1
|
Wang F, Xu J, Hu C, Lai J, Shen P, Lu Y, Jiang F. β-glucan regulates the intestinal immunity of pearl gentian grouper via the nuclear factor kappa B signaling pathway. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109941. [PMID: 39368523 DOI: 10.1016/j.fsi.2024.109941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
The preceding study observed that yeast β-glucan supplementation enhanced intestinal health and augmented disease resistance in pearl gentian grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀), which occurred concurrently with the activation of the nuclear factor kappa B (NFκB) signaling pathway. Thus, we hypothesized that β-glucan improves intestinal health in grouper by modulating the NFκB pathway. Accordingly, the present study examined the effects of NFκB pathway disruption using a specific inhibitor on the intestinal health of pearl gentian grouper that had been injected with β-glucan. The experimental groups were as follows, (1) CD group: PBS injected; (2) βG group: β-glucan injected at a dose of 80 mg/kg; (3) PDTC group: NFκB inhibitor PDTC injected at a dose of 30 mg/kg; (4) βG + PDTC group: a combination of β-glucan (80 mg/kg) and PDTC (30 mg/kg) injected together. The results demonstrated that β-glucan-induced increases in mRNA expression levels of NFκB inhibitor α (iκbα) and p65, the degradation and phosphorylation of IκBα, and the phosphorylation of NFκB p65 were significantly inhibited following NFκB inhibition using PDTC in the intestine of grouper. The PDTC injection resulted in a significant reduction in the β-glucan-induced increase in mucin levels. The β-glucan-induced elevation of alkaline phosphatase (AKP) activity, component 3 (C3) content, and inflammatory factors were significantly suppressed following NFκB inhibition. The βG + PDTC treatment resulted in a restoration of catalase (CAT) enzyme activity to the level observed in the CD treatment, while total antioxidant capacity (T-AOC) was decreased to the level of the βG treatment. The β-glucan-induced downregulation of caspase8 (casp8) was reversed following NFκB inhibition, as well as the mRNA levels of casp3 and casp9 being elevated to a greater extent. In conclusion, the β-glucan-regulated intestinal immunity in grouper may be mediated by the NFκB pathway. Furthermore, the inhibitory effect of β-glucan on apoptosis and oxidative stress may not be related to the NFκB signaling pathway.
Collapse
Affiliation(s)
- Fan Wang
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China; College of Life Science and Technology of Guangxi University, Nanning, 530005, Guangxi, China
| | - Jia Xu
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China
| | - Chaoqun Hu
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China
| | - Junxiang Lai
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China
| | - Peihong Shen
- College of Life Science and Technology of Guangxi University, Nanning, 530005, Guangxi, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Fajun Jiang
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China.
| |
Collapse
|
2
|
Alves BDS, Schimith LE, da Cunha AB, Dora CL, Hort MA. Omega-3 polyunsaturated fatty acids and Parkinson's disease: A systematic review of animal studies. J Neurochem 2024; 168:1655-1683. [PMID: 38923542 DOI: 10.1111/jnc.16154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. The primary pathological features of PD include the presence of α-synuclein aggregates and Lewy bodies, mitochondrial dysfunction, oxidative stress, and neuroinflammation. Recently, omega-3 fatty acids (ω-3 PUFAs) have been under investigation as a preventive and/or therapeutic strategy for PD, primarily owing to their antioxidant and anti-inflammatory properties. Therefore, the objective of this study was to conduct a systematic review of the literature, focusing on studies that assessed the effects of ω-3 PUFAs in rodent models mimicking human PD. The search was performed using the terms "Parkinson's disease," "fish oil," "omega 3," "docosahexaenoic acid," and "eicosapentaenoic acid" across databases PUBMED, Web of Science, Science Direct, Scielo, and Google Scholar. Following analysis based on predefined inclusion and exclusion criteria, 39 studies were included. Considering behavioral parameters, pathological markers of the disease, quantification of ω-3 PUFAs in the brain, as well as anti-inflammatory, antioxidant, and anti-apoptotic effects, it can be observed that ω-3 PUFAs exhibit a potential neuroprotective effect in PD. In summary, this systematic review presents significant scientific evidence regarding the effects and mechanisms underlying the neuroprotective properties of ω-3 PUFAs, offering valuable insights for the development of future clinical investigations.
Collapse
Affiliation(s)
- Barbara da Silva Alves
- Programa de Pós-graduação Em Ciências da Saúde, Faculdade de Medicina, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| | - Lucia Emanueli Schimith
- Programa de Pós-graduação Em Ciências da Saúde, Faculdade de Medicina, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| | - André Brito da Cunha
- Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| | - Cristiana Lima Dora
- Programa de Pós-graduação Em Ciências da Saúde, Faculdade de Medicina, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
- Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| | - Mariana Appel Hort
- Programa de Pós-graduação Em Ciências da Saúde, Faculdade de Medicina, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
- Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| |
Collapse
|
3
|
Yao C, Liu X, Tang Y, Wang C, Duan C, Liu X, Chen M, Zhou Y, Tang E, Xiang Y, Li Y, Ji A, Cai T. Lipopolysaccharide induces inflammatory microglial activation through CD147-mediated matrix metalloproteinase expression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35352-35365. [PMID: 36534246 PMCID: PMC9761036 DOI: 10.1007/s11356-022-24292-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Microglia-mediated neuroinflammation plays a vital role in the pathophysiological processes of multiple neurodegenerative diseases. Lipopolysaccharide (LPS) is an environmental poison that can induce inflammatory microglial activation. Matrix metalloproteinases (MMPs) are vital factors regulating microglial activation, and CD147 is a key MMP inducer, which can induce inflammation by inducing MMPs. However, whether it is involved in the regulation of microglial activation has not been reported. In this study, the role of CD147 in LPS-induced microglial inflammatory activation was investigated by establishing in vivo and in vitro models. The results suggested that LPS-induced microglial activation was accompanied by the induction of CD147 expression while the inhibition of CD147 expression could inhibit LPS-induced microglial inflammatory activation. In addition, the results also indicated that the role of CD147 in LPS-induced pro-inflammatory activation of microglia was related to its downstream MMP-3, MMP-8, and autophagy. Furthermore, the inhibition of MMP-3, MMP-8, and autophagy attenuated LPS-induced inflammatory activation of microglia. At the same time, there was a certain interaction between MMPs and autophagy, which is shown that inhibiting the expression of MMPs could inhibit autophagy, whereas inhibiting autophagy could inhibit the expression of MMPs. Taken together, we provided the first evidence that CD147/MMPs can be involved in LPS-induced inflammatory activation of microglia through an autophagy-dependent manner.
