1
|
Mangelsdorf I, Schröder K, Escher SE, Kolossa-Gehring M, Debiak M. Risk assessment for irritating chemicals - Derivation of extrapolation factors. Int J Hyg Environ Health 2020; 232:113668. [PMID: 33333487 DOI: 10.1016/j.ijheh.2020.113668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Irritation of the eyes and the upper respiratory tract are important endpoints for setting guide values for chemicals. To optimize the use of the often-limited data, we analysed controlled human exposure studies (CHS) with 1-4 h inhalation of the test substance, repeated dose inhalation studies in rodents, and Alarie-Tests and derived extrapolation factors (EF) for exposure duration, inter- and intraspecies differences. For the endpoint irritating effects in the respiratory tract in rodents, geometric mean (GM) values of 1.9 were obtained for the EF for subacute→subchronic (n = 16), 2.1 for subchronic→chronic (n = 40), and 2.9 for subacute→chronic (n = 10) extrapolation. Based on these data we suggest an EF of 2 for subchronic→chronic and of 4 for subacute→chronic extrapolation. In CHS, exposure concentration determines the effects rather than exposure duration. Slight reversible effects during 4 h exposure indicate that an EF of 1 can be considered for assessing chronic exposures. To assess species extrapolation, 10 chemicals were identified with both, reliable rat inhalation studies and CHS. The GM of the ratio between the No Observed Adverse Effect Concentration (NOAEC) in rats and humans was 2.3 and increased to 3.6 when expanding the dataset to all available EF (n = 25). Based on these analyses, an EF of 3 is suggested to extrapolate from a NOAEC in a chronic rat study to a NOAEC in a CHS. The analysis of EFs for the extrapolation from a 50% decrease in respiratory frequency in the Alarie test in mice (RD50) to a NOAEC in a CHS resulted in a GM of 40, for both, the reliable (n = 11) and the overall dataset (n = 19). We propose to use the RD50 from the Alarie test for setting guide values and to use 40 as EF. Efs for intraspecies differences in the human population must account for susceptible persons, most importantly for persons with chemical intolerance (CI), who show subjective signs of irritation at low concentrations. The limited data available do not justify to deviate from an EF of 10 - 20 as currently used in different regulatory settings.
Collapse
Affiliation(s)
- Inge Mangelsdorf
- Toxicology Consulting, Hamburg, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany.
| | - Katrin Schröder
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Sylvia E Escher
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | | | | |
Collapse
|
2
|
Pain Perception, Brain Connectivity, and Neurochemistry in Healthy, Capsaicin-Sensitive Subjects. Neural Plast 2020; 2020:9125913. [PMID: 33178262 PMCID: PMC7644335 DOI: 10.1155/2020/9125913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 09/29/2020] [Accepted: 10/16/2020] [Indexed: 11/17/2022] Open
Abstract
Most of the occupational exposure limits (OELs) are based on local irritants. However, exposure to much lower concentrations of irritant substances can also lead to health complaints from workers. Exposure to irritants is often accompanied by strong unpleasant odors, and strong odors might have distracting effects and hence pose a safety risk. The findings obtained in human exposure studies with chemically sensitive, stressed, or anxious persons suggest that their ability to direct attention away from the odorous exposure and to focus on a cognitive task is reduced. In addition, after repeated odor exposure, these persons show signs of sensitization, i.e., difficulties in ignoring or getting used to the exposure. The question arises as to whether certain health conditions are accompanied by a change in sensitivity to odors and irritants, so that these persons are potentially more distracted by odors and irritants and therefore more challenged in working memory tasks than nonsusceptible persons. In our study, susceptible persons with sensory airway hyperreactivity ("capsaicin-sensitive") respond more strongly to mechanical skin stimuli than controls and show altered network connectivity. Capsaicin-sensitive subjects have a lower pain threshold and thus are more sensitive to mechanical skin stimuli. The intrinsic functional connectivity of their saliency network is higher, and the lower the GABAergic tone of the thalamus, the higher their pain sensitivity to mechanical stimuli. It seems that the increased communication between resting-state networks promotes a stronger perception of the sensory input signal. The results can be used to inform about actual risks (i.e., attention diversion and increased risk of accidents) and "pseudo" risks such as odor perception without a negative impact on one's well-being. This way, uncertainties that still prevail in the health assessment of odorous and sensory irritating chemicals could be reduced.
