra G. Lipids: Emerging Players of Microglial Biology. Glia 2025; 73:657-677. [PMID: 39688320 PMCID: PMC11784843 DOI: 10.1002/glia.24654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
Lipids are small molecule immunomodulators that play critical roles in maintaining cellular health and function. Microglia, the resident immune cells of the central nervous system, regulate lipid metabolism both in the extracellular environment and within intracellular compartments through various mechanisms. For instance, glycerophospholipids and fatty acids interact with protein receptors on the microglial surface, such as the Triggering Receptor Expressed on Myeloid Cells 2, influencing cellular functions like phagocytosis and migration. Moreover, cholesterol is essential not only for microglial survival but, along with other lipids such as fatty acids, is crucial for the formation, function, and accumulation of lipid droplets, which modulate microglial activity in inflammatory diseases. Other lipids, including acylcarnitines and ceramides, participate in various signaling pathways within microglia. Despite the complexity of the microglial lipidome, only a few studies have investigated the effects of specific lipid classes on microglial biology. In this review, we focus on major lipid classes and their roles in modulating microglial function. We also discuss novel analytical techniques for characterizing the microglial lipidome and highlight gaps in current knowledge, suggesting new directions for future research on microglial lipid biology.
Collapse
Affiliation(s)
- Priya Prakash
- Department of ChemistryPurdue UniversityWest LafayetteIndianaUSA
- Neuroscience Institute, NYU Grossman School of MedicineNew YorkNew YorkUSA
| | | | | | - Gaurav Chopra
- Department of ChemistryPurdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Integrative Neuroscience, Purdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Drug Discovery, Purdue UniversityWest LafayetteIndianaUSA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue UniversityWest LafayetteIndianaUSA
- Regenstrief Center for Healthcare Engineering, Purdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
2
|
Niu H, Maruoka M, Noguchi Y, Kosako H, Suzuki J. Phospholipid scrambling induced by an ion channel/metabolite transporter complex. Nat Commun 2024; 15:7566. [PMID: 39217145 PMCID: PMC11366033 DOI: 10.1038/s41467-024-51939-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Cells establish the asymmetrical distribution of phospholipids and alter their distribution by phospholipid scrambling (PLS) to adapt to environmental changes. Here, we demonstrate that a protein complex, consisting of the ion channel Tmem63b and the thiamine transporter Slc19a2, induces PLS upon calcium (Ca2+) stimulation. Through revival screening using a CRISPR sgRNA library on high PLS cells, we identify Tmem63b as a PLS-inducing factor. Ca2+ stimulation-mediated PLS is suppressed by deletion of Tmem63b, while human disease-related Tmem63b mutants induce constitutive PLS. To search for a molecular link between Ca2+ stimulation and PLS, we perform revival screening on Tmem63b-overexpressing cells, and identify Slc19a2 and the Ca2+-activated K+ channel Kcnn4 as PLS-regulating factors. Deletion of either of these genes decreases PLS activity. Biochemical screening indicates that Tmem63b and Slc19a2 form a heterodimer. These results demonstrate that a Tmem63b/Slc19a2 heterodimer induces PLS upon Ca2+ stimulation, along with Kcnn4 activation.
Collapse
Affiliation(s)
- Han Niu
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, Japan
- Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto, Japan
| | - Masahiro Maruoka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, Japan
- Center for Integrated Biosystems, Institute for Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuki Noguchi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, Japan
| | - Hidetaka Kosako
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Jun Suzuki
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto, Japan.
- Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto, Japan.
- Center for Integrated Biosystems, Institute for Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| |
Collapse
|
3
|
Steyn C, Mishi R, Fillmore S, Verhoog MB, More J, Rohlwink UK, Melvill R, Butler J, Enslin JMN, Jacobs M, Sauka-Spengler T, Greco M, Quiñones S, Dulla CG, Raimondo JV, Figaji A, Hockman D. Cell type-specific gene expression dynamics during human brain maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.29.560114. [PMID: 37808657 PMCID: PMC10557738 DOI: 10.1101/2023.09.29.560114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The human brain undergoes protracted post-natal maturation, guided by dynamic changes in gene expression. Most studies exploring these processes have used bulk tissue analyses, which mask cell type-specific gene expression dynamics. Here, using single nucleus (sn)RNA-seq on temporal lobe tissue, including samples of African ancestry, we build a joint paediatric and adult atlas of 75 cell subtypes, which we verify with spatial transcriptomics. We explore the differences between paediatric and adult cell types, revealing the genes and pathways that change during brain maturation. Our results highlight excitatory neuron subtypes, including the LTK and FREM subtypes, that show elevated expression of genes associated with cognition and synaptic plasticity in paediatric tissue. The new resources we present here improve our understanding of the brain during its development and contribute to global efforts to build an inclusive brain cell map.
