1
|
Brinza I, Boiangiu RS, Mihasan M, Gorgan DL, Stache AB, Abd-Alkhalek A, El-Nashar H, Ayoub I, Mostafa N, Eldahshan O, Singab AN, Hritcu L. Rhoifolin, baicalein 5,6-dimethyl ether and agathisflavone prevent amnesia induced in scopolamine zebrafish (Danio rerio) model by increasing the mRNA expression of bdnf, npy, egr-1, nfr2α, and creb1 genes. Eur J Pharmacol 2024; 984:177013. [PMID: 39378928 DOI: 10.1016/j.ejphar.2024.177013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
The increasing attention towards age-related diseases has generated significant interest in the concept of cognitive dysfunction associated with Alzheimer's disease (AD). Certain limitations are associated with the current therapies, and flavonoids have been reported to exhibit multiple biological activities and anti-AD effects in several AD models owing to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties. In this study, we performed an initial in silico predictions of the pharmacokinetic properties of three flavonoids (rhoifolin, baicalein 5,6-dimethyl ether and agathisflavone). Subsequently, we evaluated the antiamnesic and antioxidant potential of flavonoids in concentrations of 1, 3, and 5 μg/L in scopolamine (100 μM)-induced amnesic zebrafish (Danio rerio) model. Zebrafish behavior was analyzed by novel tank diving test (NTT), Y-maze, and novel object recognition test (NOR). Acetylcholinesterase (AChE) activity, brain antioxidant status and the expression of bdnf, npy, egr1, nrf2α, creb1 genes, and CREB-1 protein level was measured to elucidate the underlying mechanism of action. Our flavonoids improved memory and decreased anxiety-like behavior of scopolamine-induced amnesia in zebrafish. Also, the studied flavonoids reduced AChE activity and brain oxidative stress and upregulated the gene expression, collectively contributing to neuroprotective properties. The results of our study add new perspectives on the properties of flavonoids to regulate the evolution of neurodegenerative diseases, especially AD, by modulating the expression of genes involved in the regulation of synaptic plasticity, axonal growth, and guidance, sympathetic and vagal transmission, the antioxidant response and cell proliferation and growth.
Collapse
Affiliation(s)
- Ion Brinza
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Marius Mihasan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Dragos Lucian Gorgan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Alexandru Bogdan Stache
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; Department of Molecular Genetics, Center for Fundamental Research and Experimental Development in Translation Medicine-TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| | | | - Heba El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Iriny Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Nada Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Omayma Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Abdel Nasser Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania.
| |
Collapse
|
2
|
Du X, Dong Q, Zhu J, Li L, Yu X, Liu R. Rutin Ameliorates ALS Pathology by Reducing SOD1 Aggregation and Neuroinflammation in an SOD1-G93A Mouse Model. Int J Mol Sci 2024; 25:10392. [PMID: 39408720 PMCID: PMC11477130 DOI: 10.3390/ijms251910392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons, with limited effective treatments. Recently, the exploration of natural products has unveiled their potential in exerting neuroprotective effects, offering a promising avenue for ALS therapy. In this study, the therapeutic effects of rutin, a natural flavonoid glycoside with neuroprotective properties, were evaluated in a superoxide dismutase 1 (SOD1)-G93A mouse model of ALS. We showed that rutin reduced the level of SOD1 aggregation and diminished glial cell activation in spinal cords and brainstems, resulting in significantly improved motor function and motor neuron restoration in SOD1-G93A mice. Our findings indicated that rutin's multi-targeted approach to SOD1-related pathology makes it a promising candidate for the treatment of ALS.
Collapse
Affiliation(s)
- Xiaoyu Du
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (X.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanxiu Dong
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (X.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zhu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (X.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingjie Li
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (X.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Yu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (X.D.)
| | - Ruitian Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (X.D.)
| |
Collapse
|
3
|
Akash SR, Tabassum A, Aditee LM, Rahman A, Hossain MI, Hannan MA, Uddin MJ. Pharmacological insight of rutin as a potential candidate against peptic ulcer. Biomed Pharmacother 2024; 177:116961. [PMID: 38901206 DOI: 10.1016/j.biopha.2024.116961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
Peptic ulcer is a sore on the stomach lining that results from the erosion of the gastrointestinal tract mucosa due to various influencing factors. Of these, Helicobacter pylori infection and non-steroidal anti-inflammatory drugs (NSAIDs) stand out as the most prominent causes. This condition poses a significant global health concern due to its widespread impact on individuals worldwide. While various treatment strategies have been employed, including proton pump inhibitors and histamine-2 receptor antagonists, these have notable side effects and limitations. Thus, there is a pressing need for new treatments to address this global health issue. Rutin, a natural flavonoid, exhibits a range of biological activities, including anti-inflammatory, anticancer, and antioxidant properties. This review explores the potential anti-ulcer effect of rutin in experimental models and how rutin can be a better alternative for treating peptic ulcers. We used published literature from different online databases such as PubMed, Google Scholar, and Scopus. This work highlights the abundance of rutin in various natural sources and its potential as a promising option for peptic ulcer treatment. Notably, the anti-inflammatory properties of rutin, which involve inhibiting inflammatory mediators and the COX-2 enzyme, are emphasized. While acknowledging the potential of rutin, it is important to underscore the necessity for further research to fully delineate its therapeutic potential and clinical applicability in managing peptic ulcers and ultimately improving patient outcomes. This review on the anti-ulcer potential of rutin opened a new door for further study in the field of alternative medicine in peptic ulcer management.
Collapse
Affiliation(s)
- Sajidur Rahman Akash
- Department of Pharmacy, Bangladesh University, Dhaka 1207, Bangladesh; ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | - Afrida Tabassum
- Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka 1100, Bangladesh
| | - Lamisa Manha Aditee
- Department of Mathematics and Natural Sciences (MNS), BRAC University, Dhaka 1212, Bangladesh
| | - Abidur Rahman
- Sir Salimullah Medical College Mitford Hospital, Dhaka 1100, Bangladesh
| | - Md Imran Hossain
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Md Abdul Hannan
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2200, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh.
| |
Collapse
|
4
|
Castillo-Pérez LJ, Ponce-Hernández A, Alonso-Castro AJ, Solano R, Fortanelli-Martínez J, Lagunez-Rivera L, Carranza-Álvarez C. Medicinal Orchids of Mexico: A Review. Pharmaceuticals (Basel) 2024; 17:907. [PMID: 39065757 PMCID: PMC11279439 DOI: 10.3390/ph17070907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Some species of the Orchidaceae family are used in Mexican traditional medicine. However, there are no current and critical compilations of the medicinal uses and pharmacological effects of the members of the Orchidaceae family. This review provides a current, critical, and comprehensive analysis of the traditional medicinal uses, pharmacological reports, and active compounds isolated from Mexican orchids. A total of 62 Mexican orchids with medicinal potential have been recorded, of which 14 have scientific evidence. The remaining 48 plant species have ethnomedicinal information but have not been validated with scientific studies. These orchids are distributed in 14 states of the Mexican Republic, mainly in the southern region of Mexico. The most common pharmacological activities reported are anti-inflammatory, vasorelaxant, antinociceptive, antioxidant, spasmolytic, antihypertensive, and hallucinogenic activities. It is necessary to increase the number of pharmacological, phytochemical, and toxicological studies with medicinal orchids from Mexico because there are scientific studies on only 22.5% of these species. In further studies, it will be possible to evaluate the pharmacological effects of Mexican orchids in clinical trials. In addition, the mechanisms of action by which plant extracts and their active compounds exert medicinal effects remain to be studied. Plant extracts from orchids and their active compounds show promising antinociceptive and spasmolytic effects, respectively.
Collapse
Affiliation(s)
- Luis J. Castillo-Pérez
- Programa Multidisciplinario de Posgrado en Ciencias Ambientales, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78290, Mexico;
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Ciudad Valles 79060, Mexico
| | - Amauri Ponce-Hernández
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78290, Mexico;
| | - Angel Josabad Alonso-Castro
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | - Rodolfo Solano
- Laboratorio de Extracción y Análisis de Productos Naturales Vegetales, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Oaxaca, Instituto Politécnico Nacional, Santa Cruz Xoxocotlán 71230, Mexico; (R.S.); (L.L.-R.)
| | - Javier Fortanelli-Martínez
- Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78290, Mexico;
| | - Luicita Lagunez-Rivera
- Laboratorio de Extracción y Análisis de Productos Naturales Vegetales, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Oaxaca, Instituto Politécnico Nacional, Santa Cruz Xoxocotlán 71230, Mexico; (R.S.); (L.L.-R.)
| | - Candy Carranza-Álvarez
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Ciudad Valles 79060, Mexico
| |
Collapse
|
5
|
Kessas K, Lounis W, Chouari Z, Vejux A, Lizard G, Kharoubi O. Benefits of rutin on mitochondrial function and inflammation in an aluminum-induced neurotoxicity rat model: Potential interest for the prevention of neurodegeneration. Biochimie 2024; 222:1-8. [PMID: 38408719 DOI: 10.1016/j.biochi.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Rutin, a phenolic compound, exhibits a diverse range of biological properties, including antioxidant, anti-inflammatory, and antimicrobial effects. In this study, we aimed to investigate the potential of rutin, a naturally occurring plant bioactive molecule, to mitigate the neurotoxic effects induced by aluminum chloride (AlCl3). Over a period of 6 weeks, rats were intraperitoneally injected with AlCl3 at a weekly dose of 60 mg/kg, while rutin treatment was administered orally via gavage at a daily dose of 30 mg/kg. AlCl3 exposure resulted in a significant increase lipid peroxidation (LPO) by 316.24%, nitrate levels by 504.14%, and tumor necrosis factor-alpha (TNF-α) levels by 93.82% in brain mitochondria. Additionally, AlCl3 exposure led to a reduction in glutathione levels and the activity of antioxidant enzymes, including superoxide dismutase (SOD) by 19.74%, glutathione peroxidase (GPx) by 44.76%, and catalase by 50.50%. There was also a significant decline in the activity of mitochondrial complex enzymes. In contrast, rutin treatment significantly enhanced the activity of antioxidant enzymes while concurrently reducing lipid peroxidation levels in rats. Specifically, rutin administration exerted a modulatory effect on the inflammatory response triggered by aluminum exposure, effectively suppressing the excessive production of nitrate and TNF-α. These findings highlight the potential of rutin as an effective therapeutic strategy in mitigating and combating neuro-inflammation and oxidative stress associated with aluminum-induced toxicity, thereby effectively restoring mitochondrial function.
Collapse
Affiliation(s)
- Khadidja Kessas
- Laboratory of Biotoxicology Experimentale, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences, University Oran1 ABB, Oran, 31100, Algeria.
| | - Wafaa Lounis
- Laboratory of Biotoxicology Experimentale, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences, University Oran1 ABB, Oran, 31100, Algeria
| | - Zehor Chouari
- Laboratory of Biotoxicology Experimentale, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences, University Oran1 ABB, Oran, 31100, Algeria
| | - Anne Vejux
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, University Bourgogne Franche-Comté, 21000, Dijon, France
| | - Gérard Lizard
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, University Bourgogne Franche-Comté, 21000, Dijon, France
| | - Omar Kharoubi
- Laboratory of Biotoxicology Experimentale, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences, University Oran1 ABB, Oran, 31100, Algeria
| |
Collapse
|
6
|
Tang H, Li X, Liu X, Xu Y, Shen J. Rutin intake mitigates the injury of blue light irradiation by altering aging rates of mortality in Drosophila model. Photochem Photobiol 2024; 100:524-529. [PMID: 37665025 DOI: 10.1111/php.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
Blue light is known as one of the harmful light pollution that has complex effects on organisms. The massive use of LED lights in cities has greatly increased the frequency of human exposure to blue light, and therefore the hazards of blue light are receiving widespread attention. In our study, Drosophila was used as the model organism to explore the ability of the flavonoid rutin to resist blue light damage under the intensity of 3000 Lux. Siler model analysis was performed. Our results showed sex-specific pattern of rutin as an effective antioxidant. Rutin could help female flies to reduce the initial adult mortality and male flies to slow the increase of adult mortality under blue light irradiation, thus prolonging their average lifespan. Furthermore, after the intake of rutin, the locomotor activity of Drosophila under blue light irradiation was significantly increased, and the total sleep time was significantly decreased. In summary, our results provide preliminary support for exploring the mechanism of rutin against blue light damage.
Collapse
Affiliation(s)
- Hao Tang
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China
| | - Xiangyu Li
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China
| | - Xingyou Liu
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China
| | - Yifan Xu
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China
| | - Jie Shen
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
7
|
Dos Santos BL, Dos Santos CC, da Silva KC, Nonaka CKV, Souza BSDF, David JM, de Oliveira JVR, Costa MDFD, Butt AM, da Silva VDA, Costa SL. The Phytochemical Agathisflavone Modulates miR146a and miR155 in Activated Microglia Involving STAT3 Signaling. Int J Mol Sci 2024; 25:2547. [PMID: 38473794 DOI: 10.3390/ijms25052547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
MicroRNAs (miRs) act as important post-transcriptional regulators of gene expression in glial cells and have been shown to be involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). Here, we investigated the effects of agathisflavone, a biflavonoid purified from the leaves of Cenostigma pyramidale (Tul.), on modulating the expression of miRs and inflammatory mediators in activated microglia. C20 human microglia were exposed to oligomers of the β-amyloid peptide (Aβ, 500 nM) for 4 h or to lipopolysaccharide (LPS, 1 µg/mL) for 24 h and then treated or not with agathisflavone (1 µM) for 24 h. We observed that β-amyloid and LPS activated microglia to an inflammatory state, with increased expression of miR-146a, miR-155, IL1-β, IL-6, and NOS2. Treatment with agathisflavone resulted in a significant reduction in miR146a and miR-155 induced by LPS or Aβ, as well as inflammatory cytokines IL1-β, IL-6, and NOS2. In cells stimulated with Aβ, there was an increase in p-STAT3 expression that was reduced by agathisflavone treatment. These data identify a role for miRs in the anti-inflammatory effect of agathisflavone on microglia in models of neuroinflammation and AD.