Collapse
|
3
|
Nordin S. Mechanisms underlying nontoxic indoor air health problems: A review. Int J Hyg Environ Health 2020; 226:113489. [DOI: 10.1016/j.ijheh.2020.113489] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
|
4
|
Kleinbeck S, Schäper M, Pacharra M, Lehmann ML, Golka K, Blaszkewicz M, Brüning T, van Thriel C. A short-term inhalation study to assess the reversibility of sensory irritation in human volunteers. Arch Toxicol 2020; 94:1687-1701. [PMID: 32185413 PMCID: PMC7261732 DOI: 10.1007/s00204-020-02703-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/09/2020] [Indexed: 01/22/2023]
Abstract
Sensory irritation is an acute adverse effect caused by chemicals that stimulate chemoreceptors of the upper respiratory tract or the mucous membranes of the outer eye. The avoidance of this end point is of uttermost importance in regulatory toxicology. In this study, repeated exposures to ethyl acrylate were analyzed to investigate possible carryover effects from day to day for different markers of sensory irritation. Thirty healthy subjects were exposed for 4 h on five subsequent days to ethyl acrylate at concentrations permitted by the German occupational exposure limit at the time of study. Ratings of eye irritation as well as eye blinking frequencies indicate the elicitation of sensory irritation. These markers of sensory irritation showed a distinct time course on every single day. However, cumulative carryover effects could not be identified across the week for any marker. The rhinological and biochemical markers could not reveal hints for more pronounced sensory irritation. Neither increased markers of neurogenic inflammation nor markers of immune response could be identified. Furthermore, the performance on neurobehavioral tests was not affected by ethyl acrylate and despite the strong odor of ethyl acrylate the participants improved their performances from day to day. While the affected physiological marker, the increased eye blinking frequency stays roughly on the same level across the week, subjective markers like perception of eye irritation decrease slightly from day to day though the temporal pattern of, i.e., eye irritation perception stays the same on each day. A hypothetical model of eye irritation time course derived from PK/PD modeling of the rabbit eye could explain the within-day time course of eye irritation ratings repeatedly found in this study more precisely.
Collapse
Affiliation(s)
- Stefan Kleinbeck
- Leibniz Research Center for Working Environment and Human Factors, TU Dortmund University, Ardeystr. 67, 44139, Dortmund, Germany.
| | - Michael Schäper
- Leibniz Research Center for Working Environment and Human Factors, TU Dortmund University, Ardeystr. 67, 44139, Dortmund, Germany
| | - Marlene Pacharra
- Leibniz Research Center for Working Environment and Human Factors, TU Dortmund University, Ardeystr. 67, 44139, Dortmund, Germany.,MSH Medical School Hamburg, University of Applied Sciences and Medical University, Am Kaiserkai 1, 20457, Hamburg, Germany
| | - Marie Louise Lehmann
- Leibniz Research Center for Working Environment and Human Factors, TU Dortmund University, Ardeystr. 67, 44139, Dortmund, Germany.,Charité, Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Klaus Golka
- Leibniz Research Center for Working Environment and Human Factors, TU Dortmund University, Ardeystr. 67, 44139, Dortmund, Germany
| | - Meinolf Blaszkewicz
- Leibniz Research Center for Working Environment and Human Factors, TU Dortmund University, Ardeystr. 67, 44139, Dortmund, Germany
| | - Thomas Brüning
- Research Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle de la Camp-Platz 1, 44789, Bochum, Germany
| | - Christoph van Thriel
- Leibniz Research Center for Working Environment and Human Factors, TU Dortmund University, Ardeystr. 67, 44139, Dortmund, Germany
| |
Collapse
|
5
|
Rosenkranz D, Bünger J, Hoffmeyer F, Monsé C, van Kampen V, Raulf M, Brüning T, Sucker K. How Healthy Is Healthy? Comparison Between Self-Reported Symptoms and Clinical Outcomes in Connection with the Enrollment of Volunteers for Human Exposure Studies on Sensory Irritation Effects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1271:49-59. [DOI: 10.1007/5584_2019_472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
6
|
Jiménez Barbosa IA, Rodríguez Alvarez MF, Dussán Torres GA, Khuu SK. Ocular surface and tear film changes in workers exposed to organic solvents used in the dry-cleaning industry. PLoS One 2019; 14:e0226042. [PMID: 31815965 PMCID: PMC6901226 DOI: 10.1371/journal.pone.0226042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/19/2019] [Indexed: 11/18/2022] Open
Abstract
Workers in the dry-cleaning industry are exposed to organic solvents that may cause eye irritation and tear film changes. Objective To quantify changes in the ocular surface and tear film in dry cleaners exposed to organic solvents and associate these changes with ocular irritation as reported in a symptom questionnaire for dry eye diagnosis. Methods This was a case and control study in which the characteristics and eye-irritation symptoms were compared between two groups of 62 participants that were either exposed or not exposed to organic solvents. A general optometric examination and the following test were performed: lipid interferometry, Lissamine Green Stain, tear breakup time, Schirmer I, conjunctival impression cytology and the Donate dry eye symptoms questionnaire. Results Sixty-five percent of exposed workers obtained a higher score than 13 on the Donate dry eye symptoms questionnaire which indicated the presence of more irritation symptoms than those in the non- exposed group. A Chi-square analysis indicated the exposed group reported significantly higher incidences (P <0.005) for eye irritation symptoms of sandy sensation; tearing eyes sensation; foreign body sensation; tearing; dry eye; dryness; eyestrain and heavy eyelids. A Mann Whitney-U indicated greater severity only for symptoms relating to dry eye; sandy sensation; foreign body sensation, tearing; tearing eyes and dryness. There was a statistically significant difference (P <0.05) for Schirmer I; tear break up time; and the ocular surface assessed with Lissamine green staining and conjunctival impression cytology between groups. A reduction in the thickness of the lipid layer in the exposed group compared to the non-exposed group was observed. Surprisingly, clinical test outcomes were not significantly correlated with dry eye symptoms nor years of exposure. Conclusion Workers in the dry-cleaning industry exposed to organic solvents are associated with changes in ocular surface and tear film generating irritation symptoms commonly present in evaporative dry eye.
