1
|
Abolarin PO, Amin A, Nafiu AB, Ogundele OM, Owoyele BV. Optimization of Parkinson's disease therapy with plant extracts and nutrition's evolving roles. IBRO Neurosci Rep 2024; 17:1-12. [PMID: 38872839 PMCID: PMC11167367 DOI: 10.1016/j.ibneur.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/01/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by death of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Death of dopaminergic cells in the SNpc leads to manifestations of motor dysfunction and non-motor symptoms of PD. The progression of PD symptoms severely affects the quality of life of patients and poses socio-economic problems to families and society at large. The clinical and neuropathological characteristics of PD are triggered by multiple factors such as oxidative stress, neuroinflammation, mitochondrial dysfunction, and protein aggregation. Notwithstanding the advancements in pharmacological therapy in PD management, there is burgeoning interest in alternative and complementary approaches, essentially nutrition and plant extracts strategies. This review gives widespread analysis of the role of nutrition and plant extracts in the management of PD. Studies that investigated the effects of various dietary compounds and plant extract on PD symptoms and progression were reviewed from existing literatures. Nutraceuticals, including vitamins and phytochemicals such as Mucuna pruriens have shown potential neuroprotective functions in preclinical and clinical studies. Indeed, these strategies ameliorate mitochondrial dysfunction, oxidative stress, and neuroinflammation, all which are implicated in the pathogenesis of PD. The neuroprotective mechanisms of nutrition and plant extracts in PD, with emphasis on their capacity to target multiple pathways implicated in PD are discussed. Additionally, challenges and limitations related with translating preclinical findings into clinical practice including standardization of dosing regimens, bioavailability, and inter-individual variability are discussed. Largely, this review elucidates on the role of nutrition and plant extracts as adjunctive therapy in PD management.
Collapse
Affiliation(s)
- Patrick Oluwole Abolarin
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Abdulbasit Amin
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | | | - Olalekan Michael Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University, School of Veterinary Medicine, Baton Rouge, LA, USA
| | - Bamidele Victor Owoyele
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| |
Collapse
|
2
|
V KK, Thomas SV, C Nair M, Nair PG, L NM, S A, Tripathi A, Mundada P, Yadav B, Rao BCS, D S, N S. Ayurvedic Management of Presbycusis (Project TOPMAC): Protocol for an Exploratory Randomized Controlled Trial. JMIR Res Protoc 2024; 13:e55089. [PMID: 39312772 PMCID: PMC11459101 DOI: 10.2196/55089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/01/2024] [Accepted: 07/15/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Presbycusis is characterized by sensorineural hearing loss in both ears at high frequencies, which affects more than half of the older adults by the age of 75 years and is often accompanied by tinnitus and cognitive deterioration. Unfortunately, there are no treatments available to restore hearing loss. Treatment mainly focuses on improving the quality of life and communication with hearing aids. Traditional medicine like Ayurveda also explains ailments of a similar nature as Badhirya and advises using drugs with antiaging and neuroprotective activity for treatment. In Ayurveda, Badhirya and Karnanada (senile deafness with tinnitus) are due to vitiation of Vata Dosha. Treatments such as topical oil pooling (Karnapurana) are usually advised to counter Vata, improve hearing capacity, and reduce tinnitus. Kshirabala Taila, a medicated oil formulation prepared with Sida cordifolia Linnaeus, is one of the most preferred oils for topical oil pooling in such conditions, as it has a definitive indication for sensory dysfunctions. Drugs like Withania somnifera (L.) Dunal (Ashwagandha) are also used, as they ameliorate neurodegeneration and help to improve cognitive dysfunction. OBJECTIVE We propose an exploratory randomized controlled trial study for evaluating the efficacy of TOPMAC (Topical Oil Pooling with Kshirabala Taila and Supplementation of Ashwagandha Churna) in tinnitus suppression and hearing and cognitive function protection in patients aged 60-75 years with mild to moderate presbycusis. METHODS A parallel, 2-group, exploratory randomized controlled trial will be conducted in an Indian Ayurvedic research center at its outpatient service. Participants (N=60) with mild to moderate presbycusis will be recruited by screening. Participants will be randomized (computer-generated 1:1) to receive either basic treatment and health education (BTHE) or BTHE+TOPMAC for 24 weeks. The primary objective is to compare the efficacy of TOPMAC with that of BTHE in the protection of hearing function. The secondary objective is to compare the efficacy of TOPMAC with that of BTHE in tinnitus suppression and cognitive function protection. RESULTS This project was funded in January 2023. The institutional ethics committees at National Ayurveda Research Institute for Panchakarma (3/1/2020/NARIP/Tech/2036) and Institute for Communicative and Cognitive Neuro Sciences (IEC006) approved this study. The first patient was enrolled in September 2023; 22 participants were enrolled as of August 2024. The data analysis is yet to start, and the results are expected to be published by January 2025. CONCLUSIONS If this exploratory trial is proven effective, it will steer the setting of a definitive randomized controlled trial to test whether the TOPMAC intervention can be incorporated as a cost-effective integrative approach for managing presbycusis. The Indian government has already launched a National Program for Prevention and Control of Deafness to benefit the deaf population. TOPMAC may later be considered for integration with the national program. TRIAL REGISTRATION Clinical Trials Registry India CTRI/2023/04/051485; https://tinyurl.com/2h2hry3n. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/55089.