Collapse
Affiliation(s)
- Balbino Lino Dos Santos
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
- College of Nursing, Federal University of Vale do São Francisco, Av. José de Sá Maniçoba, S/N, Petrolina 56304-917, PE, Brazil
| | - Cleonice Creusa Dos Santos
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
| | - Karina Costa da Silva
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
| | - Carolina Kymie Vasques Nonaka
- Center of Biotechnology and Cell Therapy, São Rafael Hospital, D'Or Institute for Research and Teaching (IDOR), Salvador 41253-190, BA, Brazil
| | - Bruno Solano de Freitas Souza
- Center of Biotechnology and Cell Therapy, São Rafael Hospital, D'Or Institute for Research and Teaching (IDOR), Salvador 41253-190, BA, Brazil
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador 40296-710, BA, Brazil
| | - Jorge Mauricio David
- Department of General and Inorganic Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador 40231-300, BA, Brazil
| | - Juciele Valéria Ribeiro de Oliveira
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
| | - Maria de Fátima Dias Costa
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
- National Institute of Translational Neuroscience (INNT), Rio de Janeiro 21941-971, RJ, Brazil
| | - Arthur Morgan Butt
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
- National Institute of Translational Neuroscience (INNT), Rio de Janeiro 21941-971, RJ, Brazil
- Instituto de Ciências da Saúde, Av. Reitor Miguel Calmon S/N Vale do Canela, Salvador 40110-902, BA, Brazil
| |
Collapse
|
8
|
Asti AL, Crespi S, Rampino T, Zelini P, Gregorini M, Pascale A, Marchesi N, Saccucci S, Colombani C, Vitalini S, Iriti M. Yet another in vitro evidence that natural compounds introduced by diet have anti-amyloidogenic activities and can counteract neurodegenerative disease depending on aging. Nat Prod Res 2024; 38:861-866. [PMID: 36964661 DOI: 10.1080/14786419.2023.2192493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/11/2023] [Indexed: 03/26/2023]
Abstract
A major issue in Alzheimer's disease (AD) research is to find some new therapeutic drug which decrease Amyloid-beta (Aβ) aggregation. From a therapeutic point of view the major question is whether pharmacological inhibition of inflammation pathways will be able to safely reverse or slow the course of disease. Natural compounds are capable of binding to different targets implicated in AD and exert neuroprotective effects. Aim of this study was to evaluate the in vitro inhibition of Aβ1-42 fibrillogenesis in presence of Gallic acid, Rutin, Melatonin and ProvinolsTM . We performed the analysis with Transmission and Scanning Electron Microscopy, and with X-ray microanalysis. Samples treated with Rutin, that arises from phenylalanine via the phenylpropanoid pathway, show the best effective result obtained because a significantly fibril inhibition activity is detectable compared to the other compounds. Melatonin shows a better inhibitory activity than ProvinolsTM and Gallic acid at the considered concentrations.
Collapse
Affiliation(s)
- Anna Lia Asti
- Unit of Nephrology, Dialysis and Transplantation, Fondazione I.R.C.C.S. Policlinico San Matteo, Pavia, Italy
| | - Stefania Crespi
- Department of Earth Sciences Ardito Desio, University of Milan, Milan, Italy
| | - Teresa Rampino
- Unit of Nephrology, Dialysis and Transplantation, Fondazione I.R.C.C.S. Policlinico San Matteo, Pavia, Italy
| | - Paola Zelini
- Unit of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marilena Gregorini
- Unit of Nephrology, Dialysis and Transplantation, Fondazione I.R.C.C.S. Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - Nicoletta Marchesi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | | | - Carla Colombani
- Department of Agricultural and Environmental Sciences Territorial Production and Agroenergy, University of Milan, Milan, Italy
| | - Sara Vitalini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| |
Collapse
|
9
|
Lu W, Chen Z, Wen J. Flavonoids and ischemic stroke-induced neuroinflammation: Focus on the glial cells. Biomed Pharmacother 2024; 170:115847. [PMID: 38016362 DOI: 10.1016/j.biopha.2023.115847] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/30/2023] Open
Abstract
Ischemic stroke is one of the most cases worldwide, with high rate of morbidity and mortality. In the pathological process of ischemic stroke, neuroinflammation is an essential process that defines the functional prognosis. After stroke onset, microglia, astrocytes and the infiltrating immune cells contribute to a complicated neuroinflammation cascade and play the complicated roles in the pathophysiological variations of ischemic stroke. Both microglia and astrocytes undergo both morphological and functional changes, thereby deeply participate in the neuronal inflammation via releasing pro-inflammatory or anti-inflammatory factors. Flavonoids are plant-specific secondary metabolites and can protect against cerebral ischemia injury via modulating the inflammatory responses. For instances, quercetin can inhibit the expression and release of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, IL-6 and IL-1β, in the cerebral nervous system (CNS). Apigenin and rutin can promote the polarization of microglia to anti-inflammatory genotype and then inhibit neuroinflammation. In this review, we focused on the dual roles of activated microglia and reactive astrocyte in the neuroinflammation following ischemic stroke and discussed the anti-neuroinflammation of some flavonoids. Importantly, we aimed to reveal the new strategies for alleviating the cerebral ischemic stroke.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical Branch, Hefei Technology College, Hefei, China
| | - Zhiwu Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
10
|
Renu K, Mukherjee AG, Gopalakrishnan AV, Wanjari UR, Kannampuzha S, Murali R, Veeraraghavan VP, Vinayagam S, Paz-Montelongo S, George A, Vellingiri B, Madhyastha H. Protective effects of macromolecular polyphenols, metals (zinc, selenium, and copper) - Polyphenol complexes, and different organs with an emphasis on arsenic poisoning: A review. Int J Biol Macromol 2023; 253:126715. [PMID: 37673136 DOI: 10.1016/j.ijbiomac.2023.126715] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
For the potential health benefits and nutritional value, polyphenols are one of the secondary metabolites of plants that have received extensive research. It has anti-inflammatory and cytotoxicity-reducing properties in addition to a high antioxidant content. Macromolecular polyphenols and polysaccharides are biologically active natural polymers with antioxidant and anti-inflammatory potential. Arsenic is an ecologically toxic metalloid. Arsenic in drinking water is the most common way people come into contact with this metalloid. While arsenic is known to cause cancer, it is also used to treat acute promyelocytic leukemia (APL). The treatment's effectiveness is hampered by the adverse effects it can cause on the body. Oxidative stress, inflammation, and the inability to regulate cell death cause the most adverse effects. Polyphenols and other macromolecules like polysaccharides act as neuroprotectants by mitigating free radical damage, inhibiting nitric oxide (NO) production, lowering A42 fibril formation, boosting antioxidant levels, and controlling apoptosis and inflammation. To prevent the harmful effects of toxins, polyphenols and pectin lower oxidative stress, boost antioxidant levels, improve mitochondrial function, control apoptosis, and suppress inflammation. Therefore, it prevents damage to the heart, liver, kidneys, and reproductive system. This review aims to identify the effects of the polyphenols in conjugation with polysaccharides as an ameliorative strategy for arsenic-induced toxicity in various organs.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Sathishkumar Vinayagam
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri 635205, Tamil Nadu, India.
| | - Soraya Paz-Montelongo
- Area de Toxicologia, Universidad de La Laguna, 38071 La Laguna, Tenerife, Islas Canarias, Spain; Grupo interuniversitario de Toxicología Alimentaria y Ambiental, Universidad de La Laguna, 38071 La Laguna, Tenerife, Islas Canarias, Spain.
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India.
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India.
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889 1692, Japan.
| |
Collapse
|
11
|
Phukan BC, Roy R, Gahatraj I, Bhattacharya P, Borah A. Therapeutic considerations of bioactive compounds in Alzheimer's disease and Parkinson's disease: Dissecting the molecular pathways. Phytother Res 2023; 37:5657-5699. [PMID: 37823581 DOI: 10.1002/ptr.8012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 10/13/2023]
Abstract
Leading neurodegenerative diseases Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by the impairment of memory and motor functions, respectively. Despite several breakthroughs, there exists a lack of disease-modifying treatment strategies for these diseases, as the available drugs provide symptomatic relief and bring along side effects. Bioactive compounds are reported to bear neuroprotective properties with minimal toxicity, however, a detailed elucidation of their modes of neuroprotection is lacking. The review elucidates the neuroprotective mechanism(s) of some of the major phyto-compounds in pre-clinical and clinical studies of AD and PD to understand their potential in combating these diseases. Curcumin, eugenol, resveratrol, baicalein, sesamol and so on have proved efficient in countering the pathological hallmarks of AD and PD. Curcumin, resveratrol, caffeine and so on have reached the clinical phases of these diseases, while aromadendrin, delphinidin, cyanidin and xanthohumol are yet to be extensively explored in pre-clinical phases. The review highlights the need for extensive investigation of these compounds in the clinical stages of these diseases so as to utilize their disease-modifying abilities in the real field of treatment. Moreover, poor pharmacokinetic properties of natural compounds are constraints to their therapeutic yields and this review suggests a plausible contribution of nanotechnology in overcoming these limitations.
Collapse
Affiliation(s)
| | - Rubina Roy
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Indira Gahatraj
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gandhinagar, Gujarat, India
| | - Anupom Borah
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| |
Collapse
|
12
|
Wang H, Zhang S, Zhang Y, Ma H, Wu D, Gao ZF, Fan D, Ren X, Wei Q. Magnetically Controlled and Addressable Photoelectrochemical Sensor Array with Self-Calibration for the Label-Free Detection of Amyloid β-Proteins. Anal Chem 2023; 95:16169-16175. [PMID: 37878505 DOI: 10.1021/acs.analchem.3c02794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
A label-free addressable photoelectric immunosensor array was designed for the detection of amyloid β-proteins based on magnetic separation and self-calibration strategies. In this paper, Na2Ti6O13 with a flower-like morphology was prepared by the hydrothermal method; after continuously combining Fe3O4 and CdS, it was endowed with magnetism and better photoelectric activity. Subsequently, a series of reactions occurred in the solution, and the magnetic separation method was used to enrich the target. On the other hand, the ITO glass was separated into eight sites (2 × 4) using magnets, and a light shield was utilized to prevent light exposure, resulting in addressable and continuous detection. After the uniform preparation of magnetic photoelectric materials and precise control of testing conditions, the relative errors among different sites have been effectively reduced. Moreover, incorporating a self-calibration strategy has allowed the sensor array to achieve greater accuracy. The proposed photoelectrochemical biosensor exhibits a good relationship with amyloid β-protein ranging from 0.01 to 100 ng mL-1 with a limit of detection of 1.1 pg mL-1 and exhibits excellent specificity, reproducibility, and stability.
Collapse
Affiliation(s)
- Huan Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Shuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yunfei Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Zhong Feng Gao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Dawei Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
13
|
Alsharairi NA. Quercetin Derivatives as Potential Therapeutic Agents: An Updated Perspective on the Treatment of Nicotine-Induced Non-Small Cell Lung Cancer. Int J Mol Sci 2023; 24:15208. [PMID: 37894889 PMCID: PMC10607898 DOI: 10.3390/ijms242015208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Flavonoids are the largest group of polyphenols, represented by many compounds that exhibit high anticancer properties. Quercetin (Q) and its main derivatives (rutin, quercitrin, isoquercitrin, isorhamnetin, tamarixetin, rhamnetin, and hyperoside) in the class of flavonols have been documented to exert anticancer activity. Q has been shown to be useful in the treatment of non-small cell lung cancer (NSCLC), as demonstrated by in vitro/in vivo studies, due to its antitumor, anti-inflammatory, anti-proliferative, anti-angiogenesis, and apoptotic properties. Some flavonoids (flavone, anthocyanins, and proanthocyanidins) have been demonstrated to be effective in nicotine-induced NSCLC treatment. However, the molecular mechanisms of quercetin derivatives (QDs) in nicotine-induced NSCLC treatment remain unclear. Thus, this review aims to summarize the available literature on the therapeutic effects of QDs in nicotine-induced NSCLC.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind and Body Research Group, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
14
|
Rajkumar M, Kannan S, Thangaraj R. Voglibose attenuates cognitive impairment, Aβ aggregation, oxidative stress, and neuroinflammation in streptozotocin-induced Alzheimer's disease rat model. Inflammopharmacology 2023; 31:2751-2771. [PMID: 37665449 DOI: 10.1007/s10787-023-01313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023]
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disease hallmarked by Amyloid-β (Aβ) aggregation, cognitive impairment, and neuronal and synaptic loss. In this study, AD was induced in male Wistar rats (n = 6) by the administration of intracerebroventricular-streptozotocin (ICV-STZ-3 mg/kg/day), and Voglibose (Vog) was administered at various doses (10, 25, and 50 mg/kg), while Galantamine (3 mg/kg) acted as a reference standard drug. Behavioral alterations in both spatial and non-spatial memory functions were evaluated in the experimental rats. At the end of the study, all experimental rats were sacrificed, and their brain parts, the cortex and hippocampus, were subjected to biochemical, western blot, and histopathological analysis. In our study results, the statistically significant dose-dependent results from the behavioral tests show the Voglibose-treated groups significantly improved (p < 0.0001) spatial and non-spatial memory functions when compared with ICV-STZ-treated group. Meanwhile, when compared with ICV-STZ-treated rats, treatment with Voglibose (10, 25, and 50 mg/kg) showed the activities of both acetylcholinesterase (AChE) and malondialdehyde (MDA) were significantly attenuated (p < 0.0001), while the operation of antioxidant enzymes was considerably enhanced (p < 0.0001). The molecular estimation showed that it significantly attenuates (p < 0.0001) the TNF-α, IL-1β, and CRP activity, and the western blot results demonstrate the significantly attenuated Aβ aggregation. The histopathological results showed that the Voglibose treatment had an effective improvement in clear cytoplasm and healthy neuronal cells. In conclusion, our results suggest that Voglibose has potent neuroprotective effects against the ICV-STZ-induced AD model. Furthermore, these results support the possibility of Voglibose as a therapeutic approach to improving cognitive function, suggesting that controlling Aβ aggregation might be a novel target for the development of AD.