Collapse
Affiliation(s)
- Ingrid Astrid Jiménez Barbosa
- Health and Sciences Faculty, Optometry Program, University of La Salle, Bogotá, Colombia
- School of Optometry and Vision Science, The University of New South Wales, Sydney, Australia
| | | | | | - Sieu K. Khuu
- School of Optometry and Vision Science, The University of New South Wales, Sydney, Australia
| |
Collapse
|
7
|
Wakayama T, Ito Y, Sakai K, Miyake M, Shibata E, Ohno H, Kamijima M. Comprehensive review of 2-ethyl-1-hexanol as an indoor air pollutant. J Occup Health 2019; 61:19-35. [PMID: 30698348 PMCID: PMC6499367 DOI: 10.1002/1348-9585.12017] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/02/2018] [Accepted: 10/10/2018] [Indexed: 11/12/2022] Open
Abstract
Objectives 2‐Ethyl‐1‐hexanol (2EH), a fragrance ingredient and a raw material for the production of plasticizer di(2‐ethylhexyl) phthalate, is responsible for sick building syndrome (SBS). This review aims to clarify the 2EH characteristics as an indoor air pollutant such as indoor air concentration, emission mechanism, toxicity, and clinical effects. Methods Scientific publications in English that has been made available on PubMed as of June 2018 and ad hoc publications in regional languages were reviewed. Results Inhalation exposure to 2EH caused mucous membrane irritation in the eyes, nose, and throat in experimental animals. Studies in human volunteers revealed an increase in olfactory irritation and eye discomfort. There has been increasing evidence of 2EH being present in indoor air in buildings. The primary sources of 2EH emissions are not building materials themselves, but instead the hydrolysis of plasticizers and flooring adhesives. In particular, compounds like di(2‐ethylhexyl) phthalate present in polyvinyl chloride flooring materials are hydrolyzed upon contact with alkaline moisture‐containing concrete floors. That being said, it may be observed that indoor concentrations of 2EH increased every year during summer. Conclusions Unlike other volatile organic compounds that cause SBS, 2EH can be retained in indoor air for long durations, increasing the likelihood of causing undesirable health effects in building occupants exposed to it. As a precautionary measure, it is important to use flooring materials that do not emit 2EH by hydrolysis, or to dry concrete before covering with flooring materials.
Collapse
Affiliation(s)
- Takanari Wakayama
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Environmental Health, Nagoya City Public Health Research Institute, Nagoya, Japan
| | - Yuki Ito
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kiyoshi Sakai
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Environmental Health, Nagoya City Public Health Research Institute, Nagoya, Japan
| | - Mio Miyake
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Eiji Shibata
- Department of Health and Psychosocial Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Hiroyuki Ohno
- Department of Environmental Health, Nagoya City Public Health Research Institute, Nagoya, Japan
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
8
|
Does seasonal allergic rhinitis increase sensitivity to ammonia exposure? Int J Hyg Environ Health 2017; 220:840-848. [DOI: 10.1016/j.ijheh.2017.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 11/21/2022]
|
9
|
Nordin S, Aldrin L, Claeson AS, Andersson L. Effects of Negative Affectivity and Odor Valence on Chemosensory and Symptom Perception and Perceived Ability to Focus on a Cognitive Task. Perception 2017; 46:431-446. [DOI: 10.1177/0301006616686990] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim was to gain understanding for the impact of negative affectivity (NA) and odor valance on perceptual aspects during low-level odorous exposure. Fifty-five young adults who were either relatively low or high in NA (anxiety, depression, and somatization) were randomized for exposure to either limonene (pleasant odor) or pyridine (unpleasant odor). In an exposure chamber, they took part in baseline, blank and stable exposure sessions, during which they rated odor intensity, impact on ability to focus on an imagined cognitive task, and intensity of symptoms. The results showed higher ratings of negative impact on ability to focus during exposure to the unpleasant odor compared with the pleasant odor, and an association between NA and symptom intensity, with 18% of the variance in symptom intensity explained by somatization. The association between NA and symptom intensity was found to be driven by the factor sex. These results imply (a) that prior findings of odorous exposure that interfere negatively with work performance may be due to impact of an unpleasant odor on ability to focus on cognitive tasks and (b) that there are associations between NA, sex, and symptoms that may partly be referred to attentiveness to and interpretation of bodily sensations.