Collapse
Affiliation(s)
- Krishna Kumar V
- Central Council for Research in Ayurvedic Sciences, New Delhi, India
| | - Sanjeev V Thomas
- Institute for Communicative and Cognitive Neurosciences, Shoranur, India
| | - Murugan C Nair
- Institute for Communicative and Cognitive Neurosciences, Shoranur, India
| | - Parvathy G Nair
- Central Council for Research in Ayurvedic Sciences, New Delhi, India
| | - Nisha M L
- Institute for Communicative and Cognitive Neurosciences, Shoranur, India
| | - Anuradha S
- Institute for Communicative and Cognitive Neurosciences, Shoranur, India
| | - Arunabh Tripathi
- Central Council for Research in Ayurvedic Sciences, New Delhi, India
| | - Pallavi Mundada
- Central Council for Research in Ayurvedic Sciences, New Delhi, India
| | - Babita Yadav
- Central Council for Research in Ayurvedic Sciences, New Delhi, India
| | - B C S Rao
- Central Council for Research in Ayurvedic Sciences, New Delhi, India
| | - Sudhakar D
- Central Council for Research in Ayurvedic Sciences, New Delhi, India
| | - Srikanth N
- Central Council for Research in Ayurvedic Sciences, New Delhi, India
| |
Collapse
|
3
|
Sarkar B, Rana N, Singh C, Singh A. Medicinal herbal remedies in neurodegenerative diseases: an update on antioxidant potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5483-5511. [PMID: 38472370 DOI: 10.1007/s00210-024-03027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
It has been widely documented that medicinal herbal remedies are effective, have fewer side effects than conventional medicine, and have a synergistic effect on health collaborations in the fight against complicated diseases. Traditional treatments for neurological problems in ancient times sometimes involved the use of herbal remedies and conventional methods from East Asian countries including India, Japan, China, and Korea. We collected and reviewed studies on plant-derived neuroprotective drugs and tested them in neurotoxic models. Basic research, preclinical and clinical transgene research can benefit from in silico, in vitro, and in vivo investigations. Research, summaries of the extracts, fractions, and herbal ingredients were compiled from popular scientific databases, which were then examined according to origin and bioactivity. Given the complex and varied causes of neurodegeneration, it may be beneficial to focus on multiple mechanisms of action and a neuroprotection approach. This approach aims to prevent cell death and restore function to damaged neurons, offering promising strategies for preventing and treating neurodegenerative diseases. Neurodegenerative illnesses can potentially be treated with natural compounds that have been identified as neuroprotective agents. To gain deeper insights into the neuropharmacological mechanisms underlying the neuroprotective and therapeutic properties of naturally occurring antioxidant phytochemical compounds in diverse neurodegenerative diseases, this study aims to comprehensively review such compounds, focusing on their modulation of apoptotic markers such as caspase, Bax, Bcl-2, and proinflammatory markers. In addition, we delve into a range of efficacies of antioxidant phytochemical compounds as neuroprotective agents in animal models. They reduce the oxidative stress of the brain and have been shown to have anti-apoptotic effects. Many researches have demonstrated that plant extracts or bioactive compounds can fight neurodegenerative disorders. Herbal medications may offer neurodegenerative disease patients' new treatments. This may be a cheaper and more culturally appropriate alternative to standard drugs for millions of people with age-related NDDs.
Collapse
Affiliation(s)
- Biplob Sarkar
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India
| | - Nitasha Rana
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Chauras Campus, Distt. Tehri Garhwal, Srinagar, 249161, Uttarakhand, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India.
| |
Collapse
|
4
|
Hassani S, Esmaeili A. The neuroprotective effects of ferulic acid in toxin-induced models of Parkinson's disease: A review. Ageing Res Rev 2024; 97:102299. [PMID: 38604452 DOI: 10.1016/j.arr.2024.102299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/04/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Parkinson's disease is predominantly caused by dopaminergic neuron loss in the substantia nigra pars compacta and the accumulation of alpha-synuclein protein. Though the general consensus is that several factors, such as aging, environmental factors, mitochondrial dysfunction, accumulations of neurotoxic alpha-synuclein, malfunctions of the lysosomal and proteasomal protein degradation systems, oxidative stress, and neuroinflammation, are involved in the neurodegeneration process of Parkinson's disease, the precise mechanism by which all of these factors are triggered remains unknown. Typically, neurotoxic compounds such as rotenone, 6-hydroxydopamine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1-methyl 4-phenyl pyridinium (mpp+), paraquat, and maneb are used to Preclinical models of Parkinson's disease Ferulic acid is often referred to by its scientific name, 4-hydroxy-3-methoxycinnamic acid (C10H10O4), and is found naturally in cereals, fruits, vegetables, and bee products. This substance exhibits neuroprotective effects against Parkinson's disease because of its intriguing potential, which includes anti-inflammatory and antioxidant qualities. This review goes into additional detail about Parkinson's disease and the neuroprotective properties of ferulic acid that may help prevent the condition.
Collapse
Affiliation(s)
- Samira Hassani
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Abolghasem Esmaeili
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
5
|
Pasala PK, Dsnbk P, Rudrapal M, Challa RR, Ahmad SF, Vallamkonda B, R RB. Anti-Parkinson potential of hesperetin nanoparticles: in vivo and in silico investigations. Nat Prod Res 2024:1-10. [PMID: 38646872 DOI: 10.1080/14786419.2024.2344740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
Parkinson's disease (PD) is characterised by the gradual demise of dopaminergic neurons. In recent years, there has been significant interest in herbal treatments. In this study, hesperetin nanoparticles (HTN) were developed and compared their anti-PD potential with hesperetin (HT) on rotenone induced PD rats. Molecular docking was also performed to evaluate the binding affinity of hesperetin on pathological protein, i.e. D2 dopamine receptors (DR2), using Auto Dock Vina tools. The results showed a higher binding relationship of HTN on dopamine receptors (-7.2 kcal/mol) compared to L-dopa (-6.4 kcal/mol), supporting their potential as drug candidates for PD therapy. HTN was effectively synthesised using the fabrication technique and characterised by zeta potential and SEM analysis. HTN had favourable characteristics, including a size of 249.8 ± 14.9 nm and a Z-potential of -32.9 mV. After being administered orally, HTN demonstrated a notable anti-Parkinsonian effects, indicated by the significant improvement in motor function as assessed by the rota rod test (p < .001***), pole test (p < .001***), stair test (p < .01**), wood walk test (p < .01**) and an increase in substantia nigra (SN) antioxidant levels, CAT (p < .001***), SOD (p < .001***), GSH (p < .01**). Additionally, HTN led to increased dopamine levels (p < .01**) and a decrease in the oxidant system, MDA levels (p < .01**). Furthermore, histopathological examination revealed decreased SN neuronal necrosis in diseased animals treated with HTN compared to those treated with HT in a rat model of Parkinson's disease. Therefore, HTN can be regarded as a viable platform for efficient therapy of PD.