Collapse
Affiliation(s)
- Manickam Rajkumar
- Cancer Nanomedicine Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, Tamil Nadu, 636 011, India
| | - Soundarapandian Kannan
- Cancer Nanomedicine Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, Tamil Nadu, 636 011, India.
| | | |
Collapse
|
15
|
Feng J, Zheng Y, Guo M, Ares I, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Oxidative stress, the blood-brain barrier and neurodegenerative diseases: The critical beneficial role of dietary antioxidants. Acta Pharm Sin B 2023; 13:3988-4024. [PMID: 37799389 PMCID: PMC10547923 DOI: 10.1016/j.apsb.2023.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/16/2023] [Accepted: 06/13/2023] [Indexed: 10/07/2023] Open
Abstract
In recent years, growing awareness of the role of oxidative stress in brain health has prompted antioxidants, especially dietary antioxidants, to receive growing attention as possible treatments strategies for patients with neurodegenerative diseases (NDs). The most widely studied dietary antioxidants include active substances such as vitamins, carotenoids, flavonoids and polyphenols. Dietary antioxidants are found in usually consumed foods such as fresh fruits, vegetables, nuts and oils and are gaining popularity due to recently growing awareness of their potential for preventive and protective agents against NDs, as well as their abundant natural sources, generally non-toxic nature, and ease of long-term consumption. This review article examines the role of oxidative stress in the development of NDs, explores the 'two-sidedness' of the blood-brain barrier (BBB) as a protective barrier to the nervous system and an impeding barrier to the use of antioxidants as drug medicinal products and/or dietary antioxidants supplements for prevention and therapy and reviews the BBB permeability of common dietary antioxidant suplements and their potential efficacy in the prevention and treatment of NDs. Finally, current challenges and future directions for the prevention and treatment of NDs using dietary antioxidants are discussed, and useful information on the prevention and treatment of NDs is provided.
Collapse
Affiliation(s)
- Jin Feng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Youle Zheng
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingyue Guo
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| |
Collapse
|
16
|
Geana EI, Ciucure CT, Tamaian R, Marinas IC, Gaboreanu DM, Stan M, Chitescu CL. Antioxidant and Wound Healing Bioactive Potential of Extracts Obtained from Bark and Needles of Softwood Species. Antioxidants (Basel) 2023; 12:1383. [PMID: 37507922 PMCID: PMC10376860 DOI: 10.3390/antiox12071383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Interest in the extraction of phytochemical bioactive compounds, especially polyphenols from biomass, has recently increased due to their valuable biological potential as natural sources of antioxidants, which could be used in a wide range of applications, from foods and pharmaceuticals to green polymers and bio-based materials. The present research study aimed to provide a comprehensive chemical characterization of the phytochemical composition of forest biomass (bark and needles) of softwood species (Picea abies L., H. Karst., and Abies alba Mill.) and to investigate their in vitro antioxidant and antimicrobial activities to assess their potential in treating and healing infected chronic wounds. The DPPH radical-scavenging method and P-LD were used for a mechanistic explanation of the biomolecular effects of the investigated bioactive compounds. (+)-Catechin, epicatechin, rutin, myricetin, 4 hydroxybenzoic and p-cumaric acids, kaempherol, and apigenin were the main quantified polyphenols in coniferous biomass (in quantities around 100 µg/g). Also, numerous phenolic acids, flavonoids, stilbenes, terpenes, lignans, secoiridoids, and indanes with antioxidant, antimicrobial, anti-inflammatory, antihemolytic, and anti-carcinogenic potential were identified. The Abies alba needle extract was more toxic to microbial strains than the eukaryotic cells that provide its active wound healing principles. In this context, developing industrial upscaling strategies is imperative for the long-term success of biorefineries and incorporating them as part of a circular bio-economy.
Collapse
Affiliation(s)
- Elisabeta-Irina Geana
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 240050 Ramnicu Valcea, Romania;
| | - Corina Teodora Ciucure
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 240050 Ramnicu Valcea, Romania;
| | - Radu Tamaian
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 240050 Ramnicu Valcea, Romania;
| | - Ioana Cristina Marinas
- Department of Microbiology and Biochemistry, Research Institute of the University of Bucharest-ICUB, 050567 Bucharest, Romania; (D.M.G.); (M.S.)
| | - Diana Mădălina Gaboreanu
- Department of Microbiology and Biochemistry, Research Institute of the University of Bucharest-ICUB, 050567 Bucharest, Romania; (D.M.G.); (M.S.)
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| | - Miruna Stan
- Department of Microbiology and Biochemistry, Research Institute of the University of Bucharest-ICUB, 050567 Bucharest, Romania; (D.M.G.); (M.S.)
| | - Carmen Lidia Chitescu
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania;
| |
Collapse
|
17
|
Plekratoke K, Boonyarat C, Monthakantirat O, Nualkaew N, Wangboonskul J, Awale S, Chulikhit Y, Daodee S, Khamphukdee C, Chaiwiwatrakul S, Waiwut P. The Effect of Ethanol Extract from Mesua ferrea Linn Flower on Alzheimer's Disease and Its Underlying Mechanism. Curr Issues Mol Biol 2023; 45:4063-4079. [PMID: 37232728 DOI: 10.3390/cimb45050259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
The effects of Mesua ferrea Linn flower (MFE) extract on the pathogenic cascade of Alzheimer's disease (AD) were determined by an in vitro and cell culture model in the search for a potential candidate for the treatment of AD. The 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay exhibited that the MFE extract had antioxidant activities. According to the Ellman and the thioflavin T method's result, the extracts could inhibit acetylcholinesterase and β-amyloid (Aβ) aggregation. Studies on neuroprotection in cell culture found that the MFE extract could reduce the death of human neuroblastoma cells (SH-SY5Y) caused by H2O2 and Aβ. Western blot analysis exhibited that the MFE extract alleviated H2O2-induced neuronal cell damage by downregulating the pro-apoptotic proteins, including cleaved caspase-3, Bax, and by enhancing the expression of anti-apoptotic markers including MCl1, BClxl, and survivin. Moreover, MFE extract inhibited the expression of APP, presenilin 1, and BACE, and increased the expression of neprilysin. In addition, the MFE extract could enhance scopolamine-induced memory deficit in mice. Overall, results showed that the MFE extract had several modes of action related to the AD pathogenesis cascade, including antioxidants, anti-acetylcholinesterase, anti-Aβ aggregation, and neuroprotection against oxidative stress and Aβ. Therefore, the M. ferrea L. flower might be a possibility for further development as a medication for AD.
Collapse
Affiliation(s)
- Kusawadee Plekratoke
- Biomedical Science Program, Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chantana Boonyarat
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Natsajee Nualkaew
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jinda Wangboonskul
- Faculty of Pharmaceutical Sciences, Thummasart University, Bangkok 10330, Thailand
| | - Suresh Awale
- Division of Natural Drug Discovery, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yaowared Chulikhit
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supawadee Daodee
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Charinya Khamphukdee
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Suchada Chaiwiwatrakul
- Department of English, Faculty of Humanities and Social Sciences, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000, Thailand
| | - Pornthip Waiwut
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| |
Collapse
|
18
|
Dos Santos BL, Dos Santos CC, Soares JRP, da Silva KC, de Oliveira JVR, Pereira GS, de Araújo FM, Costa MDFD, David JM, da Silva VDA, Butt AM, Costa SL. The Flavonoid Agathisflavone Directs Brain Microglia/Macrophages to a Neuroprotective Anti-Inflammatory and Antioxidant State via Regulation of NLRP3 Inflammasome. Pharmaceutics 2023; 15:pharmaceutics15051410. [PMID: 37242652 DOI: 10.3390/pharmaceutics15051410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Agathisflavone, purified from Cenostigma pyramidale (Tul.) has been shown to be neuroprotective in in vitro models of glutamate-induced excitotoxicity and inflammatory damage. However, the potential role of microglial regulation by agathisflavone in these neuroprotective effects is unclear. Here we investigated the effects of agathisflavone in microglia submitted to inflammatory stimulus in view of elucidating mechanisms of neuroprotection. Microglia isolated from cortices of newborn Wistar rats were exposed to Escherichia coli lipopolysaccharide (LPS, 1 µg/mL) and treated or not with agathisflavone (1 µM). Neuronal PC12 cells were exposed to a conditioned medium from microglia (MCM) treated or not with agathisflavone. We observed that LPS induced microglia to assume an activated inflammatory state (increased CD68, more rounded/amoeboid phenotype). However, most microglia exposed to LPS and agathisflavone, presented an anti-inflammatory profile (increased CD206 and branched-phenotype), associated with the reduction in NO, GSH mRNA for NRLP3 inflammasome, IL1-β, IL-6, IL-18, TNF, CCL5, and CCL2. Molecular docking also showed that agathisflavone bound at the NLRP3 NACTH inhibitory domain. Moreover, in PC12 cell cultures exposed to the MCM previously treated with the flavonoid most cells preserved neurites and increased expression of β-tubulin III. Thus, these data reinforce the anti-inflammatory activity and the neuroprotective effect of agathisflavone, effects associated with the control of NLRP3 inflammasome, standing out it as a promising molecule for the treatment or prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Balbino Lino Dos Santos
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Bahia, Brazil
- College of Nursing, Federal University of Vale do São Francisco, Petrolina 56304-917, Pernambuco, Brazil
| | - Cleonice Creusa Dos Santos
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Bahia, Brazil
| | - Janaina R P Soares
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Bahia, Brazil
| | - Karina C da Silva
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Bahia, Brazil
| | - Juciele Valeria R de Oliveira
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Bahia, Brazil
| | - Gabriele S Pereira
- Group of Studies and Research for Health Development, University Salvador, Salvador 40140-110, Bahia, Brazil
| | - Fillipe M de Araújo
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Bahia, Brazil
- Group of Studies and Research for Health Development, University Salvador, Salvador 40140-110, Bahia, Brazil
| | - Maria de Fátima D Costa
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Bahia, Brazil
| | - Jorge Mauricio David
- Department of General and Inorganic Chemistry, Institute of Chemistry, University Federal da Bahia, Salvador 40170-110, Bahia, Brazil
| | - Victor Diogenes A da Silva
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Bahia, Brazil
| | - Arthur Morgan Butt
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2UP, UK
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, Bahia, Brazil
| |
Collapse
|
19
|
Xu H, Liu Y. ROS-responsive nanomodulators downregulate IFITM3 expression and eliminate ROS for Alzheimer's disease combination treatment. J Colloid Interface Sci 2023; 645:210-218. [PMID: 37149995 DOI: 10.1016/j.jcis.2023.04.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023]
Abstract
Neuronal damage caused by β-amyloid (Aβ) aggregates and excess reactive oxygen species (ROS) is a crucial pathogenic event in Alzheimer's disease (AD). However, current Aβ-targeting RNA interference (RNAi) treatments have shown limited therapeutic efficacy due to ineffective intracerebral siRNA delivery and overlooked crosstalk between excess ROS and Aβ aggregates in the brain. Herein, a ROS-responsive nanomodulator (NM/CM) was developed for the combinational treatment of RNAi and ROS elimination for AD. NM/CM was coated with 4T1 cell membranes, which endowed NM/CM with the capability to cross blood-brain barrier (BBB). After being internalized by neural cells, NM/CM releases curcumin (Cur) and siIFITM3 spontaneously into the cytoplasm. The released Cur can eliminate ROS, protecting neurons from oxidative damage and reducing the production of Aβ induced by ROS-related neuroinflammation. The released siIFITM3 can downregulate the expression of interferon-induced transmembrane protein 3 (IFITM3), thereby reducing the abnormal Aβ production mediated by IFITM3. As a result, NM/CM remarkably alleviated ROS- and Aβ aggregate-induced neurotoxicity in vitro, showing significant neuroprotective effects. This work demonstrates the potential of NM/CM in the development of novel and effective AD combination therapies.