Collapse
Affiliation(s)
| | - Lina Aldrin
- Department of Psychology, Umeå University, Sweden
| | | | - Linus Andersson
- Department of Psychology, Umeå University, Sweden; Department of Occupational and Public Health Sciences, University of Gävle, Sweden
| |
Collapse
|
10
|
Azuma K, Endo G, Endo Y, Hara K, Harada K, Hori H, Horie S, Horiguchi H, Ichiba M, Ichihara G, Ikeda M, Ishitake T, Ito A, Iwasawa S, Kamijima M, Karita K, Kawai T, Kawamoto T, Koizumi A, Kumagai S, Kusaka Y, Miyagawa M, Morimoto Y, Nagano K, Nasu T, Nomiyama T, Omae K, Sato K, Okuda H, Sakurai H, Sobue T, Suwazono Y, Takebayashi T, Takeshita T, Takeuchi A, Tanaka M, Tanaka S, Tsukahara T, Tsunoda M, Ueno S, Yamano Y, Yamauchi T, Yano E. Occupational Exposure Limits of lead, dimethylamine, n-butyl-2,3-epoxypropyl ether, and 2-ethyl-1-hexanol and carcinogenicity and occupational sensitizer classification. J Occup Health 2016; 58:385-7. [PMID: 27476813 PMCID: PMC5356935 DOI: 10.1539/joh.16-0155-op] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
11
|
Pacharra M, Schäper M, Kleinbeck S, Blaszkewicz M, Golka K, van Thriel C. Neurobehavioral effects of exposure to propionic acid revisited—Does psychosocial stress interfere with distractive effects in volunteers? Neurotoxicology 2016; 55:102-111. [DOI: 10.1016/j.neuro.2016.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/10/2016] [Accepted: 05/27/2016] [Indexed: 10/21/2022]
|
12
|
Pacharra M, Kleinbeck S, Schäper M, Blaszkewicz M, van Thriel C. Multidimensional assessment of self-reported chemical intolerance and its impact on chemosensory effects during ammonia exposure. Int Arch Occup Environ Health 2016; 89:947-59. [DOI: 10.1007/s00420-016-1134-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 04/21/2016] [Indexed: 11/28/2022]
|
13
|
Miyake M, Ito Y, Sawada M, Sakai K, Suzuki H, Sakamoto T, Sawamoto K, Kamijima M. Subchronic inhalation exposure to 2-ethyl-1-hexanol impairs the mouse olfactory bulb via injury and subsequent repair of the nasal olfactory epithelium. Arch Toxicol 2016; 90:1949-58. [PMID: 27055686 DOI: 10.1007/s00204-016-1699-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/21/2016] [Indexed: 10/22/2022]
Abstract
The olfactory system can be a toxicological target of volatile organic compounds present in indoor air. Recently, 2-ethyl-1-hexanol (2E1H) emitted from adhesives and carpeting materials has been postulated to cause "sick building syndrome." Patients' symptoms are associated with an increased sense of smell. This investigation aimed to characterize the histopathological changes of the olfactory epithelium (OE) of the nasal cavity and the olfactory bulb (OB) in the brain, due to subchronic exposure to 2E1H. Male ICR mice were exposed to 0, 20, 60, or 150 ppm 2E1H for 8 h every day for 1 week, or 5 days per week for 1 or 3 months. After a 1-week exposure, the OE showed inflammation and degeneration, with a significant concentration-dependent reduction in the staining of olfactory receptor neurons and in the numbers of globose basal cells at ≥20 ppm. Regeneration occurred at 1 month along with an increase in the basal cells, but lymphocytic infiltration, expanded Bowman's glands, and a decrease in the olfactory receptor neurons were observed at 3 months. Intriguingly, the OB at 3 months showed a reduction in the diameters of the glomeruli and in the number of olfactory nerves and tyrosine hydroxylase-positive neurons, but an increased number of ionized calcium-binding adaptor molecule 1-positive microglia in glomeruli. Accordingly, 2E1H inhalation induced degeneration of the OE with the lowest-observed-adverse-effect level of 20 ppm. The altered number of functional cell components in the OB suggests that effects on olfactory sensation persist after subchronic exposure to 2E1H.