Collapse
Affiliation(s)
- Christina Steyn
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Ruvimbo Mishi
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Stephanie Fillmore
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Matthijs B Verhoog
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jessica More
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Ursula K Rohlwink
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Roger Melvill
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - James Butler
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Neurology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Johannes M N Enslin
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Muazzam Jacobs
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Immunology, Department of Pathology University of Cape Town
- National Health Laboratory Service, South Africa
| | - Tatjana Sauka-Spengler
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Maria Greco
- Single Cell Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Sadi Quiñones
- Department of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Graduate School of Biomedical Science, Tufts University School of Medicine, Boston, MA, USA
| | - Chris G Dulla
- Department of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Joseph V Raimondo
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Anthony Figaji
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Dorit Hockman
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
4
|
Kim JS, Park H, Lee JH, Shin J, Cha B, Kwon KS, Shin YW, Kim Y, Kim Y, Bae JS, Lee JH, Choi SJ, Kim TJ, Ko SB, Park SH. Effect of altered gene expression in lipid metabolism on cognitive improvement in patients with Alzheimer's dementia following fecal microbiota transplantation: a preliminary study. Ther Adv Neurol Disord 2024; 17:17562864231218181. [PMID: 38250318 PMCID: PMC10799597 DOI: 10.1177/17562864231218181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/12/2023] [Indexed: 01/23/2024] Open
Abstract
Background The brain-gut axis has emerged as a potential target in neurodegenerative diseases, including dementia, as individuals with dementia exhibit distinct gut microbiota compositions. Fecal microbiota transplantation (FMT), the transfer of fecal solution from a healthy donor to a patient, has shown promise in restoring homeostasis and cognitive enhancement. Objective This study aimed to explore the effects of FMT on specific cognitive performance measures in Alzheimer's dementia (AD) patients and investigate the relationship between cognition and the gut microbiota by evaluating changes in gene expression following FMT. Methods Five AD patients underwent FMT, and their cognitive function [Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and Clinical Dementia Rating Scale Sum of Boxes (CDR-SOB)] was assessed before and after FMT. The patients' fecal samples were analyzed with 16S rRNA to compare the composition of their gut microbiota. We also assessed modifications in the serum mRNA expression of patients' genes related to lipid metabolism using serum RNA sequencing and quantitative real-time polymerase chain reaction. Results Significant improvements in cognitive function, as measured by the MMSE (pre- and post-FMT was 13.00 and 18.00) and MoCA were seen. The MoCA scores at 3 months post-FMT (21.0) were the highest (12.0). The CDR-SOB scores at pre- and post-FMT were 10.00 and 5.50, respectively. Analysis of the gut microbiome composition revealed changes via 16S rRNA sequencing with an increase in Bacteroidaceae and a decrease in Enterococcaceae. Gene expression analysis identified alterations in lipid metabolism-related genes after FMT. Conclusion These findings suggest a link between alterations in the gut microbiome, gene expression related to lipid metabolism, and cognitive function. The study highlights the importance of gut microbiota in cognitive function and provides insights into potential biomarkers for cognitive decline progression. FMT could complement existing therapies and show potential as a therapeutic intervention to mitigate cognitive decline in AD.