Collapse
Affiliation(s)
- Chunyan Yao
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China
| | - Xiaoling Liu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China
| | - Yan Tang
- Experimental Teaching Center, School of Public Health, Southwest Medical University, Luzhou, China
| | - Chunmei Wang
- Experimental Teaching Center, School of Public Health, Southwest Medical University, Luzhou, China
| | - Chenggang Duan
- Department of Pathophysiology, Southwest Medical University, Luzhou, China
| | - Xiaoyan Liu
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Mingliang Chen
- Department of Chemical Defense Medicine, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China
| | - Yumeng Zhou
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China
| | - Enjie Tang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China
| | - Ying Xiang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China
| | - Yafei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China
| | - Ailing Ji
- Department of Preventive Medicine & Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Tongjian Cai
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China.
| |
Collapse
|
4
|
Unsaturated Fatty Acids and Their Immunomodulatory Properties. BIOLOGY 2023; 12:biology12020279. [PMID: 36829556 PMCID: PMC9953405 DOI: 10.3390/biology12020279] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Oils are an essential part of the human diet and are primarily derived from plant (or sometimes fish) sources. Several of them exhibit anti-inflammatory properties. Specific diets, such as Mediterranean diet, that are high in ω-3 polyunsaturated fatty acids (PUFAs) and ω-9 monounsaturated fatty acids (MUFAs) have even been shown to exert an overall positive impact on human health. One of the most widely used supplements in the developed world is fish oil, which contains high amounts of PUFAs docosahexaenoic and eicosapentaenoic acid. This review is focused on the natural sources of various polyunsaturated and monounsaturated fatty acids in the human diet, and their role as precursor molecules in immune signaling pathways. Consideration is also given to their role in CNS immunity. Recent findings from clinical trials utilizing various fatty acids or diets high in specific fatty acids are reviewed, along with the mechanisms through which fatty acids exert their anti-inflammatory properties. An overall understanding of diversity of polyunsaturated fatty acids and their role in several molecular signaling pathways is useful in formulating diets that reduce inflammation and increase longevity.
Collapse
|
5
|
Sun X, Xue L, Wang Z, Xie A. Update to the Treatment of Parkinson's Disease Based on the Gut-Brain Axis Mechanism. Front Neurosci 2022; 16:878239. [PMID: 35873830 PMCID: PMC9299103 DOI: 10.3389/fnins.2022.878239] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/20/2022] [Indexed: 12/27/2022] Open
Abstract
Gastrointestinal (GI) symptoms represented by constipation were significant non-motor symptoms of Parkinson’s disease (PD) and were considered early manifestations and aggravating factors of the disease. This paper reviewed the research progress of the mechanism of the gut-brain axis (GBA) in PD and discussed the roles of α-synuclein, gut microbiota, immune inflammation, neuroendocrine, mitochondrial autophagy, and environmental toxins in the mechanism of the GBA in PD. Treatment of PD based on the GBA theory has also been discussed, including (1) dietary therapy, such as probiotics, vitamin therapy, Mediterranean diet, and low-calorie diet, (2) exercise therapy, (3) drug therapy, including antibiotics; GI peptides; GI motility agents, and (4) fecal flora transplantation can improve the flora. (5) Vagotomy and appendectomy were associated but not recommended.
Collapse
Affiliation(s)
- Xiaohui Sun
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Xue
- Recording Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zechen Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Chappus-McCendie H, Poulin MA, Chouinard-Watkins R, Vandal M, Calon F, Lauzon MA, Plourde M. A diet rich in docosahexaenoic acid enhances reactive astrogliosis and ramified microglia morphology in apolipoprotein E epsilon 4-targeted replacement mice. AGING BRAIN 2022; 2:100046. [PMID: 36908881 PMCID: PMC9997137 DOI: 10.1016/j.nbas.2022.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 10/16/2022] Open
Abstract
Docosahexaenoic acid (DHA) consumption reduces spatial memory impairment in mice carrying the human apolipoprotein E ε4 (APOE4) allele. The current study evaluated whether astrocyte and microglia morphology contribute to the mechanism of this result. APOE3 and APOE4 mice were fed either a DHA-enriched diet or a control diet from 4 to 12 months of age. Coronal brain sections were immunostained for GFAP, Iba1, and NeuN. Astrocytes from APOE4 mice exhibited signs of reactive astrogliosis compared to APOE3 mice. Consumption of DHA exacerbated reactive astrocyte morphology in APOE4 carriers. Microglia from APOE4-control mice exhibited characteristics of amoeboid morphology and other characteristics of ramified morphology (more processes, greater process complexity, and greater distance between neighboring microglia). DHA enhanced ramified microglia morphology in APOE4 mice. In addition, APOE4 mice fed the DHA diet had lower hippocampal concentrations of interleukin-7, lipopolysaccharide-induced CXC chemokine and monocyte chemoattractant protein 1, and higher concentration of interferon-gamma compared to APOE4-control mice. Our results indicate that a diet rich in DHA enhances reactive astrogliosis and ramified microglia morphology in APOE4 mice.