Collapse
Affiliation(s)
- Praveen Kumar Pasala
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, JNTUA, Anantapur, Andhra Pradesh, India
| | - Prasanth Dsnbk
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Jadcherla, Hyderabad, India
| | - Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur, Andhra Pradesh, India
| | | | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Ram Babu R
- Department of Pharmacology, Santhiram College of Pharmacy, JNTUA, Nandyal, Andhra Pradesh, India
| |
Collapse
|
6
|
Rahate SP, Singh M, Verma AK, Kumar N, Tiwari N, Shanker K. Densitometric method for assessment of six specialized metabolites in four Sida sp. and its congener Abutilon indicum: Targeted metabolomics, greenness assessment, and chemometrics analysis. J Pharm Biomed Anal 2024; 240:115945. [PMID: 38181556 DOI: 10.1016/j.jpba.2023.115945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
Sida is one of the most diverse genera, with about 200 species distributed in tropical and subtropical regions of the world. Among 18 species distributed in India, Sida acuta, Sida cordifolia, Sida rhombifolia, and Sida cordata are used in traditional medicines along with its possible adulterant Abutilon indicum for several therapeutic uses. The non-availability of marker-based validated methods for the identification and classification of these species leads to adulteration. Indoloquinoline and quinazoline are the major bioactive alkaloids distributed in Sida spp. First time, a simple, economical and high throughput method was developed and validated for the simultaneous determination of 20-hydroxyecdysone (1), vasicine (2), vasicinone (3), cryptolepine (4), quindolinone (5), and cryptolepinone (6) using HPTLC-UV densitometry. The method was validated to meet globally accepted ICH guidelines. The method was sensitive with LOD and LOQ ranging from 0.38-0.63 and 1.57-2.12 µg/band. The samples were spiked at 3 different concentrations, the recovery values were 93.49-98.88%. In addition, the greenness index of the HPTLC method was estimated using four different greenness assessment techniques. Targeted HPTLC analysis indicated the distribution of specialized metabolites in Sida spp. and A. indicum. However, the occurrence of cryptolepine in A. indicum was not reported in the literature, so this was further confirmed by liquid chromatographic studies of the samples from different locations. The chromatographic data was statistically evaluated by principal component analysis (PCA) and hierarchical clustering (HCA). HPTLC-based targeted metabolite quantitation explains the adulteration/substitution in Sida raw material and derived herbal preparations.
Collapse
Affiliation(s)
- Shraddha Pravin Rahate
- Analytical Chemistry Laboratory, Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Mausam Singh
- Analytical Chemistry Laboratory, Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | | | - Narendra Kumar
- Botany and Pharmacognosy Laboratory, Plant Breeding and Genetic Resource Conservation Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002 Uttar Pradesh, India
| | - Neerja Tiwari
- Analytical Chemistry Laboratory, Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India.
| | - Karuna Shanker
- Analytical Chemistry Laboratory, Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002 Uttar Pradesh, India.
| |
Collapse
|
7
|
Bashir B, Mittal S, Muthukumar A, Vishwas S, Pandey NK, Gulati M, Gupta G, Dhanasekaran M, Kumar P, Dureja H, Veiga F, Paiva-Santos AC, Adams J, Dua K, Singh SK. Harnessing the neuroprotective effect of oral administration of benfotiamine in MPTP induced Parkinson's disease in rats. Eur J Pharmacol 2024; 962:176234. [PMID: 38043777 DOI: 10.1016/j.ejphar.2023.176234] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The study was performed to evaluate the neuroprotective effects of Benfotiamine (BFT) in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) in rats. The rats were given daily doses of BFT (100 mg/kg, 200 mg/kg) through oral administration for 42 days. The rats were given a single bilateral dosage of MPTP (0.1 mg/nostril) intranasally once before the drug treatment to induce PD. On day 42, the animals were subjected to various behavioral paradigms. Post-treatment with BFT for 42 days significantly improved the motor and nonmotor fluctuations of MPTP. The results demonstrated that treatment with BFT ameliorated MPTP-induced disorders in behavior, body balance, and dopamine levels in the mid-brain. Among the post-treated groups, a high dose of BFT was the most effective treatment. Mean values are indicated in ±SEM, n = 5***(p < 0.001) when compared with the vehicle control, n = 5 ### (p < 0.001) when compared with the disease control; (p < 0.001) when compared with the BFT per se; (p < 0.001) when compared with the low dose of BFT; (p < 0.001) when compared with the high dose of BFT. Our finding suggests that BFT contributed to superior antioxidant, and anti-inflammatory and could be a novel therapeutic method for PD management. In conclusion, BFT could be a potential drug candidate for curbing and preventing PD.
Collapse
Affiliation(s)
- Bushra Bashir
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Swati Mittal
- Al-Ameen College of Pharmacy, Bengaluru, Karnataka, India.
| | - A Muthukumar
- Oxford College of Pharmacy, Bengaluru, Karnataka, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Narendra Kumar Pandey
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University Auburn, AL, 36849, USA
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Punjab, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Jon Adams
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
8
|
Kumar S, Kumar S, Vishnoi VK, Kumar P, Maheshwari DK. Sida cordifolia L.: Ethnobotany, Phytochemistry, Phytonanotechnology, and Commercial Application. Curr Pharm Biotechnol 2024; 25:838-859. [PMID: 37861013 DOI: 10.2174/0113892010262937230919100024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/15/2023] [Accepted: 08/11/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND After a period of prolonged indifference, where synthetic drugs were preferred, interest in the biological aspects and bioactive ingredients of plants accountable for therapeutic potential has been explored eminently. Sida cordifolia L. is a perennial herb that has been widely utilized in Indian (Ayurveda, Unani, and Siddha), American, and Chinese folk medicine and herbalism practice for curing a wide range of ailments in human beings. OBJECTIVES The goal of this review is to elucidate indigenous knowledge parallelly with the pharmacotherapeutics potential of Sida cordifolia L. against various diseases. It is also intended to display pertinent information related to nanoparticle profiling. METHODS In the current comprehensive study, web-based searches were performed by using several databases, such as Google Scholar, PubMed, ResearchGate, Science Direct, and Scopus, to figure out relevant research work and data published in academic journals from 1930 to July, 2023 using single or combination of keywords listed herewith. RESULTS More than 50 chemical constituents, including quinazoline and phenethylamine alkaloids, flavones, flavonol, phytosterol, fatty acids, etc., were reported to be found in different parts of healthy plants. Apart from traditional claims and pharmacological aspects, several marketed herbal formulations and granted patents were also described. CONCLUSION Several in-vitro and in-vivo studies validated the usage of S. cordifolia as antiinflammatory, antibacterial, antifungal, antiprotozoal, anthelmintic, anticancer, antiulcer, cardioprotective, hypoglycemic, etc. agent. Few patents are also related to S. cordifolia, and more research work needs to be carried out for its potential granted to use as an antiviral agent and other new drug discovery molecules.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, 249404, Uttarakhand, India
| | - Sandeep Kumar
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, 249404, Uttarakhand, India
| | - Vineet Kumar Vishnoi
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, 249404, Uttarakhand, India
| | - Pradeep Kumar
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Dinesh Kumar Maheshwari
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, 249404, Uttarakhand, India
| |
Collapse
|
9
|
Pradhan SP, Tejaswani P, Behera A, Sahu PK. Phytomolecules from conventional to nano form: Next-generation approach for Parkinson's disease. Ageing Res Rev 2024; 93:102136. [PMID: 38000511 DOI: 10.1016/j.arr.2023.102136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
The incidence of neurodegenerative diseases is increasing exponentially worldwide. Parkinson's disease (PD) is a neurodegenerative disease caused by factors like oxidative stress, gene mutation, mitochondrial dysfunction, neurotoxins, activation of microglial inflammatory mediators, deposition of Lewy's bodies, and α- synuclein proteins in the neurons leading to neuroinflammation and neurodegeneration in the substantia nigra. Hence the development of efficacious neuro-therapy is in demand which can prevent neurodegeneration and protect the nigrostriatal pathway. One of the approaches for managing PD is reducing oxidative stress due to aging and other co-morbid diseased conditions. The phytomolecules are reported as safe and efficacious antioxidants as they contain different secondary metabolites. However, the limitations of low solubility restricted permeability through the blood-brain barrier, and low bioavailability limits their clinical evaluation and application. This review discusses the therapeutic efficacy of phytomolecules in PD and different nanotechnological approaches to improve their brain permeability.