Collapse
Affiliation(s)
- Huaibao Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
20
|
Khan S, Hassan MI, Shahid M, Islam A. Nature's Toolbox Against Tau Aggregation: An Updated Review of Current Research. Ageing Res Rev 2023; 87:101924. [PMID: 37004844 DOI: 10.1016/j.arr.2023.101924] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Tau aggregation is a hallmark of several neurodegenerative disorders, such as Alzheimer's disease (AD), frontotemporal dementia, and progressive supranuclear palsy. Hyperphosphorylated tau is believed to contribute to the degeneration of neurons and the development of these complex diseases. Therefore, one potential treatment for these illnesses is to prevent or counteract tau aggregation. In recent years, interest has been increasing in developing nature-derived tau aggregation inhibitors as a potential treatment for neurodegenerative disorders. Researchers have become increasingly interested in natural compounds with multifunctional features, such as flavonoids, alkaloids, resveratrol, and curcumin, since these molecules can interact simultaneously with the various targets of AD. Recent studies have demonstrated that several natural compounds can inhibit tau aggregation and promote the disassembly of pre-formed tau aggregates. Nature-derived tau aggregation inhibitors hold promise as a potential treatment for neurodegenerative disorders. However, it is important to note that more research is needed to fully understand the mechanisms by which these compounds exert their effects and their safety and efficacy in preclinical and clinical studies. Nature-derived inhibitors of tau aggregation are a promising new direction in the research of neurodegenerative complexities. This review focuses on the natural products that have proven to be a rich supply for inhibitors in tau aggregation and their uses in neurodegenerative complexities, including AD.
Collapse
|
21
|
Richter E, Geetha T, Burnett D, Broderick TL, Babu JR. The Effects of Momordica charantia on Type 2 Diabetes Mellitus and Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24054643. [PMID: 36902074 PMCID: PMC10002567 DOI: 10.3390/ijms24054643] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
T2DM is a complex metabolic disorder characterized by hyperglycemia and glucose intolerance. It is recognized as one of the most common metabolic disorders and its prevalence continues to raise major concerns in healthcare globally. Alzheimer's disease (AD) is a gradual neurodegenerative brain disorder characterized by the chronic loss of cognitive and behavioral function. Recent research suggests a link between the two diseases. Considering the shared characteristics of both diseases, common therapeutic and preventive agents are effective. Certain bioactive compounds such as polyphenols, vitamins, and minerals found in vegetables and fruits can have antioxidant and anti-inflammatory effects that allow for preventative or potential treatment options for T2DM and AD. Recently, it has been estimated that up to one-third of patients with diabetes use some form of complementary and alternative medicine. Increasing evidence from cell or animal models suggests that bioactive compounds may have a direct effect on reducing hyperglycemia, amplifying insulin secretion, and blocking the formation of amyloid plaques. One plant that has received substantial recognition for its numerous bioactive properties is Momordica charantia (M. charantia), otherwise known as bitter melon, bitter gourd, karela, and balsam pear. M. charantia is utilized for its glucose-lowering effects and is often used as a treatment for diabetes and related metabolic conditions amongst the indigenous populations of Asia, South America, India, and East Africa. Several pre-clinical studies have documented the beneficial effects of M. charantia through various postulated mechanisms. Throughout this review, the underlying molecular mechanisms of the bioactive components of M. charantia will be highlighted. More studies will be necessary to establish the clinical efficacy of the bioactive compounds within M. charantia to effectively determine its pertinence in the treatment of metabolic disorders and neurodegenerative diseases, such as T2DM and AD.
Collapse
Affiliation(s)
- Erika Richter
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Donna Burnett
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Tom L. Broderick
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
- Correspondence: ; Tel.: +1-223-844-3840
| |
Collapse
|
22
|
Li M, Qian M, Jiang Q, Tan B, Yin Y, Han X. Evidence of Flavonoids on Disease Prevention. Antioxidants (Basel) 2023; 12:antiox12020527. [PMID: 36830086 PMCID: PMC9952065 DOI: 10.3390/antiox12020527] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
A growing body of evidence highlights the properties of flavonoids in natural foods for disease prevention. Due to their antioxidative, anti-inflammatory, and anti-carcinogenic activities, flavonoids have been revealed to benefit skeletal muscle, liver, pancreas, adipocytes, and neural cells. In this review, we introduced the basic classification, natural sources, and biochemical properties of flavonoids, then summarize the experimental results and underlying molecular mechanisms concerning the effects of flavonoid consumption on obesity, cancers, and neurogenerative diseases that greatly threaten public health. Especially, the dosage and duration of flavonoids intervening in these diseases are discussed, which might guide healthy dietary habits for people of different physical status.
Collapse
Affiliation(s)
- Meng Li
- Hainan Institute, Zhejiang University, Sanya 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Mengqi Qian
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Jiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xinyan Han
- Hainan Institute, Zhejiang University, Sanya 572000, China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-0571-88982446
| |
Collapse
|
23
|
Lu ZG, Shen J, Yang J, Wang JW, Zhao RC, Zhang TL, Guo J, Zhang X. Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduct Target Ther 2023; 8:39. [PMID: 36650130 PMCID: PMC9844208 DOI: 10.1038/s41392-022-01298-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Nucleic acid drugs have the advantages of rich target selection, simple in design, good and enduring effect. They have been demonstrated to have irreplaceable superiority in brain disease treatment, while vectors are a decisive factor in therapeutic efficacy. Strict physiological barriers, such as degradation and clearance in circulation, blood-brain barrier, cellular uptake, endosome/lysosome barriers, release, obstruct the delivery of nucleic acid drugs to the brain by the vectors. Nucleic acid drugs against a single target are inefficient in treating brain diseases of complex pathogenesis. Differences between individual patients lead to severe uncertainties in brain disease treatment with nucleic acid drugs. In this Review, we briefly summarize the classification of nucleic acid drugs. Next, we discuss physiological barriers during drug delivery and universal coping strategies and introduce the application methods of these universal strategies to nucleic acid drug vectors. Subsequently, we explore nucleic acid drug-based multidrug regimens for the combination treatment of brain diseases and the construction of the corresponding vectors. In the following, we address the feasibility of patient stratification and personalized therapy through diagnostic information from medical imaging and the manner of introducing contrast agents into vectors. Finally, we take a perspective on the future feasibility and remaining challenges of vector-based integrated diagnosis and gene therapy for brain diseases.
Collapse
Affiliation(s)
- Zhi-Guo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Jie Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jing-Wen Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Rui-Chen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Tian-Lu Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Jing Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| |
Collapse
|
24
|
Dzah CS. Optimized pressurized hot water extraction, HPLC/LC-MS characterization, and bioactivity of Tetrapleura tetraptera L. dry fruit polyphenols. J Food Sci 2023; 88:175-192. [PMID: 36524784 DOI: 10.1111/1750-3841.16422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/12/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
Despite the global preference for green extraction methods in the recovery of plant bioactives, Tetrapleura tetraptera fruit polyphenols (TTP) are yet to receive considerable attention. For the first time, pressurized hot water extraction (PHWE) of TTP was optimized for total phenol content (TPC) and antioxidant activity (AA) using the Box Behnken design of response surface methodology. Predictor variables were time, temperature, and liquid-to-solid ratio. An optimum solution with a desirability of 0.805 was selected and parameters were 43 min, 220°C, and 60 ml g-1 liquid-to-solid ratio, yielding TPC of 8.92 mg gallic acid equivalent per gram of sample on dry weight basis (GAE g-1 dw-1 ) and AA of 70.35%. Purified, optimized TTP were characterized and quantified using HPLC/LC-MS. PHWE mainly extracted rutin (379.04 µg g-1 ), cyanidin-3-O-glucoside (chloride) (299.55 µg g-1 ), naringenin 7-O-glucoside (240.11 µg g-1 ), p-coumaric acid (177.28 µg g-1 ), isorientin (150.43 µg g-1 ), and gallic acid (118.06 µg g-1 ) whereas cyanidin-3-O-glucoside (chloride) (83.27 µg g-1 ), protocatechuic acid (61.37 µg g-1 ), rutin (28.03 µg g-1 ), and gallic acid (22.62 µg g-1 ) were mainly extracted by hot water extraction, which was a control. PHWE-obtained TTP showed higher cellular antioxidant activity, cytotoxicity in human liver cancer cell lines (HepG2), and antimicrobial property against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis than control. The potential mechanisms underlying the biological activities of some of the major polyphenols extracted were briefly discussed. Considering the wide use of the T. tetraptera (TT) fruit in Africa in foods and medicine, the use of more efficient green extraction methods such as PHWE is recommended. PRACTICAL APPLICATION: This study serves as a baseline for optimizing pressurized hot water extraction, purification, identification, and quantification of Tetrapleura tetraptera polyphenols (TTP) and their biological activities, being the first of its kind. The varied biological effects shown can be exploited further for applications of TTP as nutraceutical agents and preservatives in foods in different forms. Also, the high amounts of gallic acid and other phenolic acids and flavonoids confirmed in this study make TTP good candidates for the development of metal-phenol network nanoparticles to enhance adequate solubility and distribution in food systems in light of the above proposed applications.
Collapse
Affiliation(s)
- Courage Sedem Dzah
- Department of Food Science and Technology, Faculty of Applied Sciences and Technology, Ho Technical University, Ho, Ghana
| |
Collapse
|
25
|
Salam S, Arif A, Sharma M, Mahmood R. Protective effect of rutin against thiram-induced cytotoxicity and oxidative damage in human erythrocytes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 189:105294. [PMID: 36549820 DOI: 10.1016/j.pestbp.2022.105294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Thiram is a fungicide that is used to prevent fungal diseases in seeds and crops and also as an animal repellent. The pro-oxidant activity of thiram is well established. Rutin is a flavonoid glycoside present in many fruits and plants and has several beneficial properties, including antioxidant effects. We have previously shown that thiram causes oxidative damage in human erythrocytes. The present study was designed to evaluate the protective effect of rutin against thiram-induced damage in human erythrocytes. Treatment of erythrocytes with 0.5 mM thiram for 4 h increased the level of oxidative stress markers, decreased antioxidant power and lowered the activity of antioxidant and membrane bound enzymes. It also enhanced the generation of reactive oxygen and nitrogen species (ROS and RNS) and altered the morphology of erythrocytes. However, prior treatment of erythrocytes with rutin (0.5, 1 and 2 mM) for 2 h, followed by 4 h incubation with 0.5 mM thiram, led to a decrease in the level of oxidative stress markers in a rutin concentration-dependent manner. A significant restoration in the antioxidant power and activity of antioxidant enzymes was observed upon the treatment of erythrocytes with 1 and 2 mM rutin. Pre-incubation with rutin lowered the generation of ROS and RNS which will reduce oxidative damage in erythrocytes. The thiram-induced changes in cell morphology and activity of membrane-bound enzymes were also attenuated by rutin. These results suggest that rutin can be used to mitigate thiram-induced oxidative damage in human erythrocytes.
Collapse
Affiliation(s)
- Samreen Salam
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Amin Arif
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Monika Sharma
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India.
| |
Collapse
|
26
|
Kashif M, Sivaprakasam P, Vijendra P, Waseem M, Pandurangan AK. A Recent Update on Pathophysiology and Therapeutic Interventions of Alzheimer's Disease. Curr Pharm Des 2023; 29:3428-3441. [PMID: 38038007 DOI: 10.2174/0113816128264355231121064704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023]
Abstract
AIM Alzheimer's disease (AD) has been identified as a progressive brain disorder associated with memory dysfunction and the accumulation of β-amyloid plaques and neurofibrillary tangles of τ protein. Mitochondria is crucial in maintaining cell survival, cell death, calcium regulation, and ATP synthesis. Mitochondrial dysfunction and linked calcium overload have been involved in the pathogenesis of AD. CRM2 (Collapsin response mediator protein-2) is involved in endosomal lysosomal trafficking as well as autophagy, and their reduced level is also a primary culprit in the progression of AD. In addition, Cholinergic neurotransmission and neuroinflammation are two other mechanisms implicated in AD onset and might be protective targets to attenuate disease progression. The microbiota-gut-brain axis (MGBA) is another crucial target for AD treatment. Crosstalk between gut microbiota and brain mutually benefitted each other, dysbiosis in gut microbiota affects the brain functions and leads to AD progression with increased AD-causing biomarkers. Despite the complexity of AD, treatment is only limited to symptomatic management. Therefore, there is an urgent demand for novel therapeutics that target associated pathways responsible for AD pathology. This review explores the role of different mechanisms involved in AD and possible therapeutic targets to protect against disease progression. BACKGROUND Amidst various age-related diseases, AD is the most deleterious neurodegenerative disorder that affects more than 24 million people globally. Every year, approximately 7.7 million new cases of dementia have been reported. However, to date, no novel disease-modifying therapies are available to treat AD. OBJECTIVE The aim of writing this review is to highlight the role of key biomarker proteins and possible therapeutic interventions that could play a crucial role in mitigating the ongoing prognosis of Alzheimer's disease. MATERIALS AND METHODS The available information about the disease was collected through multiple search engines, including PubMed, Science Direct, Clinical Trials, and Google Scholar. RESULTS Accumulated pieces of evidence reveal that extracellular aggregation of β-amyloid plaques and intracellular tangles of τ protein are peculiar features of perpetuated Alzheimer's disease (AD). Further, the significant role of mitochondria, calcium, and cholinergic pathways in the pathogenesis of AD makes the respiratory cell organelle a crucial therapeutic target in this neurodegenerative disease. All currently available drugs either delay the clinical damage to cells or temporarily attenuate some symptoms of Alzheimer's disease. CONCLUSION The pathological features of AD are extracellular deposition of β-amyloid, acetylcholinesterase deregulation, and intracellular tangles of τ protein. The multifactorial heterogeneity of disease demands more research work in this field to find new therapeutic biological targets.