Collapse
Affiliation(s)
- Hillary Chappus-McCendie
- Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada.,Département de pharmacologie-physiologie, Université de Sherbrooke, Sherbrooke, QC, Canada.,Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marc-Antoine Poulin
- Département de génie chimique et de génie biotechnologique, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Raphaël Chouinard-Watkins
- Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada.,Département de pharmacologie-physiologie, Université de Sherbrooke, Sherbrooke, QC, Canada.,Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de la nutrition et des aliments fonctionnels, Université Laval, Québec, QC, Canada
| | - Milène Vandal
- Institut de la nutrition et des aliments fonctionnels, Université Laval, Québec, QC, Canada.,Faculté de pharmacie et centre de recherche du CHU de Québec-Université Laval, QC, Canada
| | - Frédéric Calon
- Institut de la nutrition et des aliments fonctionnels, Université Laval, Québec, QC, Canada.,Faculté de pharmacie et centre de recherche du CHU de Québec-Université Laval, QC, Canada
| | - Marc-Antoine Lauzon
- Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada.,Département de génie chimique et de génie biotechnologique, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mélanie Plourde
- Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada.,Département de pharmacologie-physiologie, Université de Sherbrooke, Sherbrooke, QC, Canada.,Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de la nutrition et des aliments fonctionnels, Université Laval, Québec, QC, Canada.,Département de Médecine, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
7
|
Li LY, Wang X, Zhang TC, Liu ZJ, Gao JQ. Cardioprotective effects of omega 3 fatty acids from fish oil and it enhances autoimmunity in porcine cardiac myosin-induced myocarditis in the rat model. Z NATURFORSCH C 2021; 76:407-415. [PMID: 34049426 DOI: 10.1515/znc-2021-0057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/08/2021] [Indexed: 01/27/2023]
Abstract
This experiment proposed to investigate the efficiency of omega 3 fatty acids from fish that improves autoimmune against myocarditis in the rat. Fish oil was extracted from fresh Tuna fish and performed FAME analysis and mice bioassay. The autoimmune myocarditis was induced by subcutaneous injection of porcine cardiac myosin (PCM) into the footpads of rats on the first and seventh day. Rats were dissected on the 21st day to analyze the histopathological, hemodynamic, echocardiographic factors, and immunohistochemistry expressions. In the study, 73.90% of total fatty acids were recorded. Histological analysis revealed that omega 3 fatty acids administrated groups showed tremendous development in the multifocal myocardia hyaline degeneration and necrosis with inflammatory changes. Moreover, omega 3 fatty acids inhabited the expressions of inflammatory cells (CD4, CD8 and CD11b) and suppressed the level of NF-κB. The echocardiographic factors such as heartbeat, SBP, DBP, levels of LVDs, LVDd, LVPW percentage of LVFS, EF, expression levels of inflammatory cytokines (TNF, IL-1β, IFN-ɤ, IL-2, and IL-6) also significantly suppressed by omega 3 fatty acids. Hence, the present study proved that consuming fatty acid-enriched fish might be a successful therapy for improving the inflammatory profile, regenerates the heart tissues, and controlled the production of inflammatory cells.
Collapse
Affiliation(s)
- Ling-Yan Li
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China
| | - Xu Wang
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China
| | - Ting-Chuan Zhang
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China
| | - Zong-Jun Liu
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China
| | - Jun-Qing Gao
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, People's Republic of China
| |
Collapse
|
8
|
Lorente-Picón M, Laguna A. New Avenues for Parkinson's Disease Therapeutics: Disease-Modifying Strategies Based on the Gut Microbiota. Biomolecules 2021; 11:433. [PMID: 33804226 PMCID: PMC7998286 DOI: 10.3390/biom11030433] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a multifactorial neurodegenerative disorder that currently affects 1% of the population over the age of 60 years, and for which no disease-modifying treatments exist. Neurodegeneration and neuropathology in different brain areas are manifested as both motor and non-motor symptoms in patients. Recent interest in the gut-brain axis has led to increasing research into the gut microbiota changes in PD patients and their impact on disease pathophysiology. As evidence is piling up on the effects of gut microbiota in disease development and progression, another front of action has opened up in relation to the potential usage of microbiota-based therapeutic strategies in treating gastrointestinal alterations and possibly also motor symptoms in PD. This review provides status on the different strategies that are in the front line (i.e., antibiotics; probiotics; prebiotics; synbiotics; dietary interventions; fecal microbiota transplantation, live biotherapeutic products), and discusses the opportunities and challenges the field of microbiome research in PD is facing.
Collapse
Affiliation(s)
- Marina Lorente-Picón
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Ariadna Laguna
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| |
Collapse
|
9
|
Lipids Nutrients in Parkinson and Alzheimer's Diseases: Cell Death and Cytoprotection. Int J Mol Sci 2020; 21:ijms21072501. [PMID: 32260305 PMCID: PMC7178281 DOI: 10.3390/ijms21072501] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases, particularly Parkinson’s and Alzheimer’s, have common features: protein accumulation, cell death with mitochondrial involvement and oxidative stress. Patients are treated to cure the symptoms, but the treatments do not target the causes; so, the disease is not stopped. It is interesting to look at the side of nutrition which could help prevent the first signs of the disease or slow its progression in addition to existing therapeutic strategies. Lipids, whether in the form of vegetable or animal oils or in the form of fatty acids, could be incorporated into diets with the aim of preventing neurodegenerative diseases. These different lipids can inhibit the cytotoxicity induced during the pathology, whether at the level of mitochondria, oxidative stress or apoptosis and inflammation. The conclusions of the various studies cited are oriented towards the preventive use of oils or fatty acids. The future of these lipids that can be used in therapy/prevention will undoubtedly involve a better delivery to the body and to the brain by utilizing lipid encapsulation.
Collapse
|
10
|
Li P, Song C. Potential treatment of Parkinson’s disease with omega-3 polyunsaturated fatty acids. Nutr Neurosci 2020; 25:180-191. [DOI: 10.1080/1028415x.2020.1735143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Peng Li
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, People’s Republic of China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People’s Republic of China
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, People’s Republic of China
- Marine Medicine Research and Development Center of Shenzhen Institutes of Guangdong Ocean University, Shenzhen, People’s Republic of China
| |
Collapse
|
11
|
Talamonti E, Sasso V, To H, Haslam RP, Napier JA, Ulfhake B, Pernold K, Asadi A, Hessa T, Jacobsson A, Chiurchiù V, Viscomi MT. Impairment of DHA synthesis alters the expression of neuronal plasticity markers and the brain inflammatory status in mice. FASEB J 2020; 34:2024-2040. [PMID: 31909582 PMCID: PMC7384056 DOI: 10.1096/fj.201901890rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022]
Abstract
Docosahexaenoic acid (DHA) is a ω-3 fatty acid typically obtained from the diet or endogenously synthesized through the action of elongases (ELOVLs) and desaturases. DHA is a key central nervous system constituent and the precursor of several molecules that regulate the resolution of inflammation. In the present study, we questioned whether the impaired synthesis of DHA affected neural plasticity and inflammatory status in the adult brain. To address this question, we investigated neural and inflammatory markers from mice deficient for ELOVL2 (Elovl2-/- ), the key enzyme in DHA synthesis. From our findings, Elovl2-/- mice showed an altered expression of markers involved in synaptic plasticity, learning, and memory formation such as Egr-1, Arc1, and BDNF specifically in the cerebral cortex, impacting behavioral functions only marginally. In parallel, we also found that DHA-deficient mice were characterized by an increased expression of pro-inflammatory molecules, namely TNF, IL-1β, iNOS, caspase-1 as well as the activation and morphologic changes of microglia in the absence of any brain injury or disease. Reintroducing DHA in the diet of Elovl2-/- mice reversed such alterations in brain plasticity and inflammation. Hence, impairment of systemic DHA synthesis can modify the brain inflammatory and neural plasticity status, supporting the view that DHA is an essential fatty acid with an important role in keeping inflammation within its physiologic boundary and in shaping neuronal functions in the central nervous system.