Collapse
Affiliation(s)
- Sweta Priyadarshini Pradhan
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - P Tejaswani
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Anindita Behera
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India.
| | - Pratap Kumar Sahu
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
10
|
Lakshmi YS, Prasanth DSNBK, Kumar KTS, Ahmad SF, Ramanjaneyulu S, Rahul N, Pasala PK. Unravelling the Molecular Mechanisms of a Quercetin Nanocrystal for Treating Potential Parkinson's Disease in a Rotenone Model: Supporting Evidence of Network Pharmacology and In Silico Data Analysis. Biomedicines 2023; 11:2756. [PMID: 37893129 PMCID: PMC10604936 DOI: 10.3390/biomedicines11102756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
The prevalence of Parkinson's disease places a significant burden on society; therefore, there is an urgent need to develop more effective drugs. However, the development of these drugs is both expensive and risky. Quercetin (QUE) has potent pharmacological effects on neurodegenerative diseases, but its low solubility in water and poor bioavailability limit its use in pharmaceutical applications. In this study, Quercetin nanocrystals (QNC) were synthesized and compared to standard QUE. A network-pharmacology-based methodology was applied, including target prediction, network construction, a gene ontology (GO) analysis, a KEGG pathway enrichment analysis, and molecular docking. This study aimed to identify the targets of QUE relevant to the treatment of Parkinson's disease and investigate the associated pharmacological mechanisms. Most of the predicted targets are involved in dopamine uptake during synaptic transmission. QUE regulates the key targets DRD2 and DRD4, which significantly affect dopaminergic synapses. The molecular docking results showed that QUE had a better binding affinity than the standard drug l-Dopa. From these experiments, it can be concluded that QNC effectively reduced the adverse effects caused by rotenone-induced oxidative stress in biochemical, neurochemical, and histopathological alterations. Therefore, QNC can potentially treat Parkinson's disease, and its effectiveness should be assessed in future clinical trials.
Collapse
Affiliation(s)
- Yeruva Sai Lakshmi
- Department of Pharmacology, Santhiram College of Pharmacy, JNTUA, Nandyal 518112, Andhra Pradesh, India;
| | - D. S. N. B. K. Prasanth
- Department of Pharmacognosy, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada 520010, Andhra Pradesh, India;
| | | | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | | - Praveen Kumar Pasala
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, JNTUA, Anantapuramu 515721, Andhra Pradesh, India
| |
Collapse
|
11
|
Zamanian MY, Parra RMR, Soltani A, Kujawska M, Mustafa YF, Raheem G, Al-Awsi L, Lafta HA, Taheri N, Heidari M, Golmohammadi M, Bazmandegan G. Targeting Nrf2 signaling pathway and oxidative stress by resveratrol for Parkinson's disease: an overview and update on new developments. Mol Biol Rep 2023; 50:5455-5464. [PMID: 37155008 DOI: 10.1007/s11033-023-08409-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/24/2023] [Indexed: 05/10/2023]
Abstract
Parkinson's disease (PD) as a prevalent neurodegenerative condition impairs motor function and is caused by the progressive deterioration of nigrostriatal dopaminergic (DAergic) neurons. The current therapy solutions for PD are ineffective because they could not inhibit the disease's progression and they even have adverse effects. Natural polyphenols, a group of phytochemicals, have been found to offer various health benefits, including neuroprotection against PD. Among these, resveratrol (RES) has neuroprotective properties owing to its capacity to protect mitochondria and act as an antioxidant. An increase in the formation of reactive oxygen species (ROS) leads to oxidative stress (OS), which is responsible for cellular damage resulting in lipid peroxidation, oxidative protein alteration, and DNA damage. In PD models, it's been discovered that RES pretreatment can diminish oxidative stress by boosting endogenous antioxidant status and directly scavenging ROS. Several studies have examined the involvement of RES in the modulation of the transcriptional factor Nrf2 in PD models because this protein recognizes oxidants and controls the antioxidant defense. In this review, we have examined the molecular mechanisms underlying the RES activity and reviewed its effects in both in vitro and in vivo models of PD. The gathered evidence herein showed that RES treatment provides neuroprotection against PD by reducing OS and upregulation of Nrf2. Moreover, in the present study, scientific proof of the neuroprotective properties of RES against PD and the mechanism supporting clinical development consideration has been described.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran
| | | | - Afsaneh Soltani
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, Poznan, 60-631, Poland
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Ghaidaa Raheem
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran
| | - Lateef Al-Awsi
- Department of Radiological Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Holya A Lafta
- Department of Pharmacy, Al-Nisour University College, Baghdad, Iraq
| | - Niloofar Taheri
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mahsa Heidari
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Bazmandegan
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
12
|
Panda SP, Prasanth D, Gorla US, Dewanjee S. Interlinked role of ASN, TDP-43 and Miro1 with parkinopathy: Focus on targeted approach against neuropathy in parkinsonism. Ageing Res Rev 2023; 83:101783. [PMID: 36371014 DOI: 10.1016/j.arr.2022.101783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Parkinsonism is a complex neurodegenerative disease that is difficult to differentiate because of its idiopathic and unknown origins. The hereditary parkinsonism known as autosomal recessive-juvenile parkinsonism (AR-JP) is marked by tremors, dyskinesias, dystonic characteristics, and manifestations that improve sleep but do not include dementia. This was caused by deletions and point mutations in PARK2 (chromosome 6q25.2-27). Diminished or unusual sensations (paresthesias), loss of neuron strength both in the CNS and peripheral nerves, and lack of motor coordination are the hallmarks of neuropathy in parkinsonism. The incidence of parkinsonism during oxidative stress and ageing is associated with parkinopathy. Parkinopathy is hypothesized to be triggered by mutation of the parkin (PRKN) gene and loss of normal physiological functions of PRKN proteins, which triggers their pathogenic aggregation due to conformational changes. Two important genes that control mitochondrial health are PRKN and phosphatase and tensin homologue deleted on chromosome 10-induced putative kinase 1 (PINK1). Overexpression of TAR DNA-binding protein-43 (TDP-43) increases the aggregation of insoluble PRKN proteins in OMM. Foreign α-synuclein (ASN) promotes parkinopathy via S-nitrosylation and hence has a neurotoxic effect on dopaminergic nerves. Miro1 (Miro GTPase1), a member of the RAS superfamily, is expressed in nerve cells. Due to PINK1/PRKN and Miro1's functional relationship, an excess of mitochondrial calcium culminates in the destruction of dopaminergic neurons. An interlinked understanding of TDP-43, PINK1/PRKN, ASN, and Miro1 signalling in the communication among astrocytes, microglia, neurons, and immune cells within the brain explored the pathway of neuronal death and shed light on novel strategies for the diagnosis and treatment of parkinsonism.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Pharmacology Research Division, Institute of Pharmaceutical Research, GLA University, Mathura, India.