Collapse
Affiliation(s)
- Mio Miyake
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Yuki Ito
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Masato Sawada
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Kiyoshi Sakai
- Nagoya City Public Health Research Institute, Nagoya, 467-8615, Japan
| | - Himiko Suzuki
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Tatsuo Sakamoto
- Chukyo University School of Health and Sport Science, Toyota, 470-0393, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| |
Collapse
|
14
|
Lehmann R, Schöbel N, Hatt H, van Thriel C. The involvement of TRP channels in sensory irritation: a mechanistic approach toward a better understanding of the biological effects of local irritants. Arch Toxicol 2016; 90:1399-413. [PMID: 27037703 DOI: 10.1007/s00204-016-1703-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/24/2016] [Indexed: 01/30/2023]
Abstract
Peripheral nerves innervating the mucosae of the nose, mouth, and throat protect the organism against chemical hazards. Upon their stimulation, characteristic perceptions (e.g., stinging and burning) and various reflexes are triggered (e.g., sneezing and cough). The potency of a chemical to cause sensory irritation can be estimated by a mouse bioassay assessing the concentration-dependent decrease in the respiratory rate (50 % decrease: RD50). The involvement of the N. trigeminus and its sensory neurons in the irritant-induced decrease in respiratory rates are not well understood to date. In calcium imaging experiments, we tested which of eight different irritants (RD50 5-730 ppm) could induce responses in primary mouse trigeminal ganglion neurons. The tested irritants acetophenone, 2-ethylhexanol, hexyl isocyanate, isophorone, and trimethylcyclohexanol stimulated responses in trigeminal neurons. Most of these responses depended on functional TRPA1 or TRPV1 channels. For crotyl alcohol, 3-methyl-1-butanol, and sodium metabisulfite, no activation could be observed. 2-ethylhexanol can activate both TRPA1 and TRPV1, and at low contractions (100 µM) G protein-coupled receptors (GPCRs) seem to be involved. GPCRs might also be involved in the mediation of the responses to trimethylcyclohexanol. By using neurobiological tools, we showed that sensory irritation in vivo could be based on the direct activation of TRP channels but also on yet unknown interactions with GPCRs present in trigeminal neurons. Our results showed that the potency suggested by the RD50 values was not reflected by direct nerve-compound interaction.
Collapse
Affiliation(s)
- Ramona Lehmann
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139, Dortmund, Germany.
| | - Nicole Schöbel
- Department of Animal Physiology, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Christoph van Thriel
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139, Dortmund, Germany
| |
Collapse
|
15
|
Olfactory Acuity and Automatic Associations to Odor Words Modulate Adverse Effects of Ammonia. CHEMOSENS PERCEPT 2016. [DOI: 10.1007/s12078-016-9202-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Gonzalez-Perez O, Campos-Ordonez T. Glial plasticity after hexahydrobenzene exposure. Neural Regen Res 2016; 11:404-5. [PMID: 27127470 PMCID: PMC4828996 DOI: 10.4103/1673-5374.179042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
17
|
Campos-Ordonez T, Zarate-Lopez D, Galvez-Contreras AY, Moy-Lopez N, Guzman-Muniz J, Gonzalez-Perez O. Cyclohexane produces behavioral deficits associated with astrogliosis and microglial reactivity in the adult hippocampus mouse brain. Cell Mol Neurobiol 2015; 35:503-12. [PMID: 25433657 DOI: 10.1007/s10571-014-0146-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/21/2014] [Indexed: 10/24/2022]
Abstract
Cyclohexane is a volatile substance that has been utilized as a safe substitute of several organic solvents in diverse industrial processes, such as adhesives, paints, paint thinners, fingernail polish, lacquers, and rubber industry. A number of these commercial products are ordinarily used as inhaled drugs. However, it is not well known whether cyclohexane has noxious effects in the central nervous system. The aim of this study was to analyze the effects of cyclohexane inhalation on motor behavior, spatial memory, and reactive gliosis in the hippocampus of adult mice. We used a model that mimics recreational drug use in male Balb/C mice (P60), divided into two groups: controls and the cyclohexane group (exposed to 9,000 ppm of cyclohexane for 30 days). Both groups were then evaluated with a functional observational battery (FOB) and the Morris water maze (MWM). Furthermore, the relative expression of AP endonuclease 1 (APE1), and the number of astrocytes (GFAP+ cells) and microglia (Iba1+ cells) were quantified in the hippocampal CA1 and CA3 areas. Our findings indicated that cyclohexane produced severe functional deficits during a recreational exposure as assessed by the FOB. The MWM did not show statistically significant changes in the acquisition and retention of spatial memory. Remarkably, a significant increase in the number of astrocytes and microglia cells, as well as in the cytoplasmic processes of these cells were observed in the hippocampal CA1 and CA3 areas of cyclohexane-exposed mice. This cellular response was associated with an increase in the expression of APE1 in the same brain regions. In summary, cyclohexane exposure produces functional deficits that are associated with an important increase in the APE1 expression as well as the number of astrocytes and microglia cells and their cytoplasmic complexity in the CA1 and CA3 regions of the adult hippocampus.