Collapse
Affiliation(s)
- Emanuela Talamonti
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Valeria Sasso
- Laboratory of Experimental NeurorehabilitationIRCCS Santa Lucia FoundationRomeItaly
| | - Hoi To
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | | | | | - Brun Ulfhake
- Department of NeuroscienceKarolinska InstituteStockholmSweden
| | - Karin Pernold
- Department of NeuroscienceKarolinska InstituteStockholmSweden
| | - Abolfazl Asadi
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Tara Hessa
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | - Anders Jacobsson
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Valerio Chiurchiù
- Department of MedicineCampus Bio‐Medico University of RomeRomeItaly
- Laboratory of Resolution of NeuroinflammationIRCCS Santa Lucia FoundationRomeItaly
| | | |
Collapse
|
12
|
Yao C, Liu X, Zhou Z, Xiang Y, Yuan S, Xie W, Zhou M, Hu Z, Li Y, Ji A, Cai T. Melatonin attenuates expression of cyclooxygenase-2 (COX-2) in activated microglia induced by lipopolysaccharide (LPS). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:437-446. [PMID: 31081481 DOI: 10.1080/15287394.2019.1615019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lipopolysaccharide (LPS) is a known neurotoxin and utilized most extensively as a microglial activator for induction of inflammatory neurodegeneration. Melatonin (MEL) is the main secretory product of pineal gland reported to be responsible for a variety of physiological functions. However, the molecular mechanisms underlying the influence of MEL on microglia activation remain unclear. The aim of this study was to investigate the effect of MEL on cyclooxygenase-2 (COX-2) levels in LPS-induced microglia. The results of RT-PCR and Western blot analysis showed that MEL significantly inhibited LPS-mediated upregulation of COX-2 in microglia. Data from ELISA demonstrated that prostaglandin E2 (PGE2), the downstream effector of COX-2, concentrations were also reduced. In addition, MEL was found to decrease activation of ERK1/2, JNK, p38 MAPK, and NF-κB, the upstream signal pathways of COX-2. Taken together, evidence indicates that MEL may attenuate upregulation of COX-2 by blocking the MAPK/NF-κB signaling pathway in LPS-stimulated microglia.
Collapse
Affiliation(s)
- Chunyan Yao
- a Department of Epidemiology , College of Preventive Medicine, Army Medical University (Third Military Medical University) , Chongqing , China
| | - Xiaoling Liu
- a Department of Epidemiology , College of Preventive Medicine, Army Medical University (Third Military Medical University) , Chongqing , China
| | - Zhengyu Zhou
- a Department of Epidemiology , College of Preventive Medicine, Army Medical University (Third Military Medical University) , Chongqing , China
| | - Ying Xiang
- a Department of Epidemiology , College of Preventive Medicine, Army Medical University (Third Military Medical University) , Chongqing , China
| | - Shuai Yuan
- a Department of Epidemiology , College of Preventive Medicine, Army Medical University (Third Military Medical University) , Chongqing , China
| | - Weijia Xie
- a Department of Epidemiology , College of Preventive Medicine, Army Medical University (Third Military Medical University) , Chongqing , China
| | - Meiyu Zhou
- a Department of Epidemiology , College of Preventive Medicine, Army Medical University (Third Military Medical University) , Chongqing , China
| | - Zeyao Hu
- a Department of Epidemiology , College of Preventive Medicine, Army Medical University (Third Military Medical University) , Chongqing , China
| | - Yafei Li
- a Department of Epidemiology , College of Preventive Medicine, Army Medical University (Third Military Medical University) , Chongqing , China
| | - Ailing Ji
- b Department of Preventive Medicine & Chongqing Engineering Research Center of Pharmaceutical Sciences , Chongqing Medical and Pharmaceutical College , Chongqing , China
| | - Tongjian Cai
- a Department of Epidemiology , College of Preventive Medicine, Army Medical University (Third Military Medical University) , Chongqing , China
| |
Collapse
|
13
|
Layé S, Nadjar A, Joffre C, Bazinet RP. Anti-Inflammatory Effects of Omega-3 Fatty Acids in the Brain: Physiological Mechanisms and Relevance to Pharmacology. Pharmacol Rev 2017; 70:12-38. [PMID: 29217656 DOI: 10.1124/pr.117.014092] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/05/2017] [Indexed: 12/17/2022] Open
Abstract
Classically, polyunsaturated fatty acids (PUFA) were largely thought to be relatively inert structural components of brain, largely important for the formation of cellular membranes. Over the past 10 years, a host of bioactive lipid mediators that are enzymatically derived from arachidonic acid, the main n-6 PUFA, and docosahexaenoic acid, the main n-3 PUFA in the brain, known to regulate peripheral immune function, have been detected in the brain and shown to regulate microglia activation. Recent advances have focused on how PUFA regulate the molecular signaling of microglia, especially in the context of neuroinflammation and behavior. Several active drugs regulate brain lipid signaling and provide proof of concept for targeting the brain. Because brain lipid metabolism relies on a complex integration of diet, peripheral metabolism, including the liver and blood, which supply the brain with PUFAs that can be altered by genetics, sex, and aging, there are many pathways that can be disrupted, leading to altered brain lipid homeostasis. Brain lipid signaling pathways are altered in neurologic disorders and may be viable targets for the development of novel therapeutics. In this study, we discuss in particular how n-3 PUFAs and their metabolites regulate microglia phenotype and function to exert their anti-inflammatory and proresolving activities in the brain.
