1
|
Huayta J, Seay S, Laster J, Rivera NA, Joyce AS, Ferguson PL, Hsu-Kim H, Meyer JN. Assessment of developmental neurotoxicology-associated alterations in neuronal architecture and function using Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.11.632560. [PMID: 39868199 PMCID: PMC11761668 DOI: 10.1101/2025.01.11.632560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Few of the many chemicals that regulatory agencies are charged with assessing for risk have been carefully tested for developmental neurotoxicity (DNT). To speed up testing efforts, as well as to reduce the use of vertebrate animals, great effort is being devoted to alternate laboratory models for testing DNT. A major mechanism of DNT is altered neuronal architecture resulting from chemical exposure during neurodevelopment. Caenorhabditis elegans is a nematode that has been extensively studied by neurobiologists and developmental biologists, and to a lesser extent by neurotoxicologists. The developmental trajectory of the nervous system in C. elegans is easily visualized, normally entirely invariant, and fully mapped. Therefore, we hypothesized that C. elegans could be a powerful in vivo model to test chemicals for the potential to alter developmental patterning of neuronal architecture. To test whether this might be true, we developed a novel C. elegans DNT testing paradigm that includes exposure throughout development, examines all major neurotransmitter neuronal types for architectural alterations, and tests behaviors specific to dopaminergic, cholinergic, and glutamatergic functions. We used this paradigm to characterize the effects of early-life exposures to the developmental neurotoxicants lead, cadmium, and benzo(a)pyrene (BaP) on dopaminergic, cholinergic, and glutamatergic architecture. We also assessed whether exposures would alter neuronal specification as assessed by expression of reporter genes diagnostic of specific neurotransmitters. We identified no cases in which the apparent neurotransmitter type of the neurons we examined changed, but many in which neuronal morphology was altered. We also found that neuron-specific behaviors were altered during C. elegans mid-adulthood for populations with measured morphological neurodegeneration in earlier stages. The functional changes were consistent with the morphological changes we observed in terms of type of neuron affected. We identified changes consistent with those reported in the mammalian DNT literature, strengthening the case for C. elegans as a DNT model, and made novel observations that should be followed up in future studies.
Collapse
Affiliation(s)
- Javier Huayta
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Sarah Seay
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Joseph Laster
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Nelson A Rivera
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - Abigail S Joyce
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - P Lee Ferguson
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - Heileen Hsu-Kim
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| |
Collapse
|
2
|
Zeb R, Yin X, Chen F, Wang KJ. Chronic exposure to environmental concentrations of benzo[a]pyrene causes multifaceted toxic effects of developmental compromise, redox imbalance, and modulated transcriptional profiles in the early life stages of marine medaka (Oryzias melastigma). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107016. [PMID: 38991362 DOI: 10.1016/j.aquatox.2024.107016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/05/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) accumulate and integrate into aquatic environments, raising concerns about the well-being and safety of aquatic ecosystems. Benzo[a]pyrene (BaP), a persistent PAH commonly detected in the environment, has been extensively studied. However, the broader multifaceted toxicity potential of BaP on the early life stages of marine fish during chronic exposure to environmentally relevant concentrations needs further exploration. To fill these knowledge gaps, this study assessed the in vivo biotoxicity of BaP (1, 4, and 8 μg/L) in marine medaka (Oryzias melastigma) during early development over a 30-day exposure period. The investigation included morphological, biochemical, and molecular-level analyses to capture the broader potential of BaP toxicity. Morphological analyses showed that exposure to BaP resulted in skeletal curvatures, heart anomalies, growth retardation, elevated mortality, delayed and reduced hatching rates. Biochemical analyses revealed that BaP exposure not only created oxidative stress but also disrupted the activities of antioxidant enzymes. This disturbance in redox balance was further explored by molecular level investigation. The transcriptional profiles revealed impaired oxidative phosphorylation (OXPHOS) and tricarboxylic acid (TCA) cycle pathways, which potentially inhibited the oxidative respiratory chain in fish following exposure to BaP, and reduced the production of adenosine triphosphate (ATP) and succinate dehydrogenase (SDH). Furthermore, this investigation indicated a potential connection to apoptosis, as demonstrated by fluorescence microscopy and histological analyses, and supported by an increase in the expression levels of related genes via real-time quantitative PCR. This study enhances our understanding of the molecular-level impacts of BaP's multifaceted toxicity in the early life stages of marine medaka, and the associated risks.
Collapse
Affiliation(s)
- Rabia Zeb
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Xiaohan Yin
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, PR China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, PR China; Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, PR China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, PR China; Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, PR China.
| |
Collapse
|
3
|
Stagaman K, Alexiev A, Sieler MJ, Hammer A, Kasschau KD, Truong L, Tanguay RL, Sharpton TJ. The zebrafish gut microbiome influences benzo[a]pyrene developmental neurobehavioral toxicity. Sci Rep 2024; 14:14618. [PMID: 38918492 PMCID: PMC11199668 DOI: 10.1038/s41598-024-65610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024] Open
Abstract
Early-life exposure to environmental toxicants like Benzo[a]pyrene (BaP) is associated with several health consequences in vertebrates (i.e., impaired or altered neurophysiological and behavioral development). Although toxicant impacts were initially studied relative to host physiology, recent studies suggest that the gut microbiome is a possible target and/or mediator of behavioral responses to chemical exposure in organisms, via the gut-brain axis. However, the connection between BaP exposure, gut microbiota, and developmental neurotoxicity remains understudied. Using a zebrafish model, we determined whether the gut microbiome influences BaP impacts on behavior development. Embryonic zebrafish were treated with increasing concentrations of BaP and allowed to grow to the larval life stage, during which they underwent behavioral testing and intestinal dissection for gut microbiome profiling via high-throughput sequencing. We found that exposure affected larval zebrafish microbiome diversity and composition in a manner tied to behavioral development: increasing concentrations of BaP were associated with increased taxonomic diversity, exposure was associated with unweighted UniFrac distance, and microbiome diversity and exposure predicted larval behavior. Further, a gnotobiotic zebrafish experiment clarified whether microbiome presence was associated with BaP exposure response and behavioral changes. We found that gut microbiome state altered the relationship between BaP exposure concentration and behavioral response. These results support the idea that the zebrafish gut microbiome is a determinant of the developmental neurotoxicity that results from chemical exposure.
Collapse
Affiliation(s)
- Keaton Stagaman
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Alexandra Alexiev
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Michael J Sieler
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Austin Hammer
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Kristin D Kasschau
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Lisa Truong
- Sinnhuber Aquatic Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Robyn L Tanguay
- Sinnhuber Aquatic Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Thomas J Sharpton
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA.