| | - Dsnbk Prasanth
- Department of Pharmacognosy, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, AP, India
| | - Uma Sankar Gorla
- College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhrapradesh, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
13
|
Altharawi A, Alharthy KM, Althurwi HN, Albaqami FF, Alzarea SI, Al-Abbasi FA, Nadeem MS, Kazmi I. Europinidin Inhibits Rotenone-Activated Parkinson's Disease in Rodents by Decreasing Lipid Peroxidation and Inflammatory Cytokines Pathways. Molecules 2022; 27:molecules27217159. [PMID: 36363986 PMCID: PMC9658735 DOI: 10.3390/molecules27217159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Europinidin is a derivative of delphinidin obtained from the plants Plumbago Europea and Ceratostigma plumbaginoides. This herb has wide medicinal applications in treating various diseases but there are very few studies available on this bioactive compound. Considering this background, the present study is designed for the evaluation of Europinidin against Parkinson’s disease. Aim: The investigation aims to assess the effect of Europinidin in the rotenone-activated Parkinson’s paradigm. Methods: To evaluate neuroprotective activity, rotenone (1.5 mg/kg s.c) and europinidin (10 mg/kg and 20 mg/kg) was administered in rats for 21 days. The behavioural parameters were performed before sacrificing the rats. On the 22nd day, all the rats were assessed for biochemical markers (SOD, GSH, MDA, Catalase), neurotransmitter levels (Dopamine, 5-HIAA, DOPAC, and HVA levels), and neuroinflammatory markers (IL-6, IL-1β and TNF-α). Results: It was found that rotenone produced significant (p < 0.001) oxidative damage, a cholinergic deficit, dopaminergic loss, and a rise in neuroinflammatory markers in rats. Conclusion: The study concludes that europinidin possesses anti-oxidant and anti-inflammatory properties. The results suggest the therapeutic role of europinidin against rotenone-activated behavioural, biochemical, and neuroinflammatory alterations in rats.
Collapse
Affiliation(s)
- Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence: (A.A.); (I.K.); Tel.: +966-543-970-731 (I.K.)
| | - Khalid M. Alharthy
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hassan N. Althurwi
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Faisal F. Albaqami
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Sakaka 72341, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (A.A.); (I.K.); Tel.: +966-543-970-731 (I.K.)
| |
Collapse
|
14
|
Targeting Oxidative Stress Mechanisms to Treat Alzheimer’s and Parkinson’s Disease: A Critical Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7934442. [PMID: 35958022 PMCID: PMC9357807 DOI: 10.1155/2022/7934442] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/12/2022] [Indexed: 02/05/2023]
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD) are becoming more frequent as the age increases. Contemporary therapies provide symptom resolution instead of targeting underlying pathological pathways. Consequently, there is considerable heterogeneity in response to treatment. Research has elucidated multiple potential of pathophysiological mechanisms contributing to neurodegenerative conditions, among which oxidative stress pathways appear to be suitable drug targets. The oxidative stress pathway has given rise to numerous novel pharmacological therapies that may provide a new avenue for neurodegenerative diseases. For example, SKQ (plastoquinone), MitoVitE, vitamin E, SOD mimic, MitoTEMPO (SOD mimetic), and bioactive molecules like curcumin and vitamin C have indeed been examined. To better understand how oxidative stress contributes to neurodegenerative diseases (such as Alzheimer's and Parkinson's), we analyzed the medicinal qualities of medicines that target markers in the cellular oxidative pathways. The specific pathway by which mitochondrial dysfunction causes neurodegeneration will require more investigation. An animal study should be carried out on medications that tackle cellular redox mechanisms but are not currently licensed for use in the management of neurodegenerative conditions.
Collapse
|
15
|
Rodrigues JA, Narasimhamurthy RK, Joshi MB, Dsouza HS, Mumbrekar KD. Pesticides Exposure-Induced Changes in Brain Metabolome: Implications in the Pathogenesis of Neurodegenerative Disorders. Neurotox Res 2022; 40:1539-1552. [PMID: 35781222 PMCID: PMC9515138 DOI: 10.1007/s12640-022-00534-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Pesticides have been used in agriculture, public health programs, and pharmaceuticals for many decades. Though pesticides primarily target pests by affecting their nervous system and causing other lethal effects, these chemical entities also exert toxic effects in inadvertently exposed humans through inhalation or ingestion. Mounting pieces of evidence from cellular, animal, and clinical studies indicate that pesticide-exposed models display metabolite alterations of pathways involved in neurodegenerative diseases. Hence, identifying common key metabolites/metabolic pathways between pesticide-induced metabolic reprogramming and neurodegenerative diseases is necessary to understand the etiology of pesticides in the rise of neurodegenerative disorders. The present review provides an overview of specific metabolic pathways, including tryptophan metabolism, glutathione metabolism, dopamine metabolism, energy metabolism, mitochondrial dysfunction, fatty acids, and lipid metabolism that are specifically altered in response to pesticides. Furthermore, we discuss how these metabolite alterations are linked to the pathogenesis of neurodegenerative diseases and to identify novel biomarkers for targeted therapeutic approaches.