Collapse
Affiliation(s)
- Mohd Kashif
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Prathibha Sivaprakasam
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Poornima Vijendra
- Department of Studies in Food Technology, Davangere University, Davangere, Karnataka, India
| | - Mohammad Waseem
- Department of Pharmaceutical Science, University of Maryland, Eastern Shore, Baltimore, USA
| | - Ashok Kumar Pandurangan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| |
Collapse
|
27
|
Boucheffa S, Sobhi W, Attoui A, Selli S, Kelebek H, Semmeq A, Benguerba Y. Effect of the main constituents of Pistacia lentiscus leaves against the DPPH radical and xanthine oxidase: experimental and theoretical study. J Biomol Struct Dyn 2022; 40:9870-9884. [PMID: 34114947 DOI: 10.1080/07391102.2021.1936182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The aim of this work is to study the content of phenolic compounds in P lentiscus leaves and their antioxidant effect. After extracting the phenolic compounds, fractionation by liquid/liquid partition with increasing polarity gives five extracts. Three of them (ButF, AqF and ButA) were found to have good antioxidant activity. Their IC50s for the inhibition of the free radical formation of DPPH are 1.76 µg/mL, 1.307 µg/ml, and 1.77 µg/mL, respectively. These values are very interesting, considering the effect of the powerful flavonoid quercetin, whose IC50 against DPPH is 1.53 µg/mL. These extracts are also active against xanthine oxidase (XO). The IC50s measured are 0.14 mg/mL, 0.186 mg/mL and 0.33 mg/mL for ButF, Aq F and ButAq F extract respectively, in comparison with allopurinol (0.44 mg/mL). A phytochemical analysis by LC/ESI-MS-MS was performed to explain the observed activities. The results show 22 peaks representing: flavanols, namely catechin, d-Gallocatechin, and gallocatechin gallate. The only flavone detected in the studied extracts was luteolin glucuronide and was found to be in higher amounts in butanolic extract (2,71mg/mL). The phenolic acids and derivatives were also identified in the extracts. A theoretical study was performed to deduce the specificity of the binding between the major compounds identified in the P. lentiscus extract and the xanthine oxidase enzyme using Schrödinger software. The docking procedure was validated using the extraction of ligands from the binding site. Their re-anchoring to the xanthine oxidase structure using quercetin and allopurinol was considered reference molecules. After docking, post-docking minimization was performed to achieve the best scoring poses with the MM-GBSA approach. The dGBind energy of MM-GBSA representing the binding energy of the receptor and the ligand was calculated based on molecular mechanics. Results reveal that β-Glucogallin compounds such as Digalloylquinic acid, Gallocatechin, and Myricetin-3-O rhamnoside are more active than allopurinol, with stronger Docking score (Gscore) and MM-GBSA dGBind.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saliha Boucheffa
- Laboratory of Applied Biochemistry (LBA), Faculty of Nature and Life Sciences, Ferhat Abbas Sétif-1 University (UFAS1), Sétif, Algeria
| | - Widad Sobhi
- Laboratory of Applied Biochemistry (LBA), Faculty of Nature and Life Sciences, Ferhat Abbas Sétif-1 University (UFAS1), Sétif, Algeria.,Research Center of Biotechnology (CRBt), Constantine, Algeria
| | - Ayoub Attoui
- Laboratory of Applied Biochemistry (LBA), Faculty of Nature and Life Sciences, Ferhat Abbas Sétif-1 University (UFAS1), Sétif, Algeria.,Laboratoire des Matériaux Polymères Multiphasiques, LMPMP, Université Ferhat ABBAS Sétif-1, Sétif, Algeria
| | - Serkan Selli
- Department of Food Engineering, Faculty of Agriculture, Cukurova University, Adana, Turkey
| | - Hasim Kelebek
- Department of Food Engineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | | | - Yacine Benguerba
- Laboratoire des Matériaux Polymères Multiphasiques, LMPMP, Université Ferhat ABBAS Sétif-1, Sétif, Algeria
| |
Collapse
|
28
|
Mechanistic Insights into the Neuroprotective Potential of Sacred Ficus Trees. Nutrients 2022; 14:nu14224731. [PMID: 36432418 PMCID: PMC9695857 DOI: 10.3390/nu14224731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/16/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Ficus religiosa (Bo tree or sacred fig) and Ficus benghalensis (Indian banyan) are of immense spiritual and therapeutic importance. Various parts of these trees have been investigated for their antioxidant, antimicrobial, anticonvulsant, antidiabetic, anti-inflammatory, analgesic, hepatoprotective, dermoprotective, and nephroprotective properties. Previous reviews of Ficus mostly discussed traditional usages, photochemistry, and pharmacological activities, though comprehensive reviews of the neuroprotective potential of these Ficus species extracts and/or their important phytocompounds are lacking. The interesting phytocompounds from these trees include many bengalenosides, carotenoids, flavonoids (leucopelargonidin-3-O-β-d-glucopyranoside, leucopelargonidin-3-O-α-l-rhamnopyranoside, lupeol, cetyl behenate, and α-amyrin acetate), flavonols (kaempferol, quercetin, myricetin), leucocyanidin, phytosterols (bergapten, bergaptol, lanosterol, β-sitosterol, stigmasterol), terpenes (α-thujene, α-pinene, β-pinene, α-terpinene, limonene, β-ocimene, β-bourbonene, β-caryophyllene, α-trans-bergamotene, α-copaene, aromadendrene, α-humulene, alloaromadendrene, germacrene, γ-cadinene, and δ-cadinene), and diverse polyphenols (tannin, wax, saponin, leucoanthocyanin), contributing significantly to their pharmacological effects, ranging from antimicrobial action to neuroprotection. This review presents extensive mechanistic insights into the neuroprotective potential, especially important phytochemicals from F. religiosa and F. benghalensis. Owing to the complex pathophysiology of neurodegenerative disorders (NDDs), the currently existing drugs merely alleviate the symptoms. Hence, bioactive compounds with potent neuroprotective effects through a multitarget approach would be of great interest in developing pharmacophores for the treatment of NDDs.
Collapse
|
29
|
Celik Topkara K, Kilinc E, Cetinkaya A, Saylan A, Demir S. Therapeutic effects of carvacrol on beta-amyloid-induced impairments in in vitro and in vivo models of Alzheimer's disease. Eur J Neurosci 2022; 56:5714-5726. [PMID: 34904309 DOI: 10.1111/ejn.15565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/21/2021] [Accepted: 12/04/2021] [Indexed: 12/14/2022]
Abstract
Due to the complex nature of Alzheimer's disease (AD), it is important to investigate agents with multiple effects in the treatment of AD. Carvacrol possesses anti-acetylcholinesterase, anti-oxidant, and neuroprotective properties. We therefore investigated therapeutic effects of carvacrol on cell viability, oxidative stress, and cognitive impairment in Aβ1-42-induced in vitro and in vivo models of AD. SH-SY5Y cells differentiated into neurons by retinoic acid were pretreated with carvacrol or galantamine before Aβ1-42 administration. For in vivo experiments, a rat model of AD was established by bilateral intrahippocampal injection of Aβ1-42. The groups received 1% DMSO, carvacrol, or galantamine intraperitoneally twice a day (morning and afternoon) for 6 days. Cell viability was determined using MTT and LDH tests. Learning and memory functions were assessed using a passive-avoidance test. Oxidant-antioxidant parameters (MDA, H2 O2 , SOD, and CAT) and Tau, Aβ1-40, and Aβ1-42 peptide levels in in vitro supernatant or in vivo serum and hippocampal samples were measured using ELISA. Carvacrol increased cell viability and exhibited a protective effect against oxidative stress by preventing Aβ1-42-induced cytotoxicity, LDH release, and increments in MDA and H2 O2 levels in vitro. Additionally, it improved memory impairment by reversing Aβ1-42-induced changes on passive-avoidance test. Carvacrol ameliorated Aβ1-42-induced increments in MDA and H2 O2 levels in in vitro supernatant and in vivo hippocampal samples. However, none of the treatments changed in vitro SOD and Tau-peptide levels, or in vivo serum levels of MDA, H2 O2 , SOD, CAT, Tau peptide, Aβ1-40, or Aβ1-42. Our results suggest that multi-target pharmacological agent carvacrol may be promising in treatment of AD by preventing beta-amyloid-induced neurotoxicity, oxidative stress, and memory deficits.
Collapse
Affiliation(s)
| | - Erkan Kilinc
- Department of Physiology, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Ayhan Cetinkaya
- Department of Physiology, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Aslıhan Saylan
- Department of Histology and Embryology, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Serif Demir
- Department of Physiology, Duzce University, Duzce, Turkey
| |
Collapse
|
30
|
Dehghan M, Fathinejad F, Farzaei MH, Barzegari E. In silico unraveling of molecular anti-neurodegenerative profile of Citrus medica flavonoids against novel pharmaceutical targets. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02496-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Effects of Dietary Rutin Supplementation on the Intestinal Morphology, Antioxidant Capacity, Immunity, and Microbiota of Aged Laying Hens. Antioxidants (Basel) 2022; 11:antiox11091843. [PMID: 36139918 PMCID: PMC9495371 DOI: 10.3390/antiox11091843] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
This research investigated the effects of dietary rutin supplementation on the intestinal morphology, antioxidant capacity, immunity, and microbiota of aged laying hens. The results showed that 500 mg/kg rutin supplementation increased the villus height of jejunum (P < 0.05). Rutin affected the immune system of the ileum and the jejunum. In the jejunum, a diet with 500 mg/kg rutin supplementation enhanced secretory immunoglobulin A (sIgA) and reduced tumor necrosis factor-α (TNF-α) levels (P < 0.05). A diet with 1000 mg/kg rutin supplementation increased jejunal sIgA, immunologlobulin M (IgM), and interleukin-4 (IL-4) levels while decreasing interleukin-1β (IL-1β), TNF-α, and interferon-γ (IFN-γ) levels (P < 0.05). Meanwhile, a diet with 500 mg/kg rutin increased sIgA, immunologlobulin G (IgG), IgM, and interleukin-10 (IL-10) levels and reduced TNF-α and IFN-γ levels in the ileum (P < 0.05). In the ileum, a diet with 1000 mg/kg rutin supplementation raised sIgA, IgG, IgM, IL-4, and IL-10 levels while decreasing IL-1β, TNF-α, and IFN-γ levels (P < 0.05). At the family level, a diet with 500 mg/kg rutin supplementation raised the relative abundance of Monoglobaceae and decreased the relative abundance of Eubacteriaceae (P < 0.05) compared to the control group. In the 1000 mg/kg rutin group, the relative abundance of Lactobacillaceae and Unclassified Coriobacteriale was considerably lower and the relative abundance of Monoglobaceae was higher than the control group (P < 0.05). This study showed that a diet with rutin supplementation can improve the intestinal health of aged laying hens, and the mechanism is related to improving the intestinal morphology and intestinal immune status, and regulating the intestinal microbes.
Collapse
|
32
|
Clarence DD, Paudel KR, Manandhar B, Singh SK, Devkota HP, Panneerselvam J, Gupta V, Chitranshi N, Verma N, Saad S, Gupta G, Hansbro PM, Oliver BG, Madheswaran T, Dua K, Chellappan DK. Unravelling the Therapeutic Potential of Nano-Delivered Functional Foods in Chronic Respiratory Diseases. Nutrients 2022; 14:3828. [PMID: 36145202 PMCID: PMC9503475 DOI: 10.3390/nu14183828] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation of the respiratory tract is one of the most concerning public health issues, as it can lead to chronic respiratory diseases (CRDs), some of which are more detrimental than others. Chronic respiratory diseases include chronic obstructive pulmonary disease (COPD), asthma, lung cancer, and pulmonary fibrosis. The conventional drug therapies for the management and treatment of CRDs only address the symptoms and fail to reverse or recover the chronic-inflammation-mediated structural and functional damage of the respiratory tract. In addition, the low efficacy and adverse effects of these drugs have directed the attention of researchers towards nutraceuticals in search of potential treatment strategies that can not only ameliorate CRD symptoms but also can repair and reverse inflammatory damage. Hence, there is a growing interest toward investigating the medicinal benefits of nutraceuticals, such as rutin, curcumin, zerumbone, and others. Nutraceuticals carry many nutritional and therapeutic properties, including anti-inflammatory, antioxidant, anticancer, antidiabetic, and anti-obesity properties, and usually do not have as many adverse effects, as they are naturally sourced. Recently, the use of nanoparticles has also been increasingly studied for the nano drug delivery of these nutraceuticals. The discrete size of nanoparticles holds great potential for the level of permeability that can be achieved when transporting these nutraceutical compounds. This review is aimed to provide an understanding of the use of nutraceuticals in combination with nanoparticles against CRDs and their mechanisms involved in slowing down or reversing the progression of CRDs by inhibiting pro-inflammatory signaling pathways.