- Department of Statistics, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
4
|
Nilén G, Larsson M, Hyötyläinen T, Keiter SH. A complex mixture of polycyclic aromatic compounds causes embryotoxic, behavioral, and molecular effects in zebrafish larvae (Danio rerio), and in vitro bioassays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167307. [PMID: 37804991 DOI: 10.1016/j.scitotenv.2023.167307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
Polycyclic aromatic compounds (PACs) are prevalent in the environment, typically found in complex mixtures and high concentrations. Our understanding of the effects of PACs, excluding the 16 priority polycyclic aromatic hydrocarbons (16 PAHs), remains limited. Zebrafish embryos and in vitro bioassays were utilized to investigate the embryotoxic, behavioral, and molecular effects of a soil sample from a former gasworks site in Sweden. Additionally, targeted chemical analysis was conducted to analyze 87 PACs in the soil, fish, water, and plate material. CALUX® assays were used to assess the activation of aryl hydrocarbon and estrogen receptors, as well as the inhibition of the androgen receptor. Larval behavior was measured by analyzing activity during light and darkness and in response to mechanical stimulation. Furthermore, qPCR analyses were performed on a subset of 36 genes associated with specific adverse outcomes, and the total lipid content in the larvae was measured. Exposure to the sample resulted in embryotoxic effects (LC50 = 0.480 mg dry matter soil/mL water). The mixture also induced hyperactivity in darkness and hypoactivity in light and in response to the mechanical stimulus. qPCR analysis revealed differential regulation of 15 genes, including downregulation of opn1sw1 (eye pigmentation) and upregulation of fpgs (heart failure). The sample caused significant responses in three bioassays (ERα-, DR-, and PAH-CALUX), and the exposed larvae exhibited elevated lipid levels. Chemical analysis identified benzo[a]pyrene as the predominant compound in the soil and approximately half of the total PAC concentration was attributed to the 16 PAHs. This study highlights the value of combining in vitro and in vivo methods with chemical analysis to assess toxic mechanisms at specific targets and to elucidate the possible interactions between various pathways in an organism. It also enhances our understanding of the risks associated with environmental mixtures of PACs and their distribution during toxicity testing.
Collapse
Affiliation(s)
- Greta Nilén
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden.
| | - Maria Larsson
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Tuulia Hyötyläinen
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| |
Collapse
|
5
|
Caumo S, Yera AB, Vicente A, Alves C, Roubicek DA, de Castro Vasconcellos P. Particulate matter-bound organic compounds: levels, mutagenicity, and health risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:31293-31310. [PMID: 35001282 DOI: 10.1007/s11356-021-17965-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Increased industrialization and consumption of fossil fuels in the Metropolitan Region of São Paulo (MRSP), Brazil, have caused a growth of the particulate matter emissions to the atmosphere and an increase in population health problems. Particulate and gaseous phase samples were collected in different short campaigns (2015, 2016, and 2017) near an urban-industrial area. Organic carbon (OC), elemental carbon (EC), polycyclic aromatic hydrocarbons (PAH), and its derivatives (nitro and oxy-PAH), n-alkanes, hopanes, and pesticides were determined. The Salmonella/microsome test confirmed the mutagenic activity of these samples. Among PAH, benzo(a)pyrene was detected as one of the most abundant compounds. Benzo(a)pyrene equivalent concentrations for PAH and nitro-PAH, and the associated risk of lung cancer, showed values above those recommended in the literature. The profile of n-alkanes confirmed the predominance of anthropogenic sources. Pesticide concentrations and estimated risks, such as the daily inhalation exposure and hazard quotient, suggest that exposure to these compounds in this area may be dangerous to human health.
Collapse
Affiliation(s)
- Sofia Caumo
- Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil.
| | - Aleinnys B Yera
- Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Ana Vicente
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Célia Alves
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Deborah A Roubicek
- Dept. Environmental Analyses, São Paulo State Environmental Agency, CETESB, São Paulo, Brazil
| | | |
Collapse
|
6
|
Zhang Y, Chen Y, Xu K, Fang L, Huang J, Xia S, Zhou Q, Lv L, Wang C. Embryonic exposure to phenanthrene caused developmental defects of craniofacial cartilage in F1 larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 243:106080. [PMID: 35065452 DOI: 10.1016/j.aquatox.2022.106080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
As a representative polycyclic aromatic hydrocarbon with low ring numbers, phenanthrene (Phe) is ubiquitously present in the environment. In this study, zebrafish embryos were exposed to Phe at 0.05, 0.5, 5 and 50 nmol/L for 96 h, and then cultured to adulthood in clean water, the developmental defects of craniofacial cartilage were observed in F1 larvae produced by adult males and females mated with untreated fish. Delayed development of craniofacial cartilage, including a shorter and wider Meckel's cartilage and mandibular arch were observed in F1 larvae from adult fish of both sexes. Maternal F1 larvae showed a greater impact on the lower jaw than paternal F1 larvae, this may be connected with greater downregulation of the transcription of genes related to the development of craniofacial cartilage such as runt-related transcription factor 2 (runx2), fibroblast growth factor 8 (fgf8), sonic hedgehog (shh), Indian hedgehog (ihh). Further results indicated that the modification DNA methylation levels in the promotors of gene runx2 and shh in maternal and paternal F1 larvae were inherited from embryonic F0 larvae, and might be linked with the toxicity of craniofacial cartilage in F1 larvae. This study illustrated that embryonic exposure to Phe could induce adverse effects on craniofacial development in F1 offspring, emphasizing the importance of transgenerational toxicology studies in risk assessment.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Ying Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Ke Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Lu Fang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Jie Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Siyu Xia
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Qian Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Liangju Lv
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China.
| |
Collapse
|
7
|
Hamilton TJ, Krook J, Szaszkiewicz J, Burggren W. Shoaling, boldness, anxiety-like behavior and locomotion in zebrafish (Danio rerio) are altered by acute benzo[a]pyrene exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145702. [PMID: 33609832 DOI: 10.1016/j.scitotenv.2021.145702] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Environmental exposure to crude oil and/or its derivatives in fishes can negatively impact survival, morphology and physiology, but relatively little focus has been on behavior. Exposures can influence prey-predator interactions, courtship and other vital behaviors, leading to individual or population disruption at toxicant levels well below those producing morphological or physiological changes. The few behavioral studies of polycyclic aromatic hydrocarbons (PAHs) on fish behavior have yielded highly inconsistent results, likely relating to chronic vs. acute treatment. A few studies report lethargy and decreased exploratory behavior, while others indicate increased anxiety and greater exploratory behavior with PAH exposure. In our study on zebrafish (Danio rerio), we hypothesized that even relatively brief (30 min) exposure to the PAH benzo[a]pyrene (B[a]P) would impact group shoaling and individual behaviors in open field and novel object exploration tests. Exposures comprised measured concentrations of 1.0 μM, 10 μM, or 100 μM, B[a]P. Compared to controls, inter-individual distance (IID) was significantly increased by 100 μM B[a]P, but not by 1.0 μM or 10 μM B[a]P. Total distance moved by shoals was decreased significantly at B[a]P concentrations of 1.0 μM, 10 μM and 100 μM. In the open field test of individual locomotion and anxiety-like behavior, time spent in the thigmotaxis zone along the walls of the circular test arena (a proxy for anxiety-like behavior), was decreased at 100 μM. In the novel object approach test to investigate boldness, time spent near the object was significantly increased by both 10 μM and 100 μM B[a]P. Collectively, these data indicate a complex suite of changes in zebrafish including altered shoal dynamics, decreased anxiety, increased boldness, and decreased locomotion associated with exposure to B[a]P.