Collapse
Affiliation(s)
- Joel Arvin Rodrigues
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Rekha K Narasimhamurthy
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Herman Sunil Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104.
| |
Collapse
|
16
|
Kumar R, Kumar R, Khurana N, Singh SK, Khurana S, Verma S, Sharma N, Vyas M, Dua K, Khursheed R, Awasthi A, Vishwas S. Improved neuroprotective activity of Fisetin through SNEDDS in ameliorating the behavioral alterations produced in rotenone-induced Parkinson's model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:50488-50499. [PMID: 35230633 DOI: 10.1007/s11356-022-19428-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Fisetin is a polyphenolic flavonoid reported to have antioxidant, anti-inflammatory, and anti-cancer activities. However, it loses its importance as an effective phytochemical due to its poor water solubility and lower bioavailability. In the present study, the self-nanoemulsifying drug delivery system (SNEDDS) of fisetin was developed in order to improve its pharmacological activity. The developed SNEDDS of fisetin was evaluated for improving the rotenone-induced behavioral changes in the rats, and its efficacy was compared with naïve fisetin. It was noticed that fisetin loaded in the SNEDDS formulation significantly (p < 0.001) ameliorated the rotenone-induced alteration in the body weight, grip strength, beam walk, postural instability, etc., in rats when compared to the effect of naïve fisetin. Naïve fisetin significantly (p < 0.05) ameliorated the effect of rotenone on the level of dopamine only at a higher dose. Whereas, SNEDDS of fisetin produced a significant (p < 0.05) effect at both dose levels when compared with the diseased group as well as also produced a significant (p < 0.05) effect when compared with the naïve fisetin group. The results of histopathological examination revealed about the neuroprotective effect of SNEDDS loaded with fisetin as observed through the protection of neuronal damage. From this study, it was concluded that SNEDDS improved the anti-Parkinsonian activity of fisetin by improving the behavioral alteration produced by rotenone due to enhancement in its solubility and bioavailability.
Collapse
Affiliation(s)
- Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Rakesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Shelly Khurana
- Department of Pharmacy, Government Polytechnic College, Amritsar, Punjab, India
| | - Surajpal Verma
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Neha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Manish Vyas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
17
|
A review: traditional herbs and remedies impacting pathogenesis of Parkinson's disease. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:495-513. [PMID: 35258640 DOI: 10.1007/s00210-022-02223-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/15/2022] [Indexed: 12/27/2022]
Abstract
Parkinson's disease (PD) is characterized by progressive degeneration of dopaminergic neurons, leading to misbalance and loss of coordination. Current therapies are claimed only for symptomatic relief, on long-term use, which causes alteration in basal ganglia, and give rise to various adverse effects like dyskinesia and extra pyramidal side effects, which is reversed and proved to be attenuated with the help of various herbal approaches. Therefore, in order to attenuate the dopaminergic complications, focus of current research has been shifted from dopaminergic to non-dopaminergic strategies. Herbs and herbal remedies seems to be a better option to overcome the complications associated with current dopaminergic therapies. In recent years, various herbs and herbal remedies based on Ayurveda, traditional Chinese and Korean remedies, have become the target of various researches. These herbs and their bioactive compound are being extensively used to treat PD in India, China, Japan, and Korea. The major focus of this current review is to analyze preclinical studies with reference to various herbs, bioactive compounds, and traditional remedies for the management of Parkinson disorder, which will give an insight towards clinical trials.
Collapse
|
18
|
Goyal A, Gopika S, Kumar A, Garabadu D. A Comprehensive Review on Preclinical Evidence Based Neuroprotective Potential of Bacopa Monnieri Against Parkinson's Disease. Curr Drug Targets 2022; 23:889-901. [PMID: 35297345 DOI: 10.2174/1389450123666220316091734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/03/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
Parkinson's diseaseis a chronic and gradually progressive neurodegenerative disorder triggered due to the loss of dopamine-releasing neurons in the region of substantianigra pars compacta characterized by the motor symptoms such as tremor, bradykinesia, akinesia, and postural instability. Proteinopathies, mitochondrial dysfunction induced dopaminergic neuronal deterioration, and gene mutations arethe hallmarks of Parkinson's disease. The bioactive components of Brahmi such as Bacoside A, Bacoside B, and Bacosaponins, belong to various chemical families. Brahmi's neuroprotective role includes reducing neuronal oxidative stress, dopaminergic neuronal degeneration, mitochondrial dysfunction, inflammation, aggregation inhibition of α-synuclein, and improvement of cognitive and learning behaviour. Researchers found that Bacopa monnieri significantly increased brain levels of glutathione, vitamin C, vitamin E, and vitamin A in rats exposed to cigarette smoke. Brahmi has a potent antioxidant property and neuroprotective effects against PD that help reduce oxidative stress, neuroinflammation and enhance the dopamine level. The review collates all the preclinical studies that prove the beneficial neuroprotective effect of Brahmi for treating PD.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University 17-Km. stone, NH-2 Mathura-Delhi Highway, P.O. Chaumuhan, Mathura-281406 (U.P.), India
| | - S Gopika
- Institute of Pharmaceutical Research, GLA University 17-Km. stone, NH-2 Mathura-Delhi Highway, P.O. Chaumuhan, Mathura-281406 (U.P.), India
| | - Abhishek Kumar
- Institute of Pharmaceutical Research, GLA University 17-Km. stone, NH-2 Mathura-Delhi Highway, P.O. Chaumuhan, Mathura-281406 (U.P.), India
| | - Debapriya Garabadu
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda- 151001, Punjab, India
| |
Collapse
|
19
|
Fikry H, Saleh LA, Abdel Gawad S. Neuroprotective effects of curcumin on the cerebellum in a rotenone‐induced Parkinson’s Disease Model. CNS Neurosci Ther 2022; 28:732-748. [PMID: 35068069 PMCID: PMC8981438 DOI: 10.1111/cns.13805] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Aims Methods Results Conclusion
Collapse
Affiliation(s)
- Heba Fikry
- Department of Histology and Cell Biology Faculty of Medicine Ain Shams University Cairo Egypt
| | - Lobna A. Saleh
- Department of Clinical Pharmacology Faculty of Medicine Ain Shams University Cairo Egypt
| | - Sara Abdel Gawad
- Department of Histology and Cell Biology Faculty of Medicine Ain Shams University Cairo Egypt
| |
Collapse
|
20
|
Sharma N, Khurana N, Muthuraman A, Utreja P. Pharmacological evaluation of vanillic acid in rotenone-induced Parkinson's disease rat model. Eur J Pharmacol 2021; 903:174112. [PMID: 33901458 DOI: 10.1016/j.ejphar.2021.174112] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/21/2022]
Abstract
In the present study, we investigated the anti-Parkinson's effect of vanillic acid (VA) (12 mg/kg, 25 mg/kg, 50 mg/kg p.o.) against rotenone (2 mg/kg s.c.) induced Parkinson's disease (PD) in rats. The continuous administration of rotenone for 35 days resulted in rigidity in muscles, catalepsy, and decrease in locomotor activity, body weight, and rearing behaviour along with the generation of oxidative stress in the brain (rise in the TBARS, and SAG level and reduced CAT, and GSH levels). Co-treatment of VA and levodopa-carbidopa (100 mg/kg + 25 mg/kg p.o.) lead to a significant (P < 0.001) reduction in the muscle rigidity and catalepsy along with a significant (P < 0.001) increase in body weight, rearing behaviour, locomotion and muscle activity as compared to the rotenone-treated group in the dose dependent manner, showing maximum effect at the 50 mg/kg. It also showed reversal of levels of oxidative stress parameters thus, reducing the neuronal oxidative stress. The level of DA was also estimated which showed an increase in the level of DA in the VA plus standard drug treated animals as compared to rotenone treated group. Histopathological evaluation showed a high number of eosinophilic lesions in the rotenone group which were found to be very less in the VA co-treated group. The study thus proved that co-treatment of VA and levodopa-carbidopa, significantly protected the brain from neuronal damage due to oxidative stress and attenuated the motor defects indicating the possible therapeutic potential of VA as a neuroprotective in PD.