Collapse
Affiliation(s)
- Dvya Delilaa Clarence
- School of Postgraduate Studies, International Medical University (IMU), Kuala Lumpur 57000, Malaysia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Bikash Manandhar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Sachin Kumar Singh
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara 144411, India
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
- Pharmacy Program, Gandaki University, Pokhara 33700, Nepal
| | - Jithendra Panneerselvam
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Nitin Verma
- Chitkara School of Pharmacy, Chitkara University, Atal Nagar 174103, India
| | - Sonia Saad
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur 302017, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Philip Michael Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Brian Gregory Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW 2006, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
33
|
Ospondpant D, Gao X, Dong TT, Tsim KWK. Dracaena cochinchinensis stemwood extracts inhibit amyloid-β fibril formation and promote neuronal cell differentiation. Front Pharmacol 2022; 13:943638. [PMID: 36147317 PMCID: PMC9486383 DOI: 10.3389/fphar.2022.943638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by the deposition of amyloid plaques in the brain. The prevention of amyloid-β (Aβ)-induced neuronal toxicity is considered a major target for drug development for AD treatment. Dracaena cochinchinensis (Lour.) S.C. Chen, a Thai folk medicine named “Chan-Daeng,” is a member of the Asparagaceae family. The stemwood of D. cochinchinensis has been traditionally used for its antipyretic, pain relief, and anti-inflammatory effects. The aim of the present study was to determine the pharmacological activities of ethanol and water extracts of D. cochinchinensis stemwood in blocking the Aβ fibril formation, preventing Aβ-mediated cell toxicity, and promoting neuronal differentiation in cultured PC12 cells. The herbal extracts of D. cochinchinensis stemwood prevented the formation of Aβ fibrils and disassembled the aggregated Aβ in a dose-dependent manner. Additionally, they prevented Aβ fibril-mediated cell death. The synergy of the herbal extract with a low dose of the nerve growth factor showed an increase in the protein expression of neurofilaments, that is, NF68, NF160, and NF200. These findings suggest that the extracts of D. cochinchinensis stemwood may be used for AD treatment by targeting Aβ fibril formation and inducing neuron regeneration.
Collapse
Affiliation(s)
- Dusadee Ospondpant
- Division of Life Science, Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Xiong Gao
- Division of Life Science, Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Tina Tingxia Dong
- Division of Life Science, Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Karl Wah Keung Tsim
- Division of Life Science, Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
- *Correspondence: Karl Wah Keung Tsim,
| |
Collapse
|
34
|
Youssef SSM, Ibrahim NK, El-Sonbaty SM, El-Din Ezz MK. Rutin Suppresses DMBA Carcinogenesis in the Breast Through Modulating IL-6/NF-κB, SRC1/HSP90 and ER-α. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221118213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rutin dietary supplements may offer pharmacological benefits as anticancer and antiinflammatory properties. This study aimed to investigate the inhibitory and protective effect of rutin on signaling pathways of mammary gland carcinogenesis expermintally induced in female rats by 7,12-di-methyl benz (a) anthracene (DMBA). Results showed that rutin administration ameliorated DMBA toxicity and carcinogic effect on kidney and liver revealed by a significant decrease of urea and creatinine levels, and the activity of the liver enzymes alanine aminotransferase (ALT) and alkaline phosphatase (ALP). The antioxidant state indicated by the total antioxidant capacity (TAC) was significantly increased accompanied by a reduction in the inflammatory markers of interleukin-1β (IL-1B), interleukin-6 (IL-6), and tumor necrosis factor (TNF-α) with induction of apoptosis indicated by a significant increase in caspase-3 level. Rutin significantly reduced the levels of the tumor markers carcinoma antigen 15-3 (CA 15-3) and proto-oncogene tyrosine-protein kinase Src1 (Src1). along with downregulation of nuclear factor-kB (NF-κB), heat shock protein 90 (HSP 90), and inducible nitric oxide synthase (iNOS) gene expression. The present study demonstrated the beneficial anticancer activity of rutin as a protective and therapeutic agent. Rutin induces its antitumor activity through elevation of the antioxidant state, inhibition of inflammatory cytokines, downregulation of oncogenes expression, and stimulation of apoptosis.
Collapse
Affiliation(s)
| | - Nashwa K Ibrahim
- National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Egypt
| | - Sawsan M El-Sonbaty
- National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Egypt
| | | |
Collapse
|
35
|
Moreira P, Matos P, Figueirinha A, Salgueiro L, Batista MT, Branco PC, Cruz MT, Pereira CF. Forest Biomass as a Promising Source of Bioactive Essential Oil and Phenolic Compounds for Alzheimer's Disease Therapy. Int J Mol Sci 2022; 23:ijms23158812. [PMID: 35955963 PMCID: PMC9369093 DOI: 10.3390/ijms23158812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder affecting elderly people worldwide. Currently, there are no effective treatments for AD able to prevent disease progression, highlighting the urgency of finding new therapeutic strategies to stop or delay this pathology. Several plants exhibit potential as source of safe and multi-target new therapeutic molecules for AD treatment. Meanwhile, Eucalyptus globulus extracts revealed important pharmacological activities, namely antioxidant and anti-inflammatory properties, which can contribute to the reported neuroprotective effects. This review summarizes the chemical composition of essential oil (EO) and phenolic extracts obtained from Eucalyptus globulus leaves, disclosing major compounds and their effects on AD-relevant pathological features, including deposition of amyloid-β (Aβ) in senile plaques and hyperphosphorylated tau in neurofibrillary tangles (NFTs), abnormalities in GABAergic, cholinergic and glutamatergic neurotransmission, inflammation, and oxidative stress. In general, 1,8-cineole is the major compound identified in EO, and ellagic acid, quercetin, and rutin were described as main compounds in phenolic extracts from Eucalyptus globulus leaves. EO and phenolic extracts, and especially their major compounds, were found to prevent several pathological cellular processes and to improve cognitive function in AD animal models. Therefore, Eucalyptus globulus leaves are a relevant source of biological active and safe molecules that could be used as raw material for nutraceuticals and plant-based medicinal products useful for AD prevention and treatment.
Collapse
Affiliation(s)
- Patrícia Moreira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia Matos
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Teresa Batista
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | | | - Maria Teresa Cruz
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Cláudia Fragão Pereira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
36
|
Barragán-Zarate GS, Lagunez-Rivera L, Solano R, Carranza-Álvarez C, Hernández-Benavides DM, Vilarem G. Validation of the traditional medicinal use of a Mexican endemic orchid ( Prosthechea karwinskii) through UPLC-ESI-qTOF-MS/MS characterization of its bioactive compounds. Heliyon 2022; 8:e09867. [PMID: 35847621 PMCID: PMC9284392 DOI: 10.1016/j.heliyon.2022.e09867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/24/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Ethnopharmacological relevance The orchid Prosthechea karwinskii is a medicinal orchid in Oaxaca, Mexico, used to treat diabetes, cough, wounds, and burns, prevent miscarriage and assist in labor. Each part of the plant (leaves, pseudobulbs, or flowers) is used by healers for certain treatment conditions, indicating that each part has different biocompounds with specific pharmacological activity. Aim of the study To characterize the biocompounds in extracts from leaves, pseudobulbs, and flowers of P. karwinskii and evaluate their ROS inhibition capacity to associate it with medicinal uses. Materials and methods The compounds present in extracts from leaves, pseudobulbs, and flowers of P. karwinskii were identified by UPLC-ESI-qTOF-MS/MS. The chemical differentiation of each extract was tested by principal component analysis (PCA) using compound intensity values. For each extract, total phenol and flavonoid contents were quantified. Their antioxidant capacity was evaluated ex vivo by inhibition of ROS with DCFH-DA and in vitro with DPPH radical. Results Based on the PCA, it was observed that some compounds were completely separated from others according to the correlation that they presented. The compounds common to all three plant parts were quinic, malic, succinic, azelaic, and pinellic acids. Among the compounds identified, two were exclusive to leaves, four to pseudobulbs, and ten to flowers. Some of the identified compounds have well-known antioxidant activity. The leaves had the highest content of total phenols and flavonoids, and the highest in vitro and ex vivo antioxidant capacity. A strong correlation was observed between phenol and flavonoid contents, and antioxidant capacity ex vivo and in vitro. Conclusions It was found that the bioactive compounds and antioxidant capacity of each part of the plant were associated with its traditional medicinal use. A pharmacological potential was also found in P. karwinskii for further biological studies because of the type of compounds it contained. Compounds common and specific to each plant part were identified by UPLC-ESI-qTOF-MS/MS. The biological activities reported for the identified compounds validate the traditional medicinal use of P. karwinskii. Embelin (inflammation) is exclusive to leaves, phloridzin (diabetes) to pseudobulbs, and abscisic acid (in labor) to flowers. In the literature, the antioxidant compounds are rutin, kaempferol-3-O-rutinoside, embelin, guanosine, and azelaic acid. Pearson's correlation coefficients indicate that a higher content of phenols and flavonoids has a higher antioxidant capacity.
Collapse
Affiliation(s)
- Gabriela Soledad Barragán-Zarate
- Laboratorio de Extracción y Análisis de Productos Naturales Vegetales. Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Hornos 1003, 71230, Oaxaca, Mexico
| | - Luicita Lagunez-Rivera
- Laboratorio de Extracción y Análisis de Productos Naturales Vegetales. Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Hornos 1003, 71230, Oaxaca, Mexico
| | - Rodolfo Solano
- Laboratorio de Extracción y Análisis de Productos Naturales Vegetales. Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Hornos 1003, 71230, Oaxaca, Mexico
| | - Candy Carranza-Álvarez
- Unidad Académica Multidisciplinaria de la Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Frac. Rafael Curiel, 79060, Ciudad Valles, San Luis Potosí, México
| | - Diego Manuel Hernández-Benavides
- Unidad Académica Multidisciplinaria de la Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Frac. Rafael Curiel, 79060, Ciudad Valles, San Luis Potosí, México
| | - Gerard Vilarem
- Laboratoire de Chimie Agro-Industrielle, ENSIACET, 4 Allée Emile Monso, BP 44362, 31030, Toulouse, France
| |
Collapse
|
37
|
Ali WA, Moselhy WA, Ibrahim MA, Amin MM, Kamel S, Eldomany EB. Protective effect of rutin and β-cyclodextrin against hepatotoxicity and nephrotoxicity induced by lambda-cyhalothrin in Wistar rats: biochemical, pathological indices and molecular analysis. Biomarkers 2022; 27:625-636. [PMID: 35658761 DOI: 10.1080/1354750x.2022.2087003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND This study aimed to assess hepatotoxicity and nephrotoxicity of Lambda-cyhalothrin (LCT) and the protective effect of rutin alone and in combination with β-cyclodextrin (β-CD). MATERIALS AND METHODS Male Wistar rats were divided into five groups: Group 1: was used as a control and received a standard diet and water. Group 2, 3, 4 and 5 were orally administered with LCT (7.6 mg/kg body weight), rutin (200 mg/kg body weight) LCT and rutin (at the same doses as in Group 2 and Group 3), and LCT and a mixture of rutin with β-CD (400 mg/kg body weight), respectively. All experimental animals were orally gavaged 5 days/week for 60 days. RESULTS Our data revealed that LCT-induced liver and kidney injuries were related to the up-regulated expression of TNF-α and down-regulated expression of NRF-2 genes mRNA, whereas these effects were reversed with rutin treatment. LCT-induced oxidative stress altered the histological picture, and the hematological and biochemical parameters. CONCLUSION Treatment with a rutin-β-CD complex had preventive potential against LCT via suppression of oxidative stress and augmentation of the antioxidant defense system.
Collapse
Affiliation(s)
- Walaa A Ali
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Walaa A Moselhy
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt.,Toxicology and Forensic Medicine Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular biology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Maha M Amin
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Shaimaa Kamel
- Department of Biochemistry and Molecular biology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Ehab B Eldomany
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
38
|
Verma S, Dutta A, Dahiya A, Kalra N. Quercetin-3-Rutinoside alleviates radiation-induced lung inflammation and fibrosis via regulation of NF-κB/TGF-β1 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154004. [PMID: 35219007 DOI: 10.1016/j.phymed.2022.154004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/31/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Radiation exposure to lungs during nuclear catastrophes or radiotherapy poses long-term side effects and can induce pulmonary injury sufficient for causing death. The strategies for preventing or reversing radiation-induced lung injuries have not been yet developed. Quercetin-3-Rutinoside (Q-3-R), a polyphenolic bioflavonoid, has shown multifaceted pharmacological applications due to its high antioxidant and anti-inflammatory properties. PURPOSE In the current study, the potential of Q-3-R against radiation-induced lung pneumonitis/fibrosis and the possible underlying mechanism was investigated. STUDY DESIGN To evaluate the effect of Q-3-R against lung damage, C57Bl/6 mice were administered with Q-3-R (10 mg/kg b.wt.) and irradiated with a single dose of gamma radiation (12 Gy) at thoracic region. METHODS 16 weeks after irradiation lung damage was seen by histopathological studies and staining for collagen deposition. Expression of Nuclear factor kappa-B (NF-κB), transforming growth factor-β1 (TGF-β1), Smad3, intercellular adhesion molecule 1 (ICAM-1), α-smooth muscle actin protein (α-SMA), Aquaporin 5 (AQP 5), Interleukins (IL-6, IL-18, IL-1β), tumor necrosis factor-α (TNF-α) and caspase-3 was evaluated by immunohistochemistry/western blot/Elisa. Reactive oxygen species (ROS)/ Nitric oxide (NO) scavenging potential of Q-3-R and inhibition of cell death in irradiated lungs were also assessed. RESULTS Mice showed signs of pneumonitis and fibrotic changes in lungs following radiation treatment. A dramatic increase in inflammatory cells and cytokines contributing to lung disease pathogenesis was observed. Furthermore, expression of NF-κB, TGF-β1, Smad3, ICAM-1, AQP5and α-SMA was found markedly up-regulated. However, pretreatment of Q-3-R significantly attenuated radiation-induced pneumonitis and fibrosis. Histological examination revealed less structural and fibrotic changes with down-regulation of AQP 5, ICAM-1, α-SMA and caspase-3 in Q-3-R pretreated irradiated groups. The formulation significantly relieved lung injury by suppressing inflammatory and pro-fibrotic cytokines such as IL-6, IL-18, IL-1β, TNF-α and TGF-β1 via inhibition of NF-κB. Q-3-R also curtailed radiation-induced ROS/NO generation and minimized DNA damage in the irradiated lungs. CONCLUSION The findings from the current study clearly demonstrate that Q-3-R provides radioprotection to the lungs by regulating NF-κB/TGF-β1 signaling, scavenging free radicals, preventing perivascular infiltration and prolonged inflammatory cascade which could otherwise lead to chronic radiation fibrosis. Q-3-R can be proved as a potential therapeutic agent for alleviating radiation-induced lung injury in case of planned or unplanned radiation exposure scenario.