Collapse
Affiliation(s)
- Trevor J Hamilton
- Department of Psychology, MacEwan University, Edmonton, AB T5J 4S2, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Jeffrey Krook
- Department of Psychology, MacEwan University, Edmonton, AB T5J 4S2, Canada
| | | | - Warren Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| |
Collapse
|
8
|
Olivares-Rubio HF, Espinosa-Aguirre JJ. Acetylcholinesterase activity in fish species exposed to crude oil hydrocarbons: A review and new perspectives. CHEMOSPHERE 2021; 264:128401. [PMID: 33059211 DOI: 10.1016/j.chemosphere.2020.128401] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/03/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Crude oil and its derivatives are primary energy resources for humans, and processes involving these materials could affect aquatic environments. Acetyl cholinesterase (AChE) activity is a suitable biomarker for exposure to organophosphate pesticides. Under controlled conditions, fish exposed to polycyclic aromatic hydrocarbons (PAHs), such as benzo[a]pyrene, pyrene and anthracene, showed inhibition of this biomarker; however, PAHs with a low molecular weight did not induce changes or cause stimulation of AChE activity. Diverse responses of fish exposed to soluble fractions of crude oil, fuels or gasoline were documented. Most studies in which AChE activity was considered for environmental monitoring have been performed to evaluate the presence of pesticides, and the effects of petroleum hydrocarbons are unclear. The objective of this review was to provide the recent status of research on this topic and suggest proposals for future investigations. To establish the suitability of this biomarker in fish species exposed to these pollutants and to determine their neurotoxic effects, researchers must determinate the mechanism involved in the AChE inhibition by petroleum hydrocarbons, unify criteria concerning the experimental in vitro and in vivo designs and apply multivariate statistical and correlation analyses between these pollutants with AChE activity in field studies.
Collapse
Affiliation(s)
- Hugo F Olivares-Rubio
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jesús Javier Espinosa-Aguirre
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
9
|
Zhang QL, Jiang YH, Dong ZX, Li HW, Lin LB. Exposure to benzo[a]pyrene triggers distinct patterns of microRNA transcriptional profiles in aquatic firefly Aquatica wuhana (Coleoptera: Lampyridae). JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123409. [PMID: 32763701 DOI: 10.1016/j.jhazmat.2020.123409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Larval aquatic fireflies in fresh water are adversely affected by water pollutants such as benzo(a)pyrene (BaP). However, their response to BaP stress at the microRNA (miRNA)-regulatory level remains unknown. Here, transcriptomes containing 31,872 genes and six miRNA transcriptional profiles were obtained for Aquatica wuhana larvae, and comparative analysis was performed between larvae exposed to BaP (0.01 mg/L) and unexposed controls. Fifteen of 114 miRNAs identified via bioinformatics were detected as differentially expressed (DEMs) upon BaP exposure. Analysis results of predicted target genes of DEM suggests that BaP exposure primarily triggered transcriptional changes of miRNA associated with five major regulatory categories: 1) osmotic balance, 2) energy metabolic efficiency, 3) development, 4) xenobiotic metabolism (oxidative stress), and 5) innate immune response. Based on six innate immune- and xenobiotic metabolism-related pathways enriched by the predicted DEM targets, 11 key BaP-responsive DEMs were further screened to investigate dynamic changes of expression in response to BaP stress at five time points, and also to validate the miRNA sequencing data using quantitative real-time PCR. This study provides valuable information for the protection of firefly resources and supplements the understanding of miRNA regulatory mechanisms in response to water deterioration.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, 650500, China.
| | - Yu-Hang Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhi-Xiang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hong-Wei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, 650500, China.
| |
Collapse
|
10
|
Nam SE, Saravanan M, Rhee JS. Benzo[ a]pyrene constrains embryo development via oxidative stress induction and modulates the transcriptional responses of molecular biomarkers in the marine medaka Oryzias javanicus. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1050-1058. [PMID: 32427057 DOI: 10.1080/10934529.2020.1767452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Embryos from the marine medaka fish Oryzias javanicus were treated with eight concentrations of benzo[a]pyrene (BaP) (0.001, 0.01, 0.1, 1, 2, 5, 10, or 20 μg L--1) after they had been fertilized. Significant mortality and hatching delays were detected in embryos that had been exposed to 10 and 20 μg L-1 BaP for 4 weeks. The mortality rate after hatching was higher in the medaka that had been previously exposed to > 2 μg L-1 BaP. Significant elevations in intracellular reactive oxygen species and malondialdehyde contents were measured and the mRNA expressions of the antioxidant defense system genes (gst, sod, cat, and gpx) increased in the embryos exposed to 10 and 20 μg L-1 BaP for 1 week. The hsp70, ahr, and cyp1a transcriptional responses were also significantly upregulated in the exposed groups after 1 week. The alterations to the in vivo parameters and molecular components suggested that waterborne BaP had a toxic effect on marine medaka embryos. Finally, fin defects, spinal curvature, and cardiac edema were highly induced when the embryos were exposed to > 5 μg L-1 BaP.
Collapse
Affiliation(s)
- Sang-Eun Nam
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, South Korea
| | - Manoharan Saravanan
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, South Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, South Korea
- Research Institute of Basic Sciences, Incheon National University, Incheon, South Korea
- Institute of Green Environmental Research Center, Incheon, South Korea
| |
Collapse
|
11
|
Wang W, Chen J, Fang Y, Wang B, Zou Q, Wang L, Zhang W, Huang X, Lv H, Zhang C, Wang K. Identification of gnrh2 and gnrh3 and their expression during brood pouch growth and short-term benzo(a)pyrene exposure in lined seahorse (Hippocampus erectus). Comp Biochem Physiol C Toxicol Pharmacol 2019; 225:108579. [PMID: 31386905 DOI: 10.1016/j.cbpc.2019.108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 11/16/2022]
Abstract
Gonadotropin-releasing hormones (GnRH) regulate gonadal growth of teleosts. Benzo(a)pyrene (BaP) functions as a reproductive endocrine disruptor. Furthermore, endocrine regulation on brood pouch growth of Syngnathidaes is elusive. To better understand the role of GnRH in brood pouch growth and effects of BaP on reproductive endocrine in lined seahorse (Hippocampus erectus), gnrh2 and gnrh3 genes were identified. Results showed that lined seahorse GnRH2 and GnRH3 precursors included the conservative tripartite structure and their transcripts highly expressed in brain as other teleosts. Expression profiles of gnrh2 and gnrh3 transcripts were detected during brood pouch growth. Results indicated that brain gnrh2 transcripts remarkably increased at the middle-stage and late-stage of brood pouch growth, while brain gnrh3 transcripts significantly raised at the early-stage and middle-stage. These suggested that GnRH2 and GnRH3 regulated brood pouch growth at different stages. Short-term BaP exposure in lined seahorse was performed. Transcripts of gnrh2 and gnrh3 remarkably increased in females and males exposed to BaP. Besides, plasma 17-beta estradiol (E2) levels presented a reduced trend during female fish exposed to BaP. This revealed that BaP functioned as anti-estrogenic effects and it may result in high expression of gnrh mRNA. However, plasma 11-ketone testosterone (11-KT) levels showed an increased trend during male fish exposed to BaP. Taken together, these indicated interesting results of BaP on reproduction in each sex of seahorse. These observations contribute to provide novel information of regulation on brood pouch growth and effects of BaP on reproductive endocrine in Syngnathidaes.