Collapse
Affiliation(s)
- Neha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144 411, India; Akal College of Pharmacy and Technical Education, Gursagar Mastuana Sahib, Sangrur, Punjab, 148 001, India; Research Scholar, I.K. Gujral Punjab Technical University, Kapurthala, Punjab, 144 603, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144 411, India
| | - Arunachalam Muthuraman
- Akal College of Pharmacy and Technical Education, Gursagar Mastuana Sahib, Sangrur, Punjab, 148 001, India; Asian Institute of Medicine, Science and Technology, Malaysia
| | - Puneet Utreja
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Ludhiana, Punjab, 142 021, India.
| |
Collapse
|
21
|
Balakrishnan R, Azam S, Cho DY, Su-Kim I, Choi DK. Natural Phytochemicals as Novel Therapeutic Strategies to Prevent and Treat Parkinson's Disease: Current Knowledge and Future Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6680935. [PMID: 34122727 PMCID: PMC8169248 DOI: 10.1155/2021/6680935] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative chronic disease affecting both cognitive performance and motor functions in aged people. Yet despite the prevalence of this disease, the current therapeutic options for the management of PD can only alleviate motor symptoms. Research has explored novel substances for naturally derived antioxidant phytochemicals with potential therapeutic benefits for PD patients through their neuroprotective mechanism, targeting oxidative stress, neuroinflammation, abnormal protein accumulation, mitochondrial dysfunction, endoplasmic reticulum stress, neurotrophic factor deficit, and apoptosis. The aim of the present study is to perform a comprehensive evaluation of naturally derived antioxidant phytochemicals with neuroprotective or therapeutic activities in PD, focusing on their neuropharmacological mechanisms, including modulation of antioxidant and anti-inflammatory activity, growth factor induction, neurotransmitter activity, direct regulation of mitochondrial apoptotic machinery, prevention of protein aggregation via modulation of protein folding, modification of cell signaling pathways, enhanced systemic immunity, autophagy, and proteasome activity. In addition, we provide data showing the relationship between nuclear factor E2-related factor 2 (Nrf2) and PD is supported by studies demonstrating that antiparkinsonian phytochemicals can activate the Nrf2/antioxidant response element (ARE) signaling pathway and Nrf2-dependent protein expression, preventing cellular oxidative damage and PD. Furthermore, we explore several experimental models that evaluated the potential neuroprotective efficacy of antioxidant phytochemical derivatives for their inhibitory effects on oxidative stress and neuroinflammation in the brain. Finally, we highlight recent developments in the nanodelivery of antioxidant phytochemicals and its neuroprotective application against pathological conditions associated with oxidative stress. In conclusion, naturally derived antioxidant phytochemicals can be considered as future pharmaceutical drug candidates to potentially alleviate symptoms or slow the progression of PD. However, further well-designed clinical studies are required to evaluate the protective and therapeutic benefits of phytochemicals as promising drugs in the management of PD.
Collapse
Affiliation(s)
- Rengasamy Balakrishnan
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Shofiul Azam
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Duk-Yeon Cho
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - In Su-Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
22
|
Das C, Bose A, Das D. Ayurvedic Balarista ameliorate anti-arthritic activity in adjuvant induced arthritic rats by inhibiting pro-inflammatory cytokines and oxidative stress. J Tradit Complement Med 2021; 11:228-237. [PMID: 34012869 PMCID: PMC8116770 DOI: 10.1016/j.jtcme.2020.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 04/13/2020] [Accepted: 04/29/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND AIM Balarista is a fermented ayurvedic liquid preparation recommended as a good therapy for the treatment of rheumatoid arthritis. In the present investigation, the anti-arthritic activity of in-house Balarista formulation and marketed M1, M2, M3 and M4 Balarista formulations at the dose of 2.31 ml/kg were studied on Complete Freund's adjuvant-induced arthritic rat model. EXPERIMENTAL PROCEDURE Measurement of paw diameter, arthritic index, arthritic score, and body weight were made to assess the anti-arthritic activity. Alterations in hematological and biochemical parameters were carried out to ascertain the disease progression. The inflammatory mediators (TNF-α, IL-1β, and IL-6) were measured by the ELISA method. The oxidative stress parameters were evaluated in tissues of joint, liver, spleen and kidney. The histological and radiological changes in the ankle joint of rats were also studied. RESULTS AND CONCLUSION Administration of in-house and marketed formulations exhibited significant anti-arthritic activity by reducing all the arthritic parameters. The anomalous alterations in hematological and biochemical parameters were remarkably restored. The expression level of serum pro-inflammatory cytokines was significantly suppressed in treated animals. The oxidative stress, indicated by an increase in lipid peroxidation, decreased in antioxidant enzyme i.e. superoxide dismutase and catalase along with non-enzymatic reduced glutathione in tissues, were strongly counteracted by the formulation. Abnormal changes in arthritic ankle joints shown by X-ray and histological examination were significantly protected by the formulation. The present study suggests that the administration of in-house and marketed Balarista formulations have produced a significant anti-arthritic effect by inhibiting free radicals and inflammatory cytokines.
Collapse
Affiliation(s)
- C. Das
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751029, India
| | - A. Bose
- Department of Pharmaceutical Analysis and Quality Assurance, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751029, India
| | - D. Das
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751029, India
| |
Collapse
|
23
|
Sohn E, Kim YJ, Kim JH, Jeong SJ. Ficus erecta Thunb Leaves Alleviate Memory Loss Induced by Scopolamine in Mice via Regulation of Oxidative Stress and Cholinergic System. Mol Neurobiol 2021; 58:3665-3676. [PMID: 33797061 PMCID: PMC8280041 DOI: 10.1007/s12035-021-02358-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 03/11/2021] [Indexed: 11/30/2022]
Abstract
We examined the neuropharmacological effects of ethanol extract of Ficus erecta Thunb leaves (EEFE) on cognitive dysfunction in a scopolamine (SCO)-induced memory impairment animal model. Memory impairment was measured using the Y-maze test and passive avoidance task (PAT). For 19 days, EEFE (100 or 200 mg/kg) was treated through oral administration. Treatment with EEFE ameliorated memory impairment in behavioral tests, along with significant protection from neuronal oxidative stress and neuronal cell loss in the brain tissues of SCO-injected mice. Antioxidant and neuroprotective effects of EEFE were further confirmed using in vitro assays. Our findings indicate that the mechanisms of neuroprotection and antioxidation of EEFE are regulated by the cholinergic system, promotion of cAMP response element-binding protein (CREB) phosphorylation, and the nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase (HO)-1 signaling activation. The current study proposes that EEFE could be an encouraging plant resource and serve as a potent neuropharmacological drug candidate against neurodegenerative diseases.