Collapse
Affiliation(s)
- Sophie Layé
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| | - Agnès Nadjar
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| | - Corinne Joffre
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| | - Richard P Bazinet
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| |
Collapse
|
14
|
Erro R, Brigo F, Tamburin S, Zamboni M, Antonini A, Tinazzi M. Nutritional habits, risk, and progression of Parkinson disease. J Neurol 2017; 265:12-23. [PMID: 29018983 DOI: 10.1007/s00415-017-8639-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 12/17/2022]
Abstract
Parkinson disease (PD) is a multifactorial disease, where a genetic predisposition combines with putative environmental risk factors. Mounting evidence suggests that the initial PD pathological manifestations may be located in the gut to subsequently affect brain areas. Moreover, several lines of research demonstrated that there are bidirectional connections between the central nervous system and the gut, the "gut-brain axis" that influences both brain and gastrointestinal function. This opens a potential therapeutic window suggesting that specific dietary strategies may interact with the disease process and influence the risk of PD or modify its course. Dietary components can also theoretically modulate the chronic activation of the inflammatory response that is associated with aging, the strongest risk factor for PD, that has been suggested to hasten the underlying neurodegenerative process in PD. Here, we reviewed the evidence supporting an association between certain dietary compound and either the risk or progression of PD and have provided an overview of the possible pathomechanisms linking nutrition and neurodegeneration. The results of our review would not support a clear role for any dietary components in reducing the risk or progression of PD. However, the evidence favouring a connection between gut abnormalities, inflammation, and neurodegeneration in PD have become too compelling to be ignored, so that further research, also in the field of nutritional genomics, is highly warranted.
Collapse
Affiliation(s)
- Roberto Erro
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy. .,Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy.
| | - Francesco Brigo
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy.,Department of Neurology, Franz Tappeiner Hospital, Merano, Italy
| | - Stefano Tamburin
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| | - Mauro Zamboni
- Section of Geriatrics, Department of Medicine, Division of Geriatrics, University of Verona, Verona, Italy
| | - Angelo Antonini
- Parkinson Unit, IRCCS Hospital San Camillo and 1st Neurology Clinic, AO Universitaria Padua, Padua, Italy
| | - Michele Tinazzi
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| |
Collapse
|
15
|
Nadjar A, Leyrolle Q, Joffre C, Laye S. Bioactive lipids as new class of microglial modulators: When nutrition meets neuroimunology. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:19-26. [PMID: 27392882 DOI: 10.1016/j.pnpbp.2016.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/13/2016] [Accepted: 07/04/2016] [Indexed: 02/08/2023]
Abstract
Within the central nervous system the traditional role of microglia has been in brain infection and disease, phagocytosing debris and secreting factors to modify disease progression. More recently, microglia have been found to be important for normal brain development, circuit refinement, and synaptic plasticity in ways that were previously unsuspected. Hence, the brain innate immune system appears to be key in all situations, ranging from physiology to pathology. This unique feature of microglia is established by the wide array of receptors it is equipped with to sense molecular patterns. This includes receptors to most if not all neurotransmitters, neuromodulators and purines. We here review novel, yet extensive literature on a new class of microglia modulators, namely bioactive fatty acids. These lipids are issued from metabolism of nutrients and can cross the blood brain barrier to reach the CNS. They appear to be direct modulators of microglial activity, triggering/inhibiting inflammatory processes or enhancing/inhibiting the ability of these cells to respond to hazardous agents.
Collapse
Affiliation(s)
- A Nadjar
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France.
| | - Q Leyrolle
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - C Joffre
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - S Laye
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| |
Collapse
|
16
|
Jung JM, Lee J, Kim KH, Jang IG, Song JG, Kang K, Tack FMG, Oh JI, Kwon EE, Kim HW. The effect of lead exposure on fatty acid composition in mouse brain analyzed using pseudo-catalytic derivatization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 222:182-190. [PMID: 28104346 DOI: 10.1016/j.envpol.2016.12.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/10/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
We performed toxicological study of mice exposed to lead by quantifying fatty acids in brain of the mice. This study suggests that the introduced analytical method had an extremely high tolerance against impurities such as water and extractives; thus, it led to the enhanced resolution in visualizing the spectrum of fatty acid profiles in animal brain. Furthermore, one of the biggest technical advantages achieved in this study was the quantitation of fatty acid methyl ester profiles of mouse brain using a trace amount of sample (e.g., 100 μL mixture). Methanol was screened as the most effective extraction solvent for mouse brain. The behavioral test of the mice before and after lead exposure was conducted to see the effect of lead exposure on fatty acid composition of the mice' brain. The lead exposure led to changes in disease-related behavior of the mice. Also, the lead exposure induced significant alterations of fatty acid profile (C16:0, C 18:0, and C 18:1) in brain of the mice, implicated in pathology of psychiatric diseases. The alteration of fatty acid profile of brain of the mice suggests that the derivatizing technique can be applicable to most research fields associated with the environmental neurotoxins with better resolution in a short time, as compared to the current protocols for lipid analysis.
Collapse
Affiliation(s)
- Jong-Min Jung
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Jechan Lee
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - In Geon Jang
- Department of Biological Science and Technology, Sejong University, Seoul 05006, Republic of Korea
| | - Jae Gwang Song
- Department of Biological Science and Technology, Sejong University, Seoul 05006, Republic of Korea
| | - Kyeongjin Kang
- Department of Anatomy and Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Filip M G Tack
- Department of Applied Analytical and Physical Chemistry, Ghent University, Ghent 9000, Belgium
| | - Jeong-Ik Oh
- Advanced Technology Department, Land & Housing Institute, Daejon 34047, Republic of Korea
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea.