Collapse
Affiliation(s)
- Wenqiang Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Jun Chen
- School of Agriculture, Ludong University, Yantai 264025, China.
| | - Yan Fang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Bin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qiang Zou
- Yantai Branch of Shandong Technology Transfer Center, Chinese Academy of Sciences, Yantai 264003, China
| | - Lei Wang
- College of life sciences, Ludong University, Yantai 264025, China
| | - Wenwen Zhang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xueying Huang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Haoyue Lv
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Chenxiao Zhang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Kai Wang
- School of Agriculture, Ludong University, Yantai 264025, China.
| |
Collapse
|
12
|
Yang C, Han P, Ruan F, Zhou T, Luo B, Qiu Y, Lin Y, Lin Z, He C. Lactational exposure to environmentally relevant benzo(a)pyrene causes astrocytic activation and anxiety-like behavior in male mice. CHEMOSPHERE 2019; 221:67-74. [PMID: 30634150 DOI: 10.1016/j.chemosphere.2019.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Previous studies have shown the adversely neurodevelopmental effects of exposure to benzo(a)pyrene (BaP) at early life stage. However, it is unclear the effects of lactational exposure to environmentally relevant BaP on anxiety-like behavior and the molecular mechanisms related. In this study, lactational exposure to 1 and 10 μg/kg bw BaP from postnatal day 3-21 caused anxiety-like behavior and alterations of the expressions of the neurodevelopment and anxiety-related genes in adolescence male mice using O cycle maze. Moreover, BaP exposure increased the expression level of glial fibrillary acidic protein, a typical marker of astrocytes, in hippocampus of male offspring. The release of pro-inflammatory cytokines interleukin 6 and tumor necrosis factor α was also elevated in BaP-treated offspring. Further, lactational exposure to BaP decreased the level of glutathione and the expressions of antioxidant genes (Thioredoxin 1 and Glutaredoxin 2) in male offspring. Our study demonstrated that environmentally relevant BaP lactational exposure caused anxiety-like behavior in male offspring involved in astrocytic activation, neuroinflammation, and antioxidant capability dysfunction.
Collapse
Affiliation(s)
- Chuanli Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Peiyu Han
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Fengkai Ruan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Tengjian Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Bing Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yang Qiu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yuchun Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhongning Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Chengyong He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
13
|
Della Torre C, Maggioni D, Ghilardi A, Parolini M, Santo N, Landi C, Madaschi L, Magni S, Tasselli S, Ascagni M, Bini L, La Porta C, Del Giacco L, Binelli A. The interactions of fullerene C 60 and Benzo(α)pyrene influence their bioavailability and toxicity to zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:999-1008. [PMID: 30029334 DOI: 10.1016/j.envpol.2018.06.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to assess the toxicological consequences related to the interaction of fullerene nanoparticles (C60) and Benzo(α)pyrene (B(α)P) on zebrafish embryos, which were exposed to C60 and B(α)P alone and to C60 doped with B(α)P. The uptake of pollutants into their tissues and intra-cellular localization were investigated by immunofluorescence and electron microscopy. A set of biomarkers of genotoxicity and oxidative stress, as well as functional proteomics analysis were applied to assess the toxic effects due to C60 interaction with B(α)P. The carrier role of C60 for B(α)P was observed, however adsorption on C60 did not affect the accumulation and localization of B(α)P in the embryos. Instead, C60 doped with B(α)P resulted more prone to sedimentation and less bioavailable for the embryos compared to C60 alone. As for toxicity, our results suggested that C60 alone elicited oxidative stress in embryos and a down-regulation of proteins involved in energetic metabolism. The C60 + B(α)P induced cellular response mechanisms similar to B(α)P alone, but generating greater cellular damages in the exposed embryos.
Collapse
Affiliation(s)
| | | | - Anna Ghilardi
- Department of Biosciences, University of Milan, Italy
| | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, Italy
| | - Nadia Santo
- Department of Biosciences, University of Milan, Italy
| | - Claudia Landi
- Department of Life Science, University of Siena, Italy
| | | | - Stefano Magni
- Department of Biosciences, University of Milan, Italy
| | - Stefano Tasselli
- CNR-IRSA (National Research Council-Water Research Institute), Brugherio, Italy
| | | | - Luca Bini
- Department of Life Science, University of Siena, Italy
| | - Caterina La Porta
- Department of Environmental Science and Policy, University of Milan, Italy
| | | | | |
Collapse
|
14
|
Xu EG, Khursigara AJ, Magnuson J, Hazard ES, Hardiman G, Esbaugh AJ, Roberts AP, Schlenk D. Larval Red Drum (Sciaenops ocellatus) Sublethal Exposure to Weathered Deepwater Horizon Crude Oil: Developmental and Transcriptomic Consequences. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10162-10172. [PMID: 28768411 DOI: 10.1021/acs.est.7b02037] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The Deepwater Horizon (DWH) incident resulted in extensive oiling of the pelagic zone and shoreline habitats of many commercially important fish species. Exposure to the water-accommodated fraction (WAF) of oil from the spill causes developmental toxicity through cardiac defects in pelagic fish species. However, few studies have evaluated the effects of the oil on near-shore estuarine fish species such as red drum (Sciaenops ocellatus). Following exposure to a certified weathered slick oil (4.74 μg/L ∑PAH50) from the DWH event, significant sublethal impacts were observed ranging from impaired nervous system development [average 17 and 22% reductions in brain and eye area at 48 h postfertilization (hpf), respectively] to abnormal cardiac morphology (100% incidence at 24, 48, and 72 hpf) in red drum larvae. Consistent with the phenotypic responses, significantly differentially expressed transcripts, enriched gene ontology, and altered functions and canonical pathways predicted adverse outcomes in nervous and cardiovascular systems, with more pronounced changes at later larval stages. Our study demonstrated that the WAF of weathered slick oil of DWH caused morphological abnormalities predicted by a suite of advanced bioinformatic tools in early developing red drum and also provided the basis for a better understanding of molecular mechanisms of crude oil toxicity in fish.