Collapse
Affiliation(s)
- Jun-Seob Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Hyelim Park
- Inha Research Institute for Aerospace Medicine, Inha University College of Medicine, Incheon, Republic of Korea
| | - Jung-Hwan Lee
- Division of Gastroenterology, Department of Hospital Medicine, Inha University Hospital, Incheon, Republic of Korea
| | - Jongbeom Shin
- Division of Gastroenterology, Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Republic of Korea
| | - Boram Cha
- Division of Gastroenterology, Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Republic of Korea
| | - Kye Sook Kwon
- Division of Gastroenterology, Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Republic of Korea
| | - Yong Woon Shin
- Division of Gastroenterology, Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Republic of Korea
| | - Yerim Kim
- Department of Neurology, Hallym University Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - YeoJin Kim
- Department of Neurology, Hallym University Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Jong Seok Bae
- Department of Neurology, Hallym University Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Ju-Hun Lee
- Department of Neurology, Hallym University Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Seok-Jin Choi
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Tae Jung Kim
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sang-Bae Ko
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Soo-Hyun Park
- Department of Neurology, Hallym University Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea
| |
Collapse
|
5
|
Yamamoto S, Masuda T. Lipid in microglial biology - from material to mediator. Inflamm Regen 2023; 43:38. [PMID: 37460930 PMCID: PMC10351166 DOI: 10.1186/s41232-023-00289-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Microglia are resident macrophages in the central nervous system (CNS) that play various roles during brain development and in the pathogenesis of CNS diseases. Recently, reprogramming of cellular energetic metabolism in microglia has drawn attention as a crucial mechanism for diversification of microglial functionality. Lipids are highly diverse materials and crucial components of cell membranes in every cell. Accumulating evidence has shown that lipid and its metabolism are tightly involved in microglial biology. In this review, we summarize the current knowledge about microglial lipid metabolism in health and disease.
Collapse
Affiliation(s)
- Shota Yamamoto
- Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Takahiro Masuda
- Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
6
|
Almasieh M, Faris H, Levin LA. Pivotal roles for membrane phospholipids in axonal degeneration. Int J Biochem Cell Biol 2022; 150:106264. [PMID: 35868612 DOI: 10.1016/j.biocel.2022.106264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 10/17/2022]
Abstract
Membrane phospholipids are critical components of several signaling pathways. Maintained in a variety of asymmetric distributions, their trafficking across the membrane can be induced by intra-, extra-, and intercellular events. A familiar example is the externalization of phosphatidylserine from the inner leaflet to the outer leaflet in apoptosis, inducing phagocytosis of the soma. Recently, it has been recognized that phospholipids in the axonal membrane may be a signal for axonal degeneration, regeneration, or other processes. This review focuses on key recent developments and areas for ongoing investigations. KEY FACTS: Phosphatidylserine externalization propagates along an axon after axonal injury and is delayed in the Wallerian degeneration slow (WldS) mutant. The ATP8A2 flippase mutant has spontaneous axonal degeneration. Microdomains of axonal degeneration in spheroid bodies have differential externalization of phosphatidylserine and phosphatidylethanolamine. Phospholipid trafficking could represent a mechanism for coordinated axonal degeneration and elimination, i.e. axoptosis, analogous to apoptosis of the cell body.
Collapse
Affiliation(s)
- Mohammadali Almasieh
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Hannah Faris
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Leonard A Levin
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.
| |
Collapse
|
7
|
Events Occurring in the Axotomized Facial Nucleus. Cells 2022; 11:cells11132068. [PMID: 35805151 PMCID: PMC9266054 DOI: 10.3390/cells11132068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Transection of the rat facial nerve leads to a variety of alterations not only in motoneurons, but also in glial cells and inhibitory neurons in the ipsilateral facial nucleus. In injured motoneurons, the levels of energy metabolism-related molecules are elevated, while those of neurofunction-related molecules are decreased. In tandem with these motoneuron changes, microglia are activated and start to proliferate around injured motoneurons, and astrocytes become activated for a long period without mitosis. Inhibitory GABAergic neurons reduce the levels of neurofunction-related molecules. These facts indicate that injured motoneurons somehow closely interact with glial cells and inhibitory neurons. At the same time, these events allow us to predict the occurrence of tissue remodeling in the axotomized facial nucleus. This review summarizes the events occurring in the axotomized facial nucleus and the cellular and molecular mechanisms associated with each event.