| | - Hyung-Wook Kim
- Department of Biological Science and Technology, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
17
|
Mori MA, Delattre AM, Carabelli B, Pudell C, Bortolanza M, Staziaki PV, Visentainer JV, Montanher PF, Del Bel EA, Ferraz AC. Neuroprotective effect of omega-3 polyunsaturated fatty acids in the 6-OHDA model of Parkinson's disease is mediated by a reduction of inducible nitric oxide synthase. Nutr Neurosci 2017; 21:341-351. [PMID: 28221817 DOI: 10.1080/1028415x.2017.1290928] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Parkinson's disease (PD) is characterized by deterioration of the nigrostriatal system and associated with chronic neuroinflammation. Glial activation has been associated with regulating the survival of dopaminergic neurons and is thought to contribute to PD through the release of proinflammatory and neurotoxic factors, such as reactive nitric oxide (NO) that triggers or exacerbates neurodegeneration in PD. Polyunsaturated fatty acids (PUFAs) exert protective effects, including antiinflammatory, antiapoptotic, and antioxidant activity, and may be promising for delaying or preventing PD by attenuating neuroinflammation and preserving dopaminergic neurons. The present study investigated the effects of fish oil supplementation that was rich in PUFAs on dopaminergic neuron loss, the density of inducible nitric oxide synthase (iNOS)-immunoreactive cells, and microglia and astrocyte reactivity in the substantia nigra pars compacta (SNpc) and striatal dopaminergic fibers. METHODS The animals were supplemented with fish oil for 50 days and subjected to unilateral intrastriatal 6-hydroxydopamine (6-OHDA)-induced lesions as a model of PD. RESULTS Fish oil mitigated the loss of SNpc neurons and nerve terminals in the striatum that was caused by 6-OHDA. This protective effect was associated with reductions of the density of iNOS-immunoreactive cells and microglia and astrocyte reactivity. DISCUSSION These results suggest that the antioxidant and antiinflammatory properties of fish oil supplementation are closely related to a decrease in dopaminergic damage that is caused by the 6-OHDA model of PD.
Collapse
Affiliation(s)
- Marco Aurélio Mori
- a Laboratório de Neurofisiologia, Departamento de Fisiologia , Universidade Federal do Paraná , 81531-990 Curitiba , PR , Brazil
| | - Ana Marcia Delattre
- a Laboratório de Neurofisiologia, Departamento de Fisiologia , Universidade Federal do Paraná , 81531-990 Curitiba , PR , Brazil
| | - Bruno Carabelli
- a Laboratório de Neurofisiologia, Departamento de Fisiologia , Universidade Federal do Paraná , 81531-990 Curitiba , PR , Brazil
| | - Claudia Pudell
- a Laboratório de Neurofisiologia, Departamento de Fisiologia , Universidade Federal do Paraná , 81531-990 Curitiba , PR , Brazil
| | - Mariza Bortolanza
- b Departamento de Morfologia, Fisiologia e Patologia, Escola de Odontologia de Ribeirão Preto (FORP) , Universidade de São Paulo , Av. Café s/n, 14040-904 Ribeirão Preto , SP , Brazil
| | - Pedro Vinícius Staziaki
- a Laboratório de Neurofisiologia, Departamento de Fisiologia , Universidade Federal do Paraná , 81531-990 Curitiba , PR , Brazil
| | - Jesuí Vergilio Visentainer
- c Laboratório de Química de Alimentos, Departamento de Química , Universidade Estadual de Maringá , Maringá , PR , Brazil
| | - Paula Fernandes Montanher
- c Laboratório de Química de Alimentos, Departamento de Química , Universidade Estadual de Maringá , Maringá , PR , Brazil
| | - Elaine A Del Bel
- b Departamento de Morfologia, Fisiologia e Patologia, Escola de Odontologia de Ribeirão Preto (FORP) , Universidade de São Paulo , Av. Café s/n, 14040-904 Ribeirão Preto , SP , Brazil
| | - Anete Curte Ferraz
- a Laboratório de Neurofisiologia, Departamento de Fisiologia , Universidade Federal do Paraná , 81531-990 Curitiba , PR , Brazil
| |
Collapse
|
18
|
McNamara RK. Mitigation of Inflammation-Induced Mood Dysregulation by Long-Chain Omega-3 Fatty Acids. J Am Coll Nutr 2016; 34 Suppl 1:48-55. [PMID: 26400435 DOI: 10.1080/07315724.2015.1080527] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although evidence suggests that chronic elevations in immune-inflammatory signaling can precipitate mood symptoms in a subset of individuals, associated risk and resilience mechanisms remain poorly understood. Long-chain omega-3 (LCn-3) fatty acids, including eicosapentaenic acid (EPA) and docosahexaenoic acid (DHA), have anti-inflammatory and inflammation-resolving properties that maintain immune-inflammatory signaling homeostasis. Cross-sectional evidence suggests that the mood disorders major depressive disorder and bipolar disorder are associated with low EPA and/or DHA biostatus, elevations in the LCn-6:LCn-3 fatty acid ratio, and elevated levels of pro-inflammatory eicosanoids, cytokines, and acute-phase proteins. Medications that are effective for reducing depressive symptoms or stabilizing manic depressive oscillations may act in part by downregulating immune-inflammatory signaling and are augmented by anti-inflammatory medications. Recent prospective longitudinal evidence suggests that elevations in the LCn-6:LCn-3 fatty acid ratio are a modifiable risk factor for the development of mood symptoms, including depression and irritability, in response to immune-inflammatory signaling. Together these data suggest that increasing LCn-3 fatty acid intake and biostatus represents a feasible strategy to mitigate the negative impact of elevated immune-inflammatory signaling on mood stability. Key teaching points: • Long-chain omega-3 (LCn-3) fatty acids have anti-inflammatory and inflammation-resolving properties. • Major mood disorders are associated with both LCn-3 fatty acids deficiency and elevated immune-inflammatory signaling. • Prospective evidence suggests that low LCn-3 fatty acid biostatus increases risk for developing inflammation-induced mood dysregulation. • Taken collectively, this evidence suggests that increasing LCn-3 fatty acid intake and biostatus represents a promising strategy to mitigate the detrimental effects of elevated immune-inflammatory signaling on mood.