Collapse
Affiliation(s)
- Savita Verma
- Division of Molecular and Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Brig. S.K. Mazumdar Marg, Delhi 110054, India.
| | - Ajaswrata Dutta
- Division of cBRN, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Brig. S.K. Mazumdar Marg, Delhi 110054, India
| | - Akshu Dahiya
- Division of cBRN, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Brig. S.K. Mazumdar Marg, Delhi 110054, India
| | - Namita Kalra
- Division of Molecular and Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Brig. S.K. Mazumdar Marg, Delhi 110054, India
| |
Collapse
|
39
|
Brito LD, Araujo CDS, Cavalcante DGSM, Gomes AS, Zocoler MA, Yoshihara E, Job AE, Kerche LE. In vivo assessment of antioxidant, antigenotoxic, and antimutagenic effects of bark ethanolic extract from Spondias purpurea L. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:336-352. [PMID: 34903147 DOI: 10.1080/15287394.2021.2013373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Medicinal plants have always been used for therapeutic purposes; however, some plants may contain toxic and mutagenic substances. The aim of this study was to assess the cytotoxic, genotoxic, mutagenic, antioxidant, antigenotoxic, and antimutagenic effects of the bark ethanolic extract of Spondias purpurea L. using male and female Swiss albino mice. To determine the protective effects of the extract, benzo[a]pyrene (B[a]P) and cyclophosphamide (CP) were selected as cell damage inducers. The extract was examined at doses of 500, 1000, or 1500 mg/kg body weight (BW)via gavage alone or concomitant with B[a]P or CP. Oxidative stress was measured by quantification of blood catalase activity (CAT), reduced glutathione (GSH) levels in total blood, liver, and kidney, and concentrations of malondiadehyde (MDA) in liver and kidney. Genotoxicity and antigenotoxicity were evaluated by the comet assay using peripheral blood. Cytotoxicity, mutagenicity, and antimutagenicity were determined utilizing the micronucleus test in bone marrow and peripheral blood. The S. purpurea L extract increased CAT activity and GSH levels accompanied by a decrease in MDA levels after treatment with B[a]P and CP. No genotoxic, cytotoxic, or mutagenic effects were found in mice exposed only to the extract. These results indicate that the extract of S. purpurea exhibited protective effects against oxidative and DNA damage induced by B[a]P and CP.
Collapse
Affiliation(s)
- Lorrane Davi Brito
- Faculdade de Artes, Ciências, Letras E Educação, Universidade Do Oeste Paulista, Presidente Prudente, Brazil
| | - Caroline de Souza Araujo
- Faculdade de Artes, Ciências, Letras E Educação, Universidade Do Oeste Paulista, Presidente Prudente, Brazil
| | | | - Andressa Silva Gomes
- Departamento de Física, Química E Biologia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Presidente Prudente, Brazil
| | | | - Eidi Yoshihara
- Department of Animal Health, Agência Paulista de Tecnologia Dos Agronegócios (Apta), Presidente Prudente, Brazil
| | - Aldo Eloizo Job
- Departamento de Física, Química E Biologia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Presidente Prudente, Brazil
| | - Leandra Ernst Kerche
- Faculdade de Medicina, Universidade Do Oeste Paulista, Presidente Prudente, Brazil
| |
Collapse
|
40
|
Kaur R, Sood A, Lang DK, Bhatia S, Al-Harrasi A, Aleya L, Behl T. Potential of flavonoids as anti-Alzheimer's agents: bench to bedside. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26063-26077. [PMID: 35067880 DOI: 10.1007/s11356-021-18165-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Developing therapies for neurodegenerative diseases are challenging because of the presence of blood-brain barrier and Alzheimer being one of the commonest and uprising neurodegenerative disorders possess the need for developing novel therapies. Alzheimer's is attributed to be the sixth leading cause of death in the USA and the number of cases is estimated to be increased from 58 million in 2021 to 88 million by 2050. Natural drugs have benefits of being cost-effective, widely available, fewer side effects, and immuno-booster can be useful in managing Alzheimer. Flavonoids can slow the neuronal degeneration as they have shown activity in central nervous system and are able to cross the blood-brain barrier. These can be easily extracted from fruits, vegetable, and plants. In Alzheimer disease, flavonoids scavenges the reactive oxygen species and reduces the production of amyloid beta protein. Agents from sub-classes of flavonoids such as flavanones, flavanols, flavones, flavonols, anthocyanins, and isoflavones having pharmacological action in treating Alzheimer disease are discussed in this review.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
| | - Ankita Sood
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
| | | | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India.
| |
Collapse
|
41
|
Ouyang Q, Liu K, Zhu Q, Deng H, Le Y, Ouyang W, Yan X, Zhou W, Tong J. Brain-Penetration and Neuron-Targeting DNA Nanoflowers Co-Delivering miR-124 and Rutin for Synergistic Therapy of Alzheimer's Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107534. [PMID: 35182016 DOI: 10.1002/smll.202107534] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Alzheimer disease (AD) is the leading cause of dementia that affects millions of old people. Despite significant advances in the understanding of AD pathobiology, no disease modifying treatment is available. MicroRNA-124 (miR-124) is the most abundant miRNA in the normal brain with great potency to ameliorate AD-like pathology, while it is deficient in AD brain. Herein, the authors develop a DNA nanoflowers (DFs)-based delivery system to realize exogenous supplementation of miR-124 for AD therapy. The DFs with well-controlled size and morphology are prepared, and a miR-124 chimera is attached via hybridization. The DFs are further modified with RVG29 peptide to simultaneously realize brain-blood barrier (BBB) penetration and neuron targeting. Meanwhile, Rutin, a small molecular ancillary drug, is co-loaded into the DFs structure via its intercalation into the double stranded DNA region. Interestingly, Rutin could synergize miR-124 to suppress the expression of both BACE1 and APP, thus achieving a robust inhibition of amyloid β generation. The nanosystem could pro-long miR-124 circulation in vivo, promote its BBB penetration and neuron targeting, resulting in a significant increase of miR-124 in the hippocampus of APP/PS1 mice and robust therapeutic efficacy in vivo. Such a bio-derived therapeutic system shows promise as a biocompatible nanomedicine for AD therapy.
Collapse
Affiliation(s)
- Qin Ouyang
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Kai Liu
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
- Postdoctoral Research Station of Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Huiyin Deng
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yuan Le
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Wen Ouyang
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, 410013, China
| | - Wenhu Zhou
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Jianbin Tong
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| |
Collapse
|
42
|
Haghighijoo Z, Zamani L, Moosavi F, Emami S. Therapeutic potential of quinazoline derivatives for Alzheimer's disease: A comprehensive review. Eur J Med Chem 2022; 227:113949. [PMID: 34742016 DOI: 10.1016/j.ejmech.2021.113949] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/02/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022]
Abstract
Quinazolines are considered as a promising class of bioactive heterocyclic compounds with broad properties. Particularly, the quinazoline scaffold has an impressive role in the design and synthesis of new CNS-active drugs. The drug-like properties and pharmacological characteristics of quinazoline could lead to different drugs with various targets. Among CNS disorders, Alzheimer's disease (AD) is a progressive neurodegenerative disorder with memory loss, cognitive decline and language dysfunction. AD is a complex and multifactorial disease therefore, the need for finding multi-target drugs against this devastative disease is urgent. A literature survey revealed that quinazoline derivatives have diverse therapeutic potential for AD as modulators/inhibitors of β-amyloid, tau protein, cholinesterases, monoamine oxidases, and phosphodiesterases as well as other protective effects. Thus, we describe here the most relevant and recent studies about anti-AD agents with quinazoline structure which can further aid the development and discovery of new anti-AD agents.
Collapse
Affiliation(s)
- Zahra Haghighijoo
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Leila Zamani
- Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
43
|
Barragán-Zarate GS, Alexander-Aguilera A, Lagunez-Rivera L, Solano R, Soto-Rodríguez I. Bioactive compounds from Prosthechea karwinskii decrease obesity, insulin resistance, pro-inflammatory status, and cardiovascular risk in Wistar rats with metabolic syndrome. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114376. [PMID: 34181956 DOI: 10.1016/j.jep.2021.114376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The orchid Prosthechea karwinskii is a species endemic to Mexico, which is used in traditional medicine to lower glucose levels in patients with diabetes, and to treat inflammation-related problems. Recent studies have shown that this orchids can reduce glucose, cholesterol, and triglyceride levels in Wistar rats, which were previously induced to have metabolic syndrome (MS). AIM OF THE STUDY To evaluate the effect of P. karwinskii leaves extract on the components of metabolic syndrome: obesity, insulin resistance, pro-inflammatory status, and cardiovascular risk in a Wistar rat model, and to identify the bioactive compounds in the extract. MATERIALS AND METHODS UPLC-ESI-qTOF-MS/MS was used to identify the compounds present in the extract. MS was induced in Wistar rats through administration of a 40% sucrose diet for 20 weeks. The rats were divided into five groups that received different treatments for 4 weeks: one group without any treatment, one group receiving metformin (200 mg/kg p.o.), and three groups receiving different doses of P. karwinskii leaves extract (100, 200, and 300 mg/kg p.o.). The animals' body weights were recorded weekly, and at the end of the experiment, they were sacrificed after fasting for 18 h to determine the levels of glucose, insulin, insulin resistance index, total cholesterol, triglycerides, and adiponectin in the serum, as well as levels of TNF-α and HS-CRP in the serum and liver homogenates. The abdominal and pericardial fat weights were also recorded. RESULTS The main bioactive compounds of the extract were quinic acid, neochlorogenic acid, chlorogenic acid, rutin, kaempferol-3-o-β-rutinoside, and embelin, known to exhibit MS-related bioactivity. Oral administration of P. karwinskii leaves extract at a dose of 300 mg/kg decreased weight gain, abdominal and pericardial fat deposits, and insulin resistance. At the end of the treatment, levels of triglycerides, TNF-α, HS-CRP, and adiponectin returned to levels similar to normal. CONCLUSION P. karwinskii extract (300 mg/kg) had an anti-obesity effect, decreased insulin resistance, pro-inflammatory status, and cardiovascular risk in rats with induced MS by increasing adiponectin levels and decreasing TNF-α and HS-CRP levels. The compounds identified in the extract could be responsible for these effects, acting alone or in synergy, as several compounds in the extract are known to have MS-related bioactivity. The foliar extract of P. karwinskii has potential as an effective alternative to a cocktail of drugs used to treat problems associated with MS.
Collapse
Affiliation(s)
- Gabriela Soledad Barragán-Zarate
- Laboratorio de Extracción y Análisis de Productos Naturales Vegetales. Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Hornos 1003, Santa Cruz Xoxocotlán, C.P. 71230, Oaxaca, Mexico.
| | - Alfonso Alexander-Aguilera
- Facultad de Bioanálisis, Universidad Veracruzana, Carmen Serdán s/n, Col. Flores Magón, C.P. 91700, Veracruz, Veracruz, Mexico; Escuela de Medicina, Universidad Cristóbal Colón, carretera Veracruz-Medellin s/n, Col. Puente Moreno, C.P, 94271, Boca del Río, Veracruz, Mexico.
| | - Luicita Lagunez-Rivera
- Laboratorio de Extracción y Análisis de Productos Naturales Vegetales. Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Hornos 1003, Santa Cruz Xoxocotlán, C.P. 71230, Oaxaca, Mexico.
| | - Rodolfo Solano
- Laboratorio de Extracción y Análisis de Productos Naturales Vegetales. Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Hornos 1003, Santa Cruz Xoxocotlán, C.P. 71230, Oaxaca, Mexico.
| | - Ida Soto-Rodríguez
- Facultad de Bioanálisis, Universidad Veracruzana, Carmen Serdán s/n, Col. Flores Magón, C.P. 91700, Veracruz, Veracruz, Mexico.
| |
Collapse
|
44
|
Yu G, Wang Y, Zhao J. Inhibitory effect of mitoquinone against the α-synuclein fibrillation and relevant neurotoxicity: possible role in inhibition of Parkinson's disease. Biol Chem 2021; 403:253-263. [PMID: 34653323 DOI: 10.1515/hsz-2021-0312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023]
Abstract
Extensive studies have reported that interaction of α-synuclein amyloid species with neurons is a crucial mechanistic characteristic of Parkinson's disease (PD) and small molecules can downregulate the neurotoxic effects induced by protein aggregation. However, the exact mechanism(s) of these neuroprotective effects by small molecules remain widely unknown. In the present study, α-synuclein samples in the amyloidogenic condition were aged for 120 h with or without different concentrations of mitoquinone (MitoQ) as a quinone derivative compound and the amyloid characteristics and the relevant neurotoxicity were evaluated by Thioflavin T (ThT)/Nile red fluorescence, Congo red absorption, circular dichroism (CD), transmission electron microscopy (TEM), cell viability, lactate dehydrogenase (LDH), reactive oxygen species (ROS), reactive nitrogen species (RNS), malondialdehyde (MDA), superoxide dismutase (SOD), and caspase-9/-3 activity assays. Results clearly showed the capacity of MitoQ on the inhibition of the formation of α-synuclein fibrillation products through modulation of the aggregation pathway by an effect on the kinetic parameters. Also, it was shown that α-synuclein samples aged for 120 h with MitoQ trigger less neurotoxic effects against SH-SY5Y cells than α-synuclein amyloid alone. Indeed, co-incubation of α-synuclein with MitoQ reduced the membrane leakage, oxidative and nitro-oxidative stress, modifications of macromolecules, and apoptosis.