Collapse
|
8
|
Zhao J, Zhang W, Wu T, Wang H, Mao J, Liu J, Zhou Z, Lin X, Yan H, Wang Q. Efferocytosis in the Central Nervous System. Front Cell Dev Biol 2021; 9:773344. [PMID: 34926460 PMCID: PMC8678611 DOI: 10.3389/fcell.2021.773344] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
The effective clearance of apoptotic cells is essential for maintaining central nervous system (CNS) homeostasis and restoring homeostasis after injury. In most cases of physiological apoptotic cell death, efferocytosis prevents inflammation and other pathological conditions. When apoptotic cells are not effectively cleared, destruction of the integrity of the apoptotic cell membrane integrity, leakage of intracellular contents, and secondary necrosis may occur. Efferocytosis is the mechanism by which efferocytes quickly remove apoptotic cells from tissues before they undergo secondary necrosis. Cells with efferocytosis functions, mainly microglia, help to eliminate apoptotic cells from the CNS. Here, we discuss the impacts of efferocytosis on homeostasis, the mechanism of efferocytosis, the associations of efferocytosis failure and CNS diseases, and the current clinical applications of efferocytosis. We also identify efferocytosis as a novel potential target for exploring the causes and treatments of CNS diseases.
Collapse
Affiliation(s)
- Jiayi Zhao
- Department of Anesthesia, Zhejiang Hospital, Hangzhou, China
| | - Weiqi Zhang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Tingting Wu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hongyi Wang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jialiang Mao
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jian Liu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ziheng Zhou
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huige Yan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Qin Q, Yin Y, Xing Y, Wang X, Wang Y, Wang F, Tang Y. Lipid Metabolism in the Development and Progression of Vascular Cognitive Impairment: A Systematic Review. Front Neurol 2021; 12:709134. [PMID: 34867708 PMCID: PMC8639494 DOI: 10.3389/fneur.2021.709134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/25/2021] [Indexed: 11/27/2022] Open
Abstract
Background: Vascular cognitive impairment (VCI) is a major public health problem. The current diagnosis of VCI is made based on the assessment of clinical symptoms and neuropsychological measurements, and is supported by neuroimaging. These methods are both time-consuming and expensive, which leads to needs for alternative biomarkers for VCI. Metabolomics is an emerging and powerful tool to discover of new biomarkers of disease, which can investigate variations in different metabolic processes such as lipid, since the brain is highly enriched in lipids and that lipid changes may lead to pathology in the brain. Vascular cognitive impairment is vulnerable to the disturbance of lipid metabolism. Furthermore, blood samples, which could be identified as reliable clinical biomarkers are relatively convenient to obtain and provide a non-invasive assessment. Therefore, our study aims to understand whether peripheral lipid biomarkers can be used as diagnostic biomarkers and monitor the progression of VCI. Methods: We systematically searched the PubMed, Embase, CNKI, and VIP databases to find VCI and lipid metabolism in reports from inception through February 2021. Studies meeting the following criteria were eligible: (1) original studies in humans; (2) lipid metabolites in blood; (3) reports of VCI. Results: Through our review, nine original articles were eligible. Blood-based metabolites that might be potential biomarkers were identified. Most of them including PC, PE, Cers, and ChEs were significantly lower, while elevation of FAs and DGs were associated with VCI. Most importantly, these blood-based metabolites might be proposed as potential biomarkers for VCI, which provides direction for further validation. Discussion and Conclusion: To the best of our knowledge, this is the first systemic review concerning the relationship of lipid metabolism and VCI. It identifies potential biomarkers and provides insights into the disease pathobiology. However, more advanced studies and researches on a lipidomic platform must be done to understand the exact pathology behind and identify potential lipid biomarkers, which might help achieve the goal of discovering novel therapeutics.
Collapse
Affiliation(s)
- Qi Qin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yunsi Yin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yi Xing
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Xuan Wang
- Department of Endocrinology, Mudanjiang Second People's Hospital, Mudanjiang, China
| | - Yan Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Fan Wang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
- *Correspondence: Fan Wang
| | - Yi Tang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
- Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China
- Yi Tang
| |
Collapse
|
10
|
Emoto K, Hensch TK, Yuzaki M. "Scrap & build" functional circuits: Molecular and cellular basis of neural remodeling. Neurosci Res 2021; 167:1-2. [PMID: 33878393 DOI: 10.1016/j.neures.2021.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kazuo Emoto
- Department of Biological Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Takao K Hensch
- Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA, 02138, USA.
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|