Collapse
Affiliation(s)
- Robert K McNamara
- a Department of Psychiatry and Behavioral Neuroscience , Division of Bipolar Disorders Research, University of Cincinnati College of Medicine , Cincinnati , Ohio
| |
Collapse
|
19
|
Yin J, Li H, Meng C, Chen D, Chen Z, Wang Y, Wang Z, Chen G. Inhibitory effects of omega-3 fatty acids on early brain injury after subarachnoid hemorrhage in rats: Possible involvement of G protein-coupled receptor 120/β-arrestin2/TGF-β activated kinase-1 binding protein-1 signaling pathway. Int J Biochem Cell Biol 2016; 75:11-22. [DOI: 10.1016/j.biocel.2016.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/25/2016] [Accepted: 03/17/2016] [Indexed: 01/14/2023]
|
20
|
Augusto RL, Isaac AR, Silva-Júnior IID, Santana DFD, Ferreira DJS, Lagranha CJ, Gonçalves-Pimentel C, Rodrigues MCA, Andrade-da-Costa BLDS. Fighting Oxidative Stress: Increased Resistance of Male Rat Cerebellum at Weaning Induced by Low Omega 6/Omega 3 Ratio in a Protein-Deficient Diet. THE CEREBELLUM 2016; 16:103-117. [DOI: 10.1007/s12311-016-0773-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Li X, Liu H, Fischhaber PL, Tang TS. Toward therapeutic targets for SCA3: Insight into the role of Machado-Joseph disease protein ataxin-3 in misfolded proteins clearance. Prog Neurobiol 2015; 132:34-58. [PMID: 26123252 DOI: 10.1016/j.pneurobio.2015.06.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/30/2015] [Accepted: 06/16/2015] [Indexed: 01/09/2023]
Abstract
Machado-Joseph disease (MJD, also known as spinocerebellar ataxia type 3, SCA3), an autosomal dominant neurological disorder, is caused by an abnormal expanded polyglutamine (polyQ) repeat in the ataxin-3 protein. The length of the expanded polyQ stretch correlates positively with the severity of the disease and inversely with the age at onset. To date, we cannot fully explain the mechanism underlying neurobiological abnormalities of this disease. Yet, accumulating reports have demonstrated the functions of ataxin-3 protein in the chaperone system, ubiquitin-proteasome system, and aggregation-autophagy, all of which suggest a role of ataxin-3 in the clearance of misfolded proteins. Notably, the SCA3 pathogenic form of ataxin-3 (ataxin-3(exp)) impairs the misfolded protein clearance via mechanisms that are either dependent or independent of its deubiquitinase (DUB) activity, resulting in the accumulation of misfolded proteins and the progressive loss of neurons in SCA3. Some drugs, which have been used as activators/inducers in the chaperone system, ubiquitin-proteasome system, and aggregation-autophagy, have been demonstrated to be efficacious in the relief of neurodegeneration diseases like Huntington's disease (HD), Parkinson's (PD), Alzheimer's (AD) as well as SCA3 in animal models and clinical trials, putting misfolded protein clearance on the list of potential therapeutic targets. Here, we undertake a comprehensive review of the progress in understanding the physiological functions of ataxin-3 in misfolded protein clearance and how the polyQ expansion impairs misfolded protein clearance. We then detail the preclinical studies targeting the elimination of misfolded proteins for SCA3 treatment. We close with future considerations for translating these pre-clinical results into therapies for SCA3 patients.
Collapse
Affiliation(s)
- Xiaoling Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongmei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Paula L Fischhaber
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262, USA.
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
22
|
Trépanier MO, Hopperton KE, Orr SK, Bazinet RP. N-3 polyunsaturated fatty acids in animal models with neuroinflammation: An update. Eur J Pharmacol 2015; 785:187-206. [PMID: 26036964 DOI: 10.1016/j.ejphar.2015.05.045] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/13/2015] [Accepted: 05/21/2015] [Indexed: 12/19/2022]
Abstract
Neuroinflammation is a characteristic of a multitude of neurological and psychiatric disorders. Modulating inflammatory pathways offers a potential therapeutic target in these disorders. Omega-3 polyunsaturated fatty acids have anti-inflammatory and pro-resolving properties in the periphery, however, their effect on neuroinflammation is less studied. This review summarizes 61 animal studies that tested the effect of omega-3 polyunsaturated fatty acids on neuroinflammatory outcomes in vivo in various models including stroke, spinal cord injury, aging, Alzheimer's disease, Parkinson's disease, lipopolysaccharide and IL-1β injections, diabetes, neuropathic pain, traumatic brain injury, depression, surgically induced cognitive decline, whole body irradiation, amyotrophic lateral sclerosis, N-methyl-D-aspartate-induced excitotoxicity and lupus. The evidence presented in this review suggests anti-neuroinflammatory properties of omega-3 polyunsaturated fatty acids, however, it is not clear by which mechanism omega-3 polyunsaturated fatty acids exert their effect. Future research should aim to isolate the effect of omega-3 polyunsaturated fatty acids on neuroinflammatory signaling in vivo and elucidate the mechanisms underlying these effects.
Collapse
Affiliation(s)
- Marc-Olivier Trépanier
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2
| | - Kathryn E Hopperton
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2
| | - Sarah K Orr
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2.
| |
Collapse
|
23
|
Madore C, Nadjar A, Delpech JC, Sere A, Aubert A, Portal C, Joffre C, Layé S. Nutritional n-3 PUFAs deficiency during perinatal periods alters brain innate immune system and neuronal plasticity-associated genes. Brain Behav Immun 2014; 41:22-31. [PMID: 24735929 DOI: 10.1016/j.bbi.2014.03.021] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/24/2014] [Accepted: 03/31/2014] [Indexed: 12/19/2022] Open
Abstract
Low dietary intake of the n-3 polyunsaturated fatty acids (PUFAs) is a causative factor of neurodevelopmental disorders. However the mechanisms linking n-3 PUFAs low dietary intake and neurodevelopmental disorders are poorly understood. Microglia, known mainly for their immune function in the injured or infected brain, have recently been demonstrated to play a pivotal role in regulating maturation of neuronal circuits during normal brain development. Disruption of this role during the perinatal period therefore could significantly contribute to psychopathologies with a neurodevelopmental neurodevelopmental component. N-3 PUFAs, essential lipids and key structural components of neuronal membrane phospholipids, are highly incorporated in cell membranes during the gestation and lactation phase. We previously showed that in a context of perinatal n-3 PUFAs deficiency, accretion of these latter is decreased and this is correlated to an alteration of endotoxin-induced inflammatory response. We thus postulated that dietary n-3 PUFAs imbalance alters the activity of microglia in the developing brain, leading to abnormal formation of neuronal networks. We first confirmed that mice fed with a n-3 PUFAs deficient diet displayed decreased n-3 PUFAs levels in the brain at post-natal days (PND)0 and PND21. We then demonstrated that n-3 PUFAs deficiency altered microglia phenotype and motility in the post-natal developing brain. This was paralleled by an increase in pro-inflammatory cytokines expression at PND21 and to modification of neuronal plasticity-related genes expression. Overall, our findings show for the first time that a dietary n-3 PUFAs deficiency from the first day of gestation leads to the development of a pro-inflammatory condition in the central nervous system that may contribute to neurodevelopmental alterations.