Collapse
Affiliation(s)
- Tania Campos-Ordonez
- Laboratory of Neuroscience, School of Psychology, Facultad de Psicologia, DES Ciencias de la Salud, University of Colima, Av. Universidad 333, 28040, Colima, Col, Mexico
| | | | | | | | | | | |
Collapse
|
18
|
Brüning T, Bartsch R, Bolt HM, Desel H, Drexler H, Gundert-Remy U, Hartwig A, Jäckh R, Leibold E, Pallapies D, Rettenmeier AW, Schlüter G, Stropp G, Sucker K, Triebig G, Westphal G, van Thriel C. Sensory irritation as a basis for setting occupational exposure limits. Arch Toxicol 2014; 88:1855-79. [PMID: 25182421 PMCID: PMC4161939 DOI: 10.1007/s00204-014-1346-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/21/2014] [Indexed: 02/06/2023]
Abstract
There is a need of guidance on how local irritancy data should be incorporated into risk assessment procedures, particularly with respect to the derivation of occupational exposure limits (OELs). Therefore, a board of experts from German committees in charge of the derivation of OELs discussed the major challenges of this particular end point for regulatory toxicology. As a result, this overview deals with the question of integrating results of local toxicity at the eyes and the upper respiratory tract (URT). Part 1 describes the morphology and physiology of the relevant target sites, i.e., the outer eye, nasal cavity, and larynx/pharynx in humans. Special emphasis is placed on sensory innervation, species differences between humans and rodents, and possible effects of obnoxious odor in humans. Based on this physiological basis, Part 2 describes a conceptual model for the causation of adverse health effects at these targets that is composed of two pathways. The first, “sensory irritation” pathway is initiated by the interaction of local irritants with receptors of the nervous system (e.g., trigeminal nerve endings) and a downstream cascade of reflexes and defense mechanisms (e.g., eyeblinks, coughing). While the first stages of this pathway are thought to be completely reversible, high or prolonged exposure can lead to neurogenic inflammation and subsequently tissue damage. The second, “tissue irritation” pathway starts with the interaction of the local irritant with the epithelial cell layers of the eyes and the URT. Adaptive changes are the first response on that pathway followed by inflammation and irreversible damages. Regardless of these initial steps, at high concentrations and prolonged exposures, the two pathways converge to the adverse effect of morphologically and biochemically ascertainable changes. Experimental exposure studies with human volunteers provide the empirical basis for effects along the sensory irritation pathway and thus, “sensory NOAEChuman” can be derived. In contrast, inhalation studies with rodents investigate the second pathway that yields an “irritative NOAECanimal.” Usually the data for both pathways is not available and extrapolation across species is necessary. Part 3 comprises an empirical approach for the derivation of a default factor for interspecies differences. Therefore, from those substances under discussion in German scientific and regulatory bodies, 19 substances were identified known to be human irritants with available human and animal data. The evaluation started with three substances: ethyl acrylate, formaldehyde, and methyl methacrylate. For these substances, appropriate chronic animal and a controlled human exposure studies were available. The comparison of the sensory NOAEChuman with the irritative NOAECanimal (chronic) resulted in an interspecies extrapolation factor (iEF) of 3 for extrapolating animal data concerning local sensory irritating effects. The adequacy of this iEF was confirmed by its application to additional substances with lower data density (acetaldehyde, ammonia, n-butyl acetate, hydrogen sulfide, and 2-ethylhexanol). Thus, extrapolating from animal studies, an iEF of 3 should be applied for local sensory irritants without reliable human data, unless individual data argue for a substance-specific approach.