Collapse
Affiliation(s)
- Gege Yu
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471009, China
| | - Yonghui Wang
- Department of Neurosurgery, Qingzhou Hospital Affiliated to Shandong First Medical University, Weifang, Shandong, 262500, China.,Department of Neurosurgery, Qingzhou People's Hospital, Weifang, 262500, China
| | - Jinhua Zhao
- Department of Neurology, The First People's Hospital of Xianyang, Xianyang, 712000, China
| |
Collapse
|
45
|
Xu H, Zhou Q, Liu B, Cheng KW, Chen F, Wang M. Neuroprotective Potential of Mung Bean ( Vigna radiata L.) Polyphenols in Alzheimer's Disease: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11554-11571. [PMID: 34551518 DOI: 10.1021/acs.jafc.1c04049] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mung bean contains various neuroprotective polyphenols, so it might be a healthy food for Alzheimer's disease (AD) prevention. Totally, 19 major phenolic compounds were quantified in mung bean, including 10 phenolic acids and 9 flavonoids. After summarizing their contents and effective doses in rodent AD models, it was speculated that vitexin, isovitexin, sinapic acid, and ferulic acid might be the major bioactive compounds for mung bean-mediated neuroprotection. The mechanisms involved inhibition of β-amyloidogenesis, tau hyperphosphorylation, oxidative stress, and neuroinflammation, and promotion of autophagy and acetylcholinesterase enzyme activity. Notably, the neuroprotective phenolic profile in mung bean changed after germination, with decreased vitexin and isovitexin, and increased rutin, isoquercitrin, isorhamnetin, and caffeic acid detected. However, only studies of individual phenolic compounds in mung bean are published at present. Hence, further studies are needed to elucidate the neuroprotective activities and mechanisms of extractions of mung bean seeds and sprouts, and the synergism between different phenolic compounds.
Collapse
Affiliation(s)
- Hui Xu
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Qian Zhou
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
46
|
Sakaki M, Harai K, Takahashi R, Amitani M, Amitani H, Takimoto Y, Inui A. Medicine and food with particular reference to chinpi, dried citrus peel, and a component of Ninjin'yoeito. Neuropeptides 2021; 89:102166. [PMID: 34174540 DOI: 10.1016/j.npep.2021.102166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022]
Abstract
Kampo medicines contain many kinds of herbal drugs. Chinpi and Kippi, dried citrus peels, are components of a substantial number of Kampo medicine. They contain abundant flavonoids and studies on hesperidin, narirutin, and nobiletin as active ingredient have been conducted. Conversely, in Kagoshima prefecture, located in the southwestern part of the Japanese Islands, various citrus products are cultivated. Among them, Tankan and Daimasaki are specialies. In this study, we conducted high- performance liquid chromatography to determine the difference in flavonoid contents among Tankan, Daimasaki, Tankan related product, Chinpi, and Kippi. As a result, several active components, such as hesperidin, narirutin, nobiletin, and tangeretin, in common with crude drug, Chinpi, were detected in local citrus fruits. In addition, some active components little or not found in Chinpi, for example hesperetin and rutin, were detected in the local products. A detailed analysis of active components considering their genetic origin, the time of fruit collection, and different parts of the fruit used (peel, albedo, edible parts, and the whole) will need to be discussed to get the most out of the citrus fruits or make best use of them for health and longevity.
Collapse
Affiliation(s)
- Mika Sakaki
- Pharmacological Department of Herbal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan; Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| | - Kenji Harai
- Kampo Research Labs, Kracie Pharma, Ltd., Tokyo, Japan
| | | | - Marie Amitani
- Department of Community-Based Medicine, Education Center for Doctors in Remote Islands and Rural Areas, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Haruka Amitani
- Pharmacological Department of Herbal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan; Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoshiyuki Takimoto
- Department of Psychosomatic Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akio Inui
- Pharmacological Department of Herbal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
47
|
Wang Q, Dong X, Zhang R, Zhao C. Flavonoids with Potential Anti-Amyloidogenic Effects as Therapeutic Drugs for Treating Alzheimer's Disease. J Alzheimers Dis 2021; 84:505-533. [PMID: 34569961 DOI: 10.3233/jad-210735] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a central neurodegenerative disease generally among the elderly; it accounts for approximately 50-75%of total cases of dementia patients and poses a serious threat to physical and mental health. Currently available treatments for AD mainly relieves its symptoms, and effective therapy is urgently needed. Deposition of amyloid-β protein in the brain is an early and invariant neuropathological feature of AD. Currently the main efforts in developing anti-AD drugs focus on anti-amyloidogenic therapeutics that prevent amyloid-β production or aggregation and decrease the occurrence of neurotoxic events. The results of an increasing number of studies suggest that natural extracts and phytochemicals have a positive impact on brain aging. Flavonoids belong to the broad group of polyphenols and recent data indicate a favorable effect of flavonoids on brain aging. In this review, we collect relevant discoveries from 1999 to 2021, discuss 75 flavonoids that effectively influence AD pathogenesis, and summarize their functional mechanisms in detail. The data we have reviewed show that, these flavonoids belong to various subclasses, including flavone, flavanone, biflavone, etc. Our results provide a reference for further study of the effects of flavonoids on AD and the progress of anti-AD therapy.
Collapse
Affiliation(s)
- Qixin Wang
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Science, Beijing Normal University, Beijing, China
| | - Xiaofang Dong
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Science, Beijing Normal University, Beijing, China
| | - Ran Zhang
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Science, Beijing Normal University, Beijing, China
| | - Changqi Zhao
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Science, Beijing Normal University, Beijing, China
| |
Collapse
|
48
|
Halder S, Anand U, Nandy S, Oleksak P, Qusti S, Alshammari EM, El-Saber Batiha G, Koshy EP, Dey A. Herbal drugs and natural bioactive products as potential therapeutics: A review on pro-cognitives and brain boosters perspectives. Saudi Pharm J 2021; 29:879-907. [PMID: 34408548 PMCID: PMC8363108 DOI: 10.1016/j.jsps.2021.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 07/04/2021] [Indexed: 12/25/2022] Open
Abstract
Memory, one of the most vital aspects of the human brain, is necessary for the effective survival of an individual. 'Memory' can be defined in various ways but in an overall view, memory is the retention of the information that the brain grasps. Different factors are responsible for the disbalance in the brain's hippocampus region and the acetylcholine level, which masters the memory and cognitive functions. Plants are a source of pharmacologically potent drug molecules of high efficacy. Recently herbal medicine has evolved rapidly, gaining great acceptance worldwide due to their natural origin and fewer side effects. In this review, the authors have discussed the mechanisms and pharmacological action of herbal bioactive compounds to boost memory. Moreover, this review presents an update of different herbs and natural products that could act as memory enhancers and how they can be potentially utilized in the near future for the treatment of severe brain disorders. In addition, the authors also discuss the differences in biological activity of the same herb and emphasize the requirement for a higher standardization in cultivation methods and plant processing. The demand for further studies evaluating the interactions of herbal drugs is mentioned.
Collapse
Affiliation(s)
- Swati Halder
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Uttpal Anand
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Samapika Nandy
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Safaa Qusti
- Biochemistry Department, Faculty of Science, king Abdulaziz University, Jeddah, Saudi Arabia
| | - Eida M. Alshammari
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Eapen P. Koshy
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| |
Collapse
|
49
|
Pérez-Arancibia R, Ordoñez JL, Rivas A, Pihán P, Sagredo A, Ahumada U, Barriga A, Seguel I, Cárdenas C, Vidal RL, Hetz C, Delporte C. A phenolic-rich extract from Ugni molinae berries reduces abnormal protein aggregation in a cellular model of Huntington's disease. PLoS One 2021; 16:e0254834. [PMID: 34324551 PMCID: PMC8320977 DOI: 10.1371/journal.pone.0254834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/02/2021] [Indexed: 12/21/2022] Open
Abstract
Accumulation of misfolded proteins in the brain is a common hallmark of most age-related neurodegenerative diseases. Previous studies from our group identified the presence of anti-inflammatory and antioxidant compounds in leaves derived from the Chilean berry Ugni molinae (murtilla), in addition to show a potent anti-aggregation activity in models of Alzheimer´s disease. However, possible beneficial effects of berry extracts of murtilla was not investigated. Here we evaluated the efficacy of fruit extracts from different genotypes of Chilean-native U. molinae on reducing protein aggregation using cellular models of Huntington´s disease and assess the correlation with their chemical composition. Berry extraction was performed by exhaustive maceration with increasing-polarity solvents. An unbiased automatic microscopy platform was used for cytotoxicity and protein aggregation studies in HEK293 cells using polyglutamine-EGFP fusion proteins, followed by secondary validation using biochemical assays. Phenolic-rich extracts from murtilla berries of the 19-1 genotype (ETE 19-1) significantly reduced polyglutamine peptide aggregation levels, correlating with the modulation in the expression levels of autophagy-related proteins. Using LC-MS and molecular network analysis we correlated the presence of flavonoids, phenolic acids, and ellagitannins with the protective effects of ETE 19-1 effects on protein aggregation. Overall, our results indicate the presence of bioactive components in ethanolic extracts from U. molinae berries that reduce the load of protein aggregates in living cells.
Collapse
Affiliation(s)
- Rodrigo Pérez-Arancibia
- Laboratorio de Productos Naturales, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Instituto de Neurociencia Biomédica (BNI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Centro FONDAP de Gerociencia, Salud Mental y Metabolismo (GERO), Santiago, Chile
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Jose Luis Ordoñez
- Laboratorio de Productos Naturales, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Laboratorio de Química Inorgánica y Analítica, Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Alexis Rivas
- Instituto de Neurociencia Biomédica (BNI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Centro FONDAP de Gerociencia, Salud Mental y Metabolismo (GERO), Santiago, Chile
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Philippe Pihán
- Instituto de Neurociencia Biomédica (BNI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Centro FONDAP de Gerociencia, Salud Mental y Metabolismo (GERO), Santiago, Chile
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Alfredo Sagredo
- Instituto de Neurociencia Biomédica (BNI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Centro FONDAP de Gerociencia, Salud Mental y Metabolismo (GERO), Santiago, Chile
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Ulises Ahumada
- Centro FONDAP de Gerociencia, Salud Mental y Metabolismo (GERO), Santiago, Chile
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Andrés Barriga
- Unidad de Espectrometría de Masas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Ivette Seguel
- Laboratorio de Productos Naturales, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - César Cárdenas
- Centro FONDAP de Gerociencia, Salud Mental y Metabolismo (GERO), Santiago, Chile
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, United States of America
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Rene L. Vidal
- Instituto de Neurociencia Biomédica (BNI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Centro FONDAP de Gerociencia, Salud Mental y Metabolismo (GERO), Santiago, Chile
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Claudio Hetz
- Instituto de Neurociencia Biomédica (BNI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Centro FONDAP de Gerociencia, Salud Mental y Metabolismo (GERO), Santiago, Chile
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Carla Delporte
- Laboratorio de Productos Naturales, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
50
|
Zhi Z, Tang X, Wang Y, Chen R, Ji H. Sinensetin Attenuates Amyloid Beta 25-35-Induced Oxidative Stress, Inflammation, and Apoptosis in SH-SY5Y Cells Through the TLR4/NF-κB Signaling Pathway. Neurochem Res 2021; 46:3012-3024. [PMID: 34309775 DOI: 10.1007/s11064-021-03406-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 12/31/2022]
Abstract
Sinensetin (SIN) is an important active compound that exists widely in citrus plants, and has been reported to exhibit various pharmacological properties, including anti-oxidative, anti-inflammatory, and anti-tumor. This study was designed to examine whether SIN can protect against amyloid beta (Aβ)-induced neurotoxicity and to elucidate the underlying mechanism. Our results showed that pretreatment with SIN for 1 h, followed by co-treatment with Aβ plus SIN for 24 h, attenuated Aβ25-35-induced cell viability reduction, oxidative stress, inflammation, and apoptosis in a dose-dependent manner. Aβ25-35-induced upregulation of Toll-like receptor 4 (TLR4) expression and nuclear translocation of nuclear factor-kappaB (NF-κB) p65 subunit were inhibited by pretreatment with SIN. Furthermore, the protective effect of SIN was abrogated by TLR4 overexpression. Hence, our data suggested that SIN attenuated Aβ25-35-induced neurotoxicity through the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Zhongwen Zhi
- Department of Neurology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, Jiangsu, People's Republic of China
| | - Xiaohong Tang
- Department of Neurology, Hongze Huai'an District People's Hospital, Huai'an, 223100, Jiangsu, People's Republic of China
| | - Yuqian Wang
- Department of Neurology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, Jiangsu, People's Republic of China
| | - Rui Chen
- Department of Neurology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, Jiangsu, People's Republic of China
| | - Hu Ji
- Department of Neurology, Kangda College of Nanjing Medical University Affiliated Lianshui County People's Hospital, 6 Hongri Avenue East, Lianshui County, Huai'an, 223400, Jiangsu, People's Republic of China.
| |
Collapse
|