Collapse
Affiliation(s)
- Elvis Genbo Xu
- Department of Environmental Sciences, University of California , Riverside, California 92521, United States
| | - Alex J Khursigara
- Marine Science Institute, University of Texas at Austin , Port Aransas, Texas 78373, United States
| | - Jason Magnuson
- Department of Biological Sciences & Advanced Environmental Research Institute, University of North Texas , Denton, Texas 76203, United States
| | - E Starr Hazard
- Center for Genomic Medicine, Medical University of South Carolina , Charleston, South Carolina 29403, United States
- Computational Biology Resource Center, Medical University of South Carolina , Charleston, South Carolina 29403, United States
| | - Gary Hardiman
- Computational Biology Resource Center, Medical University of South Carolina , Charleston, South Carolina 29403, United States
- Departments of Medicine and Public Health Sciences, Medical University of South Carolina , Charleston, South Carolina 29403, United States
| | - Andrew J Esbaugh
- Marine Science Institute, University of Texas at Austin , Port Aransas, Texas 78373, United States
| | - Aaron P Roberts
- Department of Biological Sciences & Advanced Environmental Research Institute, University of North Texas , Denton, Texas 76203, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California , Riverside, California 92521, United States
| |
Collapse
|
15
|
Sarma SN, Blais JM, Chan HM. Neurotoxicity of alkylated polycyclic aromatic compounds in human neuroblastoma cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:285-300. [PMID: 28598261 DOI: 10.1080/15287394.2017.1314840] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic compounds (PAC) are ubiquitous environmental pollutants originating from incomplete combustion processes. While the toxicity of parent PAC such as benzo[a]pyrene (BaP) is well characterized, effects of other alkyl-PAC dibenzothiophene (DBT) and retene (Ret) are not well established. The aim of this study was to examine the underlying relative neurotoxic mechanisms attributed to BaP (parent PAH), DBT and Ret (alkyl-PACs) using human neuroblastoma SK-N-SH cells. The lethal concentrations (LC10 and LC20) were found at approximately 10 µM and 40 µM, respectively after 24-h exposure of SK-N-SH cells. It was hypothesized that PAC trigger reactive oxygen species (ROS) production, leading to activation of apoptotic signaling pathways. Differentiated neuronal cells were treated with three compounds at (0.5-40 µM) for 24 h. There was a significant concentration-dependent increase in levels of ROS, even at sub-lethal levels of 1 µM Ret. The mitochondrial membrane potential (MMP) was significantly decreased. Real-time RT-PCR results showed up-regulation of pro-apoptotic genes and down-regulation of antioxidative genes expression in BaP-, DBT-, and Ret-treated SK-N-SH cells. Cytochrome c protein levels and lipid peroxidation (LPO) were also significantly elevated in a concentration-related manner. Data demonstrated that BaP-, DBT-, or Ret-induced neuronal cell damage involved oxidative stress generation through mitochondria-mediated apoptosis pathway. Alkyl-PAC also exhibited higher potency in ROS induction and reduction of MMP than parent PAC. These findings may be important for environmental risk assessment attributed to exposure to PAC.
Collapse
Affiliation(s)
| | - Jules M Blais
- a Department of Biology , University of Ottawa , Ottawa , ON , Canada
| | - Hing Man Chan
- a Department of Biology , University of Ottawa , Ottawa , ON , Canada
| |
Collapse
|
16
|
Mu WN, Li ZH, Zhong LQ, Wu YH. Effect of Tributyltin, Cadmium, and Their Combination on Physiological Responses in Juvenile Grass Carp. JOURNAL OF AQUATIC ANIMAL HEALTH 2016; 28:181-186. [PMID: 27484920 DOI: 10.1080/08997659.2016.1185049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tributyltin (TBT) and cadmium (Cd) are two common pollutants in aquatic environments. This study was designed to examine the physiological responses of juvenile Grass Carp Ctenopharyngodon idella to TBT, Cd, and their combination. Fish were apportioned into a control group, a TBT group (7.5 μg/L), a Cd group (2.97 mg/L), and a TBT-Cd group (7.5 μg/L TBT, 2.97 mg/L Cd(2+)) for 7 d. The following activities were measured: Na(+),K(+)-ATPase in gill tissues; nitric oxide synthase (NOS), acetylcholinesterase (AChE), and monoamine oxidase (MAO) in brain tissues; and lipid peroxidation (LPO), malondialdehyde (MDA), total antioxidative capacity (T-AOC), and glutathione (GSH) in liver tissues. Cadmium-induced stress was suggested by alterations in antioxidant responses (MDA, LPO, and T-AOC) and neurological parameters (AChE, MAO, and NOS). Cadmium also induced Na(+),K(+)-ATPase and GSH activity. Compared with the responses among the Cd group, the combination of TBT and Cd not only decreased the level of GSH and Na(+),K(+)-ATPase but also increased the levels of MDA, LPO, AChE, MAO, and NOS. These results suggest that a combination of TBT and Cd could reduce the adverse effects of Cd on Grass Carp. However, the exact mechanisms for the combined effects TBT and Cd on these biomarkers require further investigation. Received September 28, 2015; accepted April 17, 2016.
Collapse
Affiliation(s)
- Wei-Na Mu
- a College of Fisheries , Huazhong Agricultural University , Wuhan , Hubei 430070 , China
- b Ministry of Agriculture , Key Field Station for Fishery Resources and the Environment in Upper-Middle Reaches of the Yangtze River and Key Laboratory of Freshwater Biodiversity Conservation , Wuhan 430223 , China
- c Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences , Wuhan 430223 , China
| | - Zhi-Hua Li
- b Ministry of Agriculture , Key Field Station for Fishery Resources and the Environment in Upper-Middle Reaches of the Yangtze River and Key Laboratory of Freshwater Biodiversity Conservation , Wuhan 430223 , China
- c Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences , Wuhan 430223 , China
- d Research Institute of Fish Culture and Hydrobiology , University of South Bohemia in Ceske Budejovice , Zátiší 728/II, 389 25 Vodňany , Czech Republic
| | - Li-Qiao Zhong
- b Ministry of Agriculture , Key Field Station for Fishery Resources and the Environment in Upper-Middle Reaches of the Yangtze River and Key Laboratory of Freshwater Biodiversity Conservation , Wuhan 430223 , China
- c Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences , Wuhan 430223 , China
| | - Yan-Hua Wu
- b Ministry of Agriculture , Key Field Station for Fishery Resources and the Environment in Upper-Middle Reaches of the Yangtze River and Key Laboratory of Freshwater Biodiversity Conservation , Wuhan 430223 , China
- c Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences , Wuhan 430223 , China
- e Ministry of Education , Key Laboratory of Freshwater Fish Reproduction and Development , Chongqing 400715 , China
- f Key Laboratory of Aquatic Sciences of Chongqing, School of Life Sciences , Southwest University , Chongqing 400719 , China
| |
Collapse
|
17
|
Xu EG, Mager EM, Grosell M, Pasparakis C, Schlenker LS, Stieglitz JD, Benetti D, Hazard ES, Courtney SM, Diamante G, Freitas J, Hardiman G, Schlenk D. Time- and Oil-Dependent Transcriptomic and Physiological Responses to Deepwater Horizon Oil in Mahi-Mahi (Coryphaena hippurus) Embryos and Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7842-7851. [PMID: 27348429 DOI: 10.1021/acs.est.6b02205] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The Deepwater Horizon (DWH) oil spill contaminated the spawning habitats for numerous commercially and ecologically important fishes. Exposure to the water accommodated fraction (WAF) of oil from the spill has been shown to cause cardiac toxicity during early developmental stages across fishes. To better understand the molecular events and explore new pathways responsible for toxicity, RNA sequencing was performed in conjunction with physiological and morphological assessments to analyze the time-course (24, 48, and 96 h post fertilization (hpf)) of transcriptional and developmental responses in embryos/larvae of mahi-mahi exposed to WAF of weathered (slick) and source DWH oils. Slick oil exposure induced more pronounced changes in gene expression over time than source oil exposure. Predominant transcriptomic responses included alteration of EIF2 signaling, steroid biosynthesis, ribosome biogenesis and activation of the cytochrome P450 pathway. At 96 hpf, slick oil exposure resulted in significant perturbations in eye development and peripheral nervous system, suggesting novel targets in addition to the heart may be involved in the developmental toxicity of DHW oil. Comparisons of changes of cardiac genes with phenotypic responses were consistent with reduced heart rate and increased pericardial edema in larvae exposed to slick oil but not source oil.