Collapse
Affiliation(s)
- Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IPA), Bochum, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nordin S, Claeson AS, Andersson M, Sommar L, Andrée J, Lundqvist K, Andersson L. Impact of Health-Risk Perception on Odor Perception and Cognitive Performance. CHEMOSENS PERCEPT 2013. [DOI: 10.1007/s12078-013-9153-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Juran SA, van Thriel C, Kleinbeck S, Schäper M, Falkenstein M, Iregren A, Johanson G. Neurobehavioral performance in human volunteers during inhalation exposure to the unpleasant local irritant cyclohexylamine. Neurotoxicology 2012; 33:1180-7. [DOI: 10.1016/j.neuro.2012.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/29/2012] [Accepted: 06/29/2012] [Indexed: 11/26/2022]
|
21
|
Wolkoff P. Indoor air pollutants in office environments: assessment of comfort, health, and performance. Int J Hyg Environ Health 2012; 216:371-94. [PMID: 22954455 DOI: 10.1016/j.ijheh.2012.08.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 07/28/2012] [Accepted: 08/05/2012] [Indexed: 02/06/2023]
Abstract
Concentrations of volatile organic compounds (VOCs) in office environments are generally too low to cause sensory irritation in the eyes and airways on the basis of estimated thresholds for sensory irritation. Furthermore, effects in the lungs, e.g. inflammatory effects, have not been substantiated at indoor relevant concentrations. Some VOCs, including formaldehyde, in combination may under certain environmental and occupational conditions result in reported sensory irritation. The odour thresholds of several VOCs are low enough to influence the perceived air quality that result in a number of acute effects from reported sensory irritation in eyes and airways and deterioration of performance. The odour perception (air quality) depends on a number of factors that may influence the odour impact. There is neither clear indication that office dust particles may cause sensory effects, even not particles spiked with glucans, aldehydes or phthalates, nor lung effects; some inflammatory effects may be observed among asthmatics. Ozone-initiated terpene reaction products may be of concern in ozone-enriched environments (≥0.1mg/m(3)) and elevated limonene concentrations, partly due to the production of formaldehyde. Ambient particles may cause cardio-pulmonary effects, especially in susceptible people (e.g. elderly and sick people); even, short-term effects, e.g. from traffic emission and candle smoke may possibly have modulating and delayed effects on the heart, but otherwise adverse effects in the airways and lung functions have not been observed. Secondary organic aerosols generated in indoor ozone-initiated terpene reactions appear not to cause adverse effects in the airways; rather the gaseous products are relevant. Combined exposure to particles and ozone may evoke effects in subgroups of asthmatics. Based on an analysis of thresholds for odour and sensory irritation selected compounds are recommended for measurements to assess the indoor air quality and to minimize reports of irritation symptoms, deteriorated performance, and cardiovascular and pulmonary effects.
Collapse
Affiliation(s)
- Peder Wolkoff
- National Research Centre for the Working Environment, Copenhagen, Denmark.
| |
Collapse
|
22
|
Araki A, Kawai T, Eitaki Y, Kanazawa A, Morimoto K, Nakayama K, Shibata E, Tanaka M, Takigawa T, Yoshimura T, Chikara H, Saijo Y, Kishi R. Relationship between selected indoor volatile organic compounds, so-called microbial VOC, and the prevalence of mucous membrane symptoms in single family homes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:2208-15. [PMID: 20188399 DOI: 10.1016/j.scitotenv.2010.02.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 02/03/2010] [Accepted: 02/04/2010] [Indexed: 05/07/2023]
Abstract
Microorganisms are known to produce a range of volatile organic compounds, so-called microbial VOC (MVOC). Chamber studies where humans were exposed to MVOC addressed the acute effects of objective and/or subjective signs of mucosal irritation. However, the effect of MVOC on inhabitants due to household exposure is still unclear. The purpose of this epidemiological study was to measure indoor MVOC levels in single family homes and to evaluate the relationship between exposure to them and sick building syndrome (SBS). All inhabitants of the dwellings were given a self-administered questionnaire with standardized questions to assess their symptoms. Air samples were collected and the concentrations of eight selected compounds in indoor air were analyzed by gas chromatography/mass spectrometry - selective ion monitoring mode (GC/MS-SIM). The most frequently detected MVOC was 1-pentanol at a detection rate of 78.6% and geometric mean of 0.60 microg/m(3). Among 620 participants, 120 (19.4%) reported one or more mucous symptoms; irritation of the eyes, nose, airway, or coughing every week (weekly symptoms), and 30 (4.8%) reported that the symptoms were home-related (home-related symptoms). Weekly symptoms were not associated with any of MVOC, whereas significant associations between home-related mucous symptoms and 1-octen-3-ol (per log(10)-unit: odds ratio (OR) 5.6, 95% confidence interval (CI): 2.1 to 14.8) and 2-pentanol (per log(10)-unit: OR 2.3, 95% CI: 1.0 to 4.9) were obtained after adjustment for gender, age, and smoking. Associations between home-related symptoms and 1-octen-3-ol remained after mutual adjustment. However, concentrations of the selected compounds in indoors were lower than the estimated safety level in animal studies. Thus, the statistically significant association between 1-octen-3-ol may be due to a direct effect of the compounds or the associations may be being associated with other offending compounds. Additional studies are needed to evaluate these possibilities.