Collapse
Affiliation(s)
- Charlotte Madore
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - Agnès Nadjar
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - Jean-Christophe Delpech
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - A Sere
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - A Aubert
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - Céline Portal
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - Corinne Joffre
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - Sophie Layé
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France.
| |
Collapse
|
24
|
Acetate treatment increases fatty acid content in LPS-stimulated BV2 microglia. Lipids 2014; 49:621-31. [PMID: 24852320 DOI: 10.1007/s11745-014-3911-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 05/09/2014] [Indexed: 01/11/2023]
Abstract
Acetate supplementation increases plasma acetate, brain acetyl-CoA, histone acetylation, phosphocreatine levels, and is anti-inflammatory in models of neuroinflammation and neuroborreliosis. Although radiolabeled acetate is incorporated into the cellular lipid pools, the effect that acetate supplementation has on lipid deposition has not been quantified. To determine the impact acetate-treatment has on cellular lipid content, we investigated the effect of acetate in the presence of bacterial lipopolysaccharide (LPS) on fatty acid, phospholipid, and cholesterol content in BV2 microglia. We found that 1, 5, and 10 mM of acetate in the presence of LPS increased the total fatty acid content in BV2 cells by 23, 34, and 14 % at 2 h, respectively. Significant increases in individual fatty acids were also observed with all acetate concentrations tested with the greatest increases occurring with 5 mM acetate in the presence of LPS. Treatment with 5 mM acetate in the absence of LPS increased total cholesterol levels by 11 %. However, neither treatment in the absence of LPS significantly altered the content of individual phospholipids or total phospholipid content. To determine the minimum effective concentration of acetate we measured the time- and concentration-dependent changes in histone acetylation using western blot analysis. These studies showed that 5 mM acetate was necessary to induce histone acetylation and at 10 mM acetate, the histone acetylation-state increased as early as 0.5 h following the start of treatment. These data suggest that acetate increases fatty acid content in LPS-stimulated BV2 microglia that is reflected by an increase in fatty acids esterified into membrane phospholipids.
Collapse
|
25
|
Janssen CI, Kiliaan AJ. Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: The influence of LCPUFA on neural development, aging, and neurodegeneration. Prog Lipid Res 2014; 53:1-17. [DOI: 10.1016/j.plipres.2013.10.002] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 10/08/2013] [Accepted: 10/14/2013] [Indexed: 12/24/2022]
|
26
|
Hussain G, Schmitt F, Loeffler JP, Gonzalez de Aguilar JL. Fatting the brain: a brief of recent research. Front Cell Neurosci 2013; 7:144. [PMID: 24058332 PMCID: PMC3766822 DOI: 10.3389/fncel.2013.00144] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/19/2013] [Indexed: 01/06/2023] Open
Abstract
Fatty acids are of paramount importance to all cells, since they provide energy, function as signaling molecules, and sustain structural integrity of cellular membranes. In the nervous system, where fatty acids are found in huge amounts, they participate in its development and maintenance throughout life. Growing evidence strongly indicates that fatty acids in their own right are also implicated in pathological conditions, including neurodegenerative diseases, mental disorders, stroke, and trauma. In this review, we focus on recent studies that demonstrate the relationships between fatty acids and function and dysfunction of the nervous system. Fatty acids stimulate gene expression and neuronal activity, boost synaptogenesis and neurogenesis, and prevent neuroinflammation and apoptosis. By doing so, they promote brain development, ameliorate cognitive functions, serve as anti-depressants and anti-convulsants, bestow protection against traumatic insults, and enhance repairing processes. On the other hand, unbalance between different fatty acid families or excess of some of them generate deleterious side effects, which limit the translatability of successful results in experimental settings into effective therapeutic strategies for humans. Despite these constraints, there exists realistic evidence to consider that nutritional therapies based on fatty acids can be of benefit to several currently incurable nervous system diseases.
Collapse
Affiliation(s)
- Ghulam Hussain
- UMR_S 1118, Université de Strasbourg Strasbourg, France ; Mécanismes Centraux et Périphériques de la Neurodégénérescence, U1118, Institut National de la Santé et de la Recherche Médicale, Faculté de Médecine, Université de Strasbourg Strasbourg, France
| | | | | | | |
Collapse
|
27
|
Orr SK, Trépanier MO, Bazinet RP. n-3 Polyunsaturated fatty acids in animal models with neuroinflammation. Prostaglandins Leukot Essent Fatty Acids 2013; 88:97-103. [PMID: 22770766 DOI: 10.1016/j.plefa.2012.05.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/16/2012] [Accepted: 05/18/2012] [Indexed: 11/24/2022]
Abstract
Neuroinflammation is present in the majority of acute and chronic neurological disorders. Excess or prolonged inflammation in the brain is thought to exacerbate neuronal damage and loss. Identifying modulators of neuroinflammation is an active area of study since it may lead to novel therapies. Omega-3 polyunsaturated fatty acids (n-3 PUFA) are anti-inflammatory in many non-neural tissues; their role in neuroinflammation is less studied. This review summarizes the relationship between n-3 PUFA and brain inflammation in animal models of brain injury and aging. Evidence by and large shows protective effects of n-3 PUFA in models of sickness behavior, stroke, aging, depression, Parkinson's disease, diabetes, and cytokine- and irradiation-induced cognitive impairments. However, rigorous studies that test the direct effects of n-3 PUFA in neuroinflammation in vivo are lacking. Future research in this area is necessary to determine if, and if so which, n-3 PUFA directly target brain inflammatory pathways. n-3 PUFA bioactive metabolites may provide novel therapeutic targets for neurological disorders with a neuroinflammatory component.
Collapse
Affiliation(s)
- Sarah K Orr
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2
| | | | | |
Collapse
|