Collapse
Affiliation(s)
- Elvis Genbo Xu
- Department of Environmental Sciences, University of California , Riverside, California 92521, United States
| | - Edward M Mager
- Department of Marine Biology and Ecology, University of Miami , Miami, Florida 33149, United States
| | - Martin Grosell
- Department of Marine Biology and Ecology, University of Miami , Miami, Florida 33149, United States
| | - Christina Pasparakis
- Department of Marine Biology and Ecology, University of Miami , Miami, Florida 33149, United States
| | - Lela S Schlenker
- Department of Marine Biology and Ecology, University of Miami , Miami, Florida 33149, United States
| | - John D Stieglitz
- Department of Marine Biology and Ecology, University of Miami , Miami, Florida 33149, United States
| | - Daniel Benetti
- Department of Marine Biology and Ecology, University of Miami , Miami, Florida 33149, United States
| | - E Starr Hazard
- Center for Genomics Medicine, Medical University of South Carolina , Charleston, South Carolina 29403, United States
- Computational Biology Resource Center, Medical University of South Carolina , Charleston, South Carolina 29403, United States
| | - Sean M Courtney
- Center for Genomics Medicine, Medical University of South Carolina , Charleston, South Carolina 29403, United States
| | - Graciel Diamante
- Department of Environmental Sciences, University of California , Riverside, California 92521, United States
| | - Juliane Freitas
- Department of Environmental Sciences, University of California , Riverside, California 92521, United States
| | - Gary Hardiman
- Center for Genomics Medicine, Medical University of South Carolina , Charleston, South Carolina 29403, United States
- Departments of Medicine & Public Health Sciences, Medical University of South Carolina , Charleston, South Carolina 29403, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California , Riverside, California 92521, United States
| |
Collapse
|
18
|
Li ZH, Li P, Shi ZC. Physiological and molecular responses in brain of juvenile common carp (Cyprinus carpio) following exposure to tributyltin. ENVIRONMENTAL TOXICOLOGY 2016; 31:278-284. [PMID: 25761124 DOI: 10.1002/tox.22042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/20/2014] [Accepted: 08/23/2014] [Indexed: 06/04/2023]
Abstract
Tributyltin (TBT), as antifouling paints, is widely present in aquatic environment, but little is known regarding the toxicity of TBT on fish brain. In this study, the effects of exposure to TBT on the antioxidant defense system, Na(+) -K(+) -ATPase activity, neurological enzymes activity and Hsp 70 protein level in brain of juvenile common carp (Cyprinus carpio) were studied. Fish were exposed to sublethal concentrations of TBT (5, 10 and 20 μg/L) for 7 days. Based on the results, with increasing concentrations of TBT, oxidative stress was apparent as reflected by the significant higher levels of oxidative indices, as well as the significant inhibition of all antioxidant enzymes activities. Besides, the activities of Acetylcholinesterase (AChE), Monoamine oxidases (MAO) and Na(+) -K(+) -ATPase were significantly inhibited after exposure to TBT with higher concentrations. In addition, the levels of Hsp 70 protein were evaluated under TBT stress with dose-depended manner. These results suggest that selected physiological responses in fish brain could be used as potential biomarkers for monitoring residual organotin compounds present in aquatic environment.
Collapse
Affiliation(s)
- Zhi-Hua Li
- Key Laboratory of Freshwater Biodiversity Conservation (Ministry of Agriculture), Key Field Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Ping Li
- Key Laboratory of Freshwater Biodiversity Conservation (Ministry of Agriculture), Key Field Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Ze-Chao Shi
- Key Laboratory of Freshwater Biodiversity Conservation (Ministry of Agriculture), Key Field Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| |
Collapse
|
19
|
Li P, Li ZH. Physiological Responses in Chinese Rare Minnow Larvae Following Exposure to Low-Dose Tributyltin. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 95:588-592. [PMID: 26385694 DOI: 10.1007/s00128-015-1655-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 09/12/2015] [Indexed: 06/05/2023]
Abstract
In the present study, the antioxidant response and acetylcholinesterase (AChE) activity were measured in Chinese rare minnow larvae (Gobiocypris rarus) after exposure to tributyltin (TBT) (0, 100, 400 and 800 ngL(-1)) for 7 days, as well as the expression of a series of genes, including cr, aptase and prl genes involved in the ion-regulatory process and igfbp3 and gh related to growth rate. Results shows that oxidative stress was generated in fish exposed to TBT, as evidenced by elevated malondialdehyde levels and the inhibition of antioxidant parameters. The activity of acetylcholinesterase (AChE) was also inhibited in fish under higher TBT stress. Moreover, genes involved in ion regulation and growth were affected, based on the regulated transcription of the cr, atpase, gh, prl and igfbp3 genes in the treated groups. The observed effects of TBT upon antioxidant responses and altered expression of genes provides insight into the use of these molecular biomarkers in evaluating mechanisms of TBT toxicity in fish.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory of Freshwater Biodiversity Conservation (Ministry of Agriculture), Observation Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Zhi-Hua Li
- Key Laboratory of Freshwater Biodiversity Conservation (Ministry of Agriculture), Observation Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| |
Collapse
|
20
|
Gao D, Wu M, Wang C, Wang Y, Zuo Z. Chronic exposure to low benzo[a]pyrene level causes neurodegenerative disease-like syndromes in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 167:200-208. [PMID: 26349946 DOI: 10.1016/j.aquatox.2015.08.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/07/2015] [Accepted: 08/29/2015] [Indexed: 06/05/2023]
Abstract
Previous epidemiological and animal studies report that exposure to environmental pollutant exposure links to neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. Benzo[a]pyrene (BaP), a neurotoxic polycyclic aromatic hydrocarbon, has been increasingly released into the environment during recent decades. So far, the role of BaP on the development of neurodegenerative diseases remaind unclear. This study aimed to determine whether chronic exposure to low dose BaP would cause neurodegenerative disease-like syndromes in zebrafish (Danio rerio). We exposed zebrafish, from early embryogenesis to adults, to environmentally relevant concentrations of BaP for 230 days. Our results indicated that BaP decreased the brain weight to body weight ratio, locomotor activity and cognitive ability; induced the loss of dopaminergic neurons; and resulted in neurodegeneration. In addition, obvious cell apoptosis in the brain was found. Furthermore, the neurotransmitter levels of dopamine and 3,4-dihydroxyphenylacetic acid, the mRNA levels of the genes encoding dopamine transporter, Parkinson protein 7, phosphatase and tensin-induced putative kinase 1, ubiquitin carboxy-terminal hydrolase L1, leucine-rich repeat serine/threonine kinase 2, amyloid precursor protein b, presenilin 1 and presenilin 2 were significantly down-regulated by BaP exposure. These findings suggest that chronic exposure to low dose BaP could cause the behavioral, neuropathological, neurochemical, and genetic features of neurodegenerative diseases. This study provides clues that BaP may constitute an important environmental risk factor for neurodegenerative diseases in humans.