Collapse
Affiliation(s)
- Atsuko Araki
- Hokkaido University Graduate School of Medicine, Department of Public Health Sciences, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ernstgård L, Norbäck D, Nordquist T, Wieslander G, Wålinder R, Johanson G. Acute effects of exposure to 1 mg/m(3) of vaporized 2-ethyl-1-hexanol in humans. INDOOR AIR 2010; 20:168-175. [PMID: 20409194 DOI: 10.1111/j.1600-0668.2009.00638.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The objective was to assess acute effects from controlled exposure of volunteers to 2-ethyl-1-hexanol, a volatile organic compound that is often found in indoor air. Sixteen males and fourteen females were in random order exposed to 1 mg/m(3) of vapors of 2-ethyl-1-hexanol or to clean air (control exposure) in an exposure chamber during 2 h at rest. The subjects performed symptom ratings on Visual Analog Scales. During exposure to 2-ethyl-1-hexanol subjective ratings of smell and eye discomfort were minimally but significantly increased. Ratings of nasal irritation, throat irritation, headache, dyspnoea, fatigue, dizziness, nausea, and intoxication were not significantly affected. No exposure-related effects on measurement of blinking frequency by electromyography, measurement of the eye break-up time, vital staining of the eye, nasal lavage biomarkers, transfer tests, spirometric and rhinometric measures were seen. No differences in response were seen between sexes or between atopics and non-atopics. Practical Implications It is important to assess acute effects in volatile organic compounds like 2-ethyl-1-hexanol. 2-ethyl-1-hexanol is often found in indoor air generated by degradation of plastic building materials or in new buildings. There are associations between 2-ethyl-1-hexanol in indoor air and respiratory effects, eye irritation, headache, and blurred vision. A controlled chamber exposure study in acute effects was performed. In conclusion, this study showed weak subjective symptom of irritation in the eyes.
Collapse
Affiliation(s)
- L Ernstgård
- Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Kaukiainen A, Akila R, Martikainen R, Sainio M. Symptom screening in detection of occupational solvent-related encephalopathy. Int Arch Occup Environ Health 2008; 82:343-55. [PMID: 18604551 DOI: 10.1007/s00420-008-0341-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2008] [Accepted: 06/06/2008] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Sensitive and easily applicable methods are needed for early detection of central nervous system adverse effects related to occupational solvent exposure. The present study evaluates how symptom screening works in practice. METHODS A cross-sectional questionnaire survey was conducted on 2,000 construction workers, including painters and carpenters, in Finland. Scores were calculated for symptoms relevant for chronic solvent encephalopathy (CSE). Responses on exposure and health were compared between subjects with high score (N = 28) and all other respondents. The respondents with the highest scores, regardless of their occupation and exposure, were invited for clinical examination to investigate the aetiologies of the symptoms. If the examination resulted in a suspicion of CSE, a multidisciplinary differential diagnostic follow-up procedure was performed. RESULTS The respondents with highest symptom scores were more exposed to solvents than those with lower scores (P < 0.001) and reported more often physician-diagnosed diseases, especially psychiatric disorders (P < 0.001). They also consumed more alcohol (P = 0.005) and were more often unemployed or unable to work (P < 0.001). In the clinical examination, sleep disturbances, somatic disorders, depression, unemployment, and alcohol use were commonly found in addition to considerable solvent exposure history and clinical neurological findings. Further examinations and a diagnostic follow-up verified three cases of encephalopathy. One case was a CSE, an occupational disease. The other two encephalopathy cases had multifactorial aetiology including solvents. CONCLUSIONS Screening in active workforce for symptoms of cognitive dysfunction identifies highly solvent-exposed workers and also reveals occupational and non-occupational cases of encephalopathy. Evaluation of differential diagnostic conditions is essential in the detection of CSE. A stepwise model is proposed.
Collapse
Affiliation(s)
- Ari Kaukiainen
- Finnish Institute of Occupational Health, Occupational Medicine, Helsinki, Finland.
| | | | | | | |
Collapse
|
26
|
Rohlman DS, Lucchini R, Anger WK, Bellinger DC, van Thriel C. Neurobehavioral testing in human risk assessment. Neurotoxicology 2008; 29:556-67. [PMID: 18539229 DOI: 10.1016/j.neuro.2008.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 04/09/2008] [Accepted: 04/10/2008] [Indexed: 02/06/2023]
Abstract
Neurobehavioral tests are being increasingly used in human risk assessment and there is a strong need for guidance. The field of neurobehavioral toxicology has evolved from research which initially focused on using traditional neuropsychological tests to identify "abnormal cases" to include methods used to detect sub-clinical deficits, to further incorporate the use of neurosensory assessment, and to expand testing from occupational populations to vulnerable populations including older adults and children. Even as exposures in the workplace are reduced, they have been increasing in the environment and research on exposure has now expanded to cross the entire lifetime. These neurobehavioral methods are applied in research and the findings used for regulatory purposes to develop preventative action for exposed populations. This paper reflects a summary of the talks presented at the Neurobehavioral Testing in Human Risk Assessment symposium presented at the 11th meeting of the International Neurotoxicology Association.
Collapse
Affiliation(s)
- Diane S Rohlman
- Center for Research on Occupational and Environmental Toxicology, L606, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|