Collapse
Affiliation(s)
- Dongxu Gao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Meifang Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuanchuan Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
21
|
Jinzhu Y, Qinli Z, Jin Y, Pan K, Jianjun H, Qiao N. Aluminum and benzo[a]pyrene co-operate to induce neuronal apoptosis in vitro . J Toxicol Sci 2015; 40:365-73. [PMID: 25971159 DOI: 10.2131/jts.40.365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Yin Jinzhu
- Department of Occupational Health, Institute of Preventive Medicine, Shanxi Medical University, China
- Department of Neurosurgery, Datong Coal Mine General Hospital, China
| | - Zhang Qinli
- Department of Occupational Health, Institute of Preventive Medicine, Shanxi Medical University, China
| | - Yang Jin
- Department of Occupational Health, Institute of Preventive Medicine, Shanxi Medical University, China
| | - Kang Pan
- Department of Occupational Health, Institute of Preventive Medicine, Shanxi Medical University, China
| | - Huang Jianjun
- Department of Neurosurgery, Datong Coal Mine General Hospital, China
| | - Niu Qiao
- Department of Occupational Health, Institute of Preventive Medicine, Shanxi Medical University, China
| |
Collapse
|
22
|
Verma N, Pink M, Petrat F, Rettenmeier AW, Schmitz-Spanke S. Proteomic Analysis of Human Bladder Epithelial Cells by 2D Blue Native SDS-PAGE Reveals TCDD-Induced Alterations of Calcium and Iron Homeostasis Possibly Mediated by Nitric Oxide. J Proteome Res 2014; 14:202-13. [DOI: 10.1021/pr501051f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Nisha Verma
- Gene
Center, Ludwig-Maximilians-University, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Mario Pink
- Institute
and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Schillerstr. 25/29, 91054 Erlangen, Germany
| | | | | | - Simone Schmitz-Spanke
- Institute
and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Schillerstr. 25/29, 91054 Erlangen, Germany
| |
Collapse
|
23
|
Sampaio LDFS, Mesquita FP, de Sousa PRM, Silva JL, Alves CN. The melatonin analog 5-MCA-NAT increases endogenous dopamine levels by binding NRH:quinone reductase enzyme in the developing chick retina. Int J Dev Neurosci 2014; 38:119-26. [PMID: 25218627 DOI: 10.1016/j.ijdevneu.2014.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/22/2014] [Accepted: 09/02/2014] [Indexed: 12/15/2022] Open
Abstract
NRH:quinone reductase (QR2) is present in the retinas of embryonic and post-hatched (PH) chicks. 5-Methoxycarbonylamino-N-acetyltryptamine (5-MCA-NAT) is a QR2 ligand that increases cAMP levels in developing retinas, but it does not affect cAMP levels in CHO-QR2 cells. The dopamine quinone reductase activity of QR2 retrieves dopamine, which increases cAMP levels in developing retinas. The objective of the present study was to investigate whether 5-MCA-NAT increases endogenous dopamine levels in retinas from chick embryos and post-hatched chicks. Endogenous dopamine was measured by enzyme-linked immunosorbent assay (ELISA). 5-MCA-NAT increased retinal endogenous dopamine levels at all developmental stages studied and in PH chicks (-logEC50=11.62±0.34 M). This effect was inhibited by non-selective antagonists of receptors and melatonin binding sites N-acetyl-2-benzyltryptamine (luzindole, 5 μM), but it was not inhibited by the Mel1b melatonin receptor antagonist 4-phenyl-2-propionamidotetralin (4-P-PDOT, 10 nM). The QR2 cosubstrate, N-methyl-dihydronicotinamide (NMH) (-logEC50=6.74±0.26 M), increased endogenous dopamine levels in controls and in retinas stimulated with 5-MCA-NAT (3 nM). The QR2 inhibitor benzo[e]pyrene inhibited endogenous dopamine levels in both control (-logIC50=7.4±0.28 M) and NMH-stimulated (at 100 nM and 1 μM benzo[e]pyrene concentrations) retinas. Theoretical studies using Molegro Virtual Docking software corroborated these experimental results. We conclude that 5-MCA-NAT increases the level of endogenous dopamine via QR2. We suggest that this enzyme triggers double reduction of the dopamine quinone, recovering dopamine in retinal development.
Collapse
Affiliation(s)
- Lucia de Fatima Sobral Sampaio
- Lab. de Bioquímica do Desenvolvimento do Sistema Nervoso, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa No. 1, CEP: 66075-110 Belém, PA, Brazil.
| | - Felipe Pantoja Mesquita
- Lab. de Bioquímica do Desenvolvimento do Sistema Nervoso, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa No. 1, CEP: 66075-110 Belém, PA, Brazil
| | - Paulo Robson Monteiro de Sousa
- Lab. de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Rua Augusto Corrêa No. 1, CEP: 66075-110 Belém, PA, Brazil
| | - Jerônimo Lameira Silva
- Lab. de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Rua Augusto Corrêa No. 1, CEP: 66075-110 Belém, PA, Brazil
| | - Claudio Nahum Alves
- Lab. de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Rua Augusto Corrêa No. 1, CEP: 66075-110 Belém, PA, Brazil
| |
Collapse
|
24
|
Sugahara Y, Kawaguchi M, Itoyama T, Kurokawa D, Tosa Y, Kitamura SI, Handoh IC, Nakayama K, Murakami Y. Pyrene induces a reduction in midbrain size and abnormal swimming behavior in early-hatched pufferfish larvae. MARINE POLLUTION BULLETIN 2014; 85:479-486. [PMID: 24793779 DOI: 10.1016/j.marpolbul.2014.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 04/01/2014] [Accepted: 04/08/2014] [Indexed: 06/03/2023]
Abstract
Spills of heavy oil (HO) have an adverse effect on marine life. We have demonstrated previously that exposure to HO by fertilized eggs of the pufferfish (Takifugu rubripes) induces neural disruption and behavioral abnormality in early-hatched larvae. Here, two kinds of polycyclic aromatic hydrocarbons, pyrene and phenanthrene, were selected to examine their toxic effects on larval behavior of another pufferfish species (T. niphobles). Larvae exposed to pyrene or phenanthrene exhibited no abnormalities in morphology. However, those exposed to pyrene but not phenanthrene swam in an uncoordinated manner, although their swimming distance and speed were normal. The optic tectum, a part of the midbrain, of pyrene-exposed larvae did not grow to full size. Thus, these findings are indicated that pyrene might be a contributor to the behavioral and neuro-developmental toxicity, although there is no indication that it is the only compound participating in the toxicity of the heavy oil mixture.
Collapse
Affiliation(s)
- Yuki Sugahara
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Japan
| | - Masahumi Kawaguchi
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Japan
| | - Tatsuya Itoyama
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Japan
| | - Daisuke Kurokawa
- Misaki Marine Biological Station, The University of Tokyo, 1024 Koajiro, Misaki, Miura, Japan
| | - Yasuhiko Tosa
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Japan
| | - Shin-Ichi Kitamura
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Japan
| | - Itsuki C Handoh
- The Futurability Initiatives, Research Institute for Humanity and Nature, 457-4 Motoyama, Kamigamo, Kita-ku, Kyoto, Japan
| | - Kei Nakayama
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Japan.
| | - Yasunori Murakami
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Japan.
| |
Collapse
|
25
|
Huang L, Zuo Z, Zhang Y, Wu M, Lin JJ, Wang C. Use of toxicogenomics to predict the potential toxic effect of Benzo(a)pyrene on zebrafish embryos: ocular developmental toxicity. CHEMOSPHERE 2014; 108:55-61. [PMID: 24875912 DOI: 10.1016/j.chemosphere.2014.02.078] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 02/12/2014] [Accepted: 02/22/2014] [Indexed: 06/03/2023]
Abstract
Benzo(a)pyrene (BaP) is a representative polycyclic aromatic hydrocarbon (PAH), which is ubiquitous in the environment. The toxic effects of BaP on fish embryos have been described in detail, but some potentially toxic effects of BaP might have been neglected owing to the limitations of traditional techniques. In the present research, global transcriptional patterns were used to study the potentially toxic effects of BaP, as well as its underlying toxicological mechanisms. The expression levels of multiple genes were significantly changed by BaP exposure. The results of ontology assignments and cluster analysis showed that BaP could affect the processes of photoreceptor maintenance and phototransduction. We also conducted an experiment on phototactic response and found that larvae exposed to BaP displayed a decreasing response to light. In addition, BaP exposure decreased the cellular density of the ganglion cell layer (GCL) significantly. These results suggested that BaP exposure induced visual system developmental defects and dysfunction by perturbation of photoreceptor development related genes. Our results were helpful for an understanding of the toxicity of BaP. This study also indicated that microarray analysis was effective for predicting the potential toxicity of chemicals with high sensitivity and accuracy.
Collapse
Affiliation(s)
- Lixing Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, PR China
| | - Youyu Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Meifang Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | | | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, PR China.
| |
Collapse
|
26
|
Kim BM, Rhee JS, Jeong CB, Lee SJ, Lee YS, Choi IY, Lee JS. Effects of benzo[a]pyrene on whole cytochrome P450-involved molecular responses in the marine medaka Oryzias melastigma. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 152:232-243. [PMID: 24794342 DOI: 10.1016/j.aquatox.2014.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 04/01/2014] [Accepted: 04/05/2014] [Indexed: 06/03/2023]
Abstract
Despite being a strong toxicant for aquatic ecosystems, the effect of benzo[a]pyrene (B[a]P) on whole cytochrome P450 (CYP) biotransformation mechanisms has not been deeply investigated in aquatic organisms. To understand the mode of action of B[a]P on CYP molecular responses in fish, we analyzed the full spectrum of cyp genes and the activities of enzymes that are involved in detoxification and antioxidant defense systems after exposure to different concentrations of B[a]P over different time courses in the marine medaka, Oryzias melastigma. Upon B[a]P exposure, we found significant downregulation of cyp genes associated with steroidogenesis with decreased concentrations of actual hormones including estradiol (E2) and testosterone (11-KT), indicating that B[a]P-treated groups were closely associated with the dysfunction of hormone synthesis in a dose-dependent manner. In addition, B[a]P exposure strongly influenced transcriptional levels of antioxidant-related genes and their enzyme activities. Based on these results, we suggest that B[a]P induced the CYPs-involved systematic biotransformation mechanism with oxidative stress in the juvenile marine medaka, resulting in changes of endogenous hormonal levels and transcriptional levels of several steroidogenic metabolism-related CYPs.
Collapse
Affiliation(s)
- Bo-Mi Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 406-772, South Korea
| | - Chang-Bum Jeong
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | - Su-Jae Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | - Yong Sung Lee
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, South Korea
| | - Ik-Young Choi
- National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea.
| |
Collapse
|
27
|
Huang L, Wang C, Zhang Y, Wu M, Zuo Z. Phenanthrene causes ocular developmental toxicity in zebrafish embryos and the possible mechanisms involved. JOURNAL OF HAZARDOUS MATERIALS 2013; 261:172-180. [PMID: 23921180 DOI: 10.1016/j.jhazmat.2013.07.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/11/2013] [Accepted: 07/13/2013] [Indexed: 06/02/2023]
Abstract
Recent studies show that polycyclic aromatic hydrocarbons (PAHs) may be a candidate cause of developmental defects of the retina, but the mechanism is still unclear. We evaluated the mechanism(s) underlying PAH-induced retinal development defects due to exposure to environmental concentrations of Phenanthrene (Phe) in zebrafish. We found that exposure to environmental concentrations of Phe caused obvious morphological changes, developmental retardation, apoptosis, and reduction of cell proliferation in the retina. Our results indicated that Phe could cause visual system developmental defects. Phe exposure up-regulated aryl hydrocarbon receptor (AhR) and microphthalmia-associated transcription factor (Mtif) expression, and down-regulated zinc finger E-box binding homeobox 1 (Zeb1) and paired box 6 (Pax6). Moreover, we demonstrated that AhR was a repressor of Zeb1. We propose that Phe's ocular toxicity is mediated by up-regulating AhR, which then down-regulates Zeb1, in turn inducing Mitf expression while inhibiting Pax6 expression.
Collapse
Affiliation(s)
- Lixing Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | | | | | | | |
Collapse
|
28
|
Zeliger HI. Exposure to lipophilic chemicals as a cause of neurological impairments, neurodevelopmental disorders and neurodegenerative diseases. Interdiscip Toxicol 2013; 6:103-10. [PMID: 24678247 PMCID: PMC3967436 DOI: 10.2478/intox-2013-0018] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 09/25/2013] [Accepted: 09/30/2013] [Indexed: 11/26/2022] Open
Abstract
Many studies have associated environmental exposure to chemicals with neurological impairments (NIs) including neuropathies, cognitive, motor and sensory impairments; neurodevelopmental disorders (NDDs) including autism and attention deficit hyperactivity disorder (ADHD); neurodegenerative diseases (NDGs) including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis (ALS). The environmental chemicals shown to induce all these diseases include persistent organic pollutants (POPs), the plastic exudates bisphenol A and phthalates, low molecular weight hydrocarbons (LMWHCs) and polynuclear aromatic hydrocarbons (PAHs). It is reported here that though these chemicals differ widely in their chemical properties, reactivities and known points of attack in humans, a common link does exist between them. All are lipophilic species found in serum and they promote the sequential absorption of otherwise non-absorbed toxic hydrophilic species causing these diseases.
Collapse
Affiliation(s)
- Harold I Zeliger
- Zeliger Chemical, Toxicological, and Environmental Research, West Charlton, NY, USA
| |
Collapse
|
29
|
He C, Zuo Z, Shi X, Sun L, Wang C. Pyrene exposure influences the thyroid development of Sebastiscus marmoratus embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 124-125:28-33. [PMID: 22885797 DOI: 10.1016/j.aquatox.2012.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 05/22/2023]
Abstract
Thyroid hormones play crucial roles in regulating development, morphogenesis, growth, and behavior in fishes. Some environmental pollutants have adverse effects on either development or function of the thyroid gland in fish. However, there are few reports on the effects of polycyclic aromatic hydrocarbons (PAHs) on fish thyroid. In the present study, rockfish (Sebastiscus marmoratus) embryos were exposed to pyrene (Py) for 5 days at the concentrations of 0.5, 5, and 50 nmol/L. The results showed that Py exposure decreased the expression of thyroid primordium markers, Pax2.1 and Nk2.1a as detected by quantitative PCR and in situ hybridization, and reduced the concentration of T(3), but not T(4). Thyroid receptor genes (TRα and TRβ) expression was down-regulated by Py. At the same time, Py exposure impaired the expression of thyroid development related genes, Fgfr2 and Hoxa3a expression, and altered the mRNA levels of thyroid function related genes, Deio1, Ttr, and Tg. In conclusion, the results demonstrated Py exposure inhibited thyroid development and influenced the function of thyroid system in rockfish embryos.
Collapse
Affiliation(s)
- Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | | | | | | | | |
Collapse
|