Collapse
Affiliation(s)
- Eunjin Sohn
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, 34054, South Korea.
| | - Yu Jin Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, 34054, South Korea
| | - Joo-Hwan Kim
- Department of Life Science, Gachon University, Seongnam, 21936, South Korea
| | - Soo-Jin Jeong
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, 34054, South Korea.
| |
Collapse
|
24
|
Kurpik M, Zalewski P, Kujawska M, Ewertowska M, Ignatowicz E, Cielecka-Piontek J, Jodynis-Liebert J. Can Cranberry Juice Protect against Rotenone-Induced Toxicity in Rats? Nutrients 2021; 13:nu13041050. [PMID: 33805023 PMCID: PMC8063919 DOI: 10.3390/nu13041050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/12/2022] Open
Abstract
The high polyphenols content of cranberry accounts for its strong antioxidant activity underlying the beneficial health effects of this fruit. Rotenone (ROT) is a specific inhibitor of mitochondrial complex I in the brain which leads to the generation of oxidative stress. To date, there are few data indicating that toxicity of ROT is not limited to the brain but can also affect other tissues. We aimed to examine whether ROT-induced oxidative stress could be counteracted by cranberry juice not only in the brain but also in the liver and kidney. Wistar rats were given the combined treatment with ROT and cranberry juice (CJ) for 35 days. Parameters of antioxidant status were determined in the organs. ROT enhanced lipid peroxidation solely in the brain. The increase in the DNA damage was noticed in all organs examined and in leukocytes. The beneficial effect of CJ on these parameters appeared only in the brain. Additionally, CJ decreased the activity of serum hepatic enzymes. The effect of CJ on antioxidant enzymes was not consistent, however, in some organs, CJ reversed changes evoked by ROT. Summing up, ROT can cause oxidative damage not only in the brain but also in other organs. CJ demonstrated a protective effect against ROT-induced toxicity.
Collapse
Affiliation(s)
- Monika Kurpik
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (M.E.); (J.J.-L.)
| | - Przemysław Zalewski
- Department of Pharmacognosy, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland; (P.Z.); (J.C.-P.)
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (M.E.); (J.J.-L.)
- Correspondence: ; Tel.: +48-61-847-20-81 (ext. 156)
| | - Małgorzata Ewertowska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (M.E.); (J.J.-L.)
| | - Ewa Ignatowicz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781 Poznań, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland; (P.Z.); (J.C.-P.)
| | - Jadwiga Jodynis-Liebert
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (M.E.); (J.J.-L.)
| |
Collapse
|
25
|
Uddin MJ, Zidorn C. Traditional Herbal Medicines Against CNS Disorders from Bangladesh. NATURAL PRODUCTS AND BIOPROSPECTING 2020; 10:377-410. [PMID: 33057963 PMCID: PMC7648845 DOI: 10.1007/s13659-020-00269-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/03/2020] [Indexed: 05/07/2023]
Abstract
The majority of the population in Bangladesh uses traditional plant-based medicines to manage various ailments, including central nervous system (CNS) disorders. This review presents ethnobotanical information and relevant scientific studies on plants used in traditional healthcare for the management of various CNS disorders in Bangladesh. The information on the medicinal plants of Bangladesh effective against CNS disorders published in scientific journals, books, and reports was compiled from different electronic databases using specific key words. The present article provides comprehensive information on a total of 224 medicinal plant species belonging to 81 families used for the treatment of CNS disorders by the various peoples of Bangladesh. In total, we reviewed more than 290 relevant papers. In this study, leaves were found as the most often used plant organ, followed by roots, fruits, whole plants, barks, seeds, stems, rhizomes, and flowers. The Fabaceae family contributes the highest number of used species, followed by Rubiaceae, Lamiaceae, Cucurbitaceae, Vitaceae, Euphorbiaceae, Malvaceae, and Zingiberaceae. The most frequently used species (in decreasing order) are Asparagus racemosus, Centella asiatica, Stephania japonica, Aegle marmelos, Coccinia grandis, Tabernaemontana divaricata, Bacopa monnieri, Abroma augusta, and Scoparia dulcis. This review may serve as a starting point for a rational search for neuroactive natural products against CNS disorders within the Flora of Bangladesh.
Collapse
Affiliation(s)
- Md. Josim Uddin
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong, 4318 Bangladesh
| | - Christian Zidorn
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
| |
Collapse
|
26
|
Kumar R, Kumar R, Khurana N, Singh SK, Khurana S, Verma S, Sharma N, Kapoor B, Vyas M, Khursheed R, Awasthi A, Kaur J, Corrie L. Enhanced oral bioavailability and neuroprotective effect of fisetin through its SNEDDS against rotenone-induced Parkinson's disease rat model. Food Chem Toxicol 2020; 144:111590. [DOI: 10.1016/j.fct.2020.111590] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/24/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022]
|
27
|
Anjaneyulu J, R V, Godbole A. Differential effect of Ayurvedic nootropics on C. elegans models of Parkinson's disease. J Ayurveda Integr Med 2020; 11:440-447. [PMID: 32978047 PMCID: PMC7772502 DOI: 10.1016/j.jaim.2020.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Globally, there is increased incidence of Parkinson's Disease (PD), which is the second most common age-related neurodegenerative disease. The currently available PD-therapeutics provide only symptomatic relief. Thus, there is an urgent need to devise an effective and safe treatment strategy for PD. The holistic approach of Ayurveda can be a potential effective strategy for treating PD. The integration of different medicine systems, such as modern bio-medicine and Ayurveda can be an effective strategy for treatment of complex diseases, including PD. OBJECTIVE This study aimed to evaluate the neuroprotective mechanism of six Ayurvedic nootropics that are commonly used to treat PD. MATERIAL AND METHODS Six Ayurvedic herbs, namely Mucuna pruriens (MP), Bacopa monnieri (BM), Withania somnifera (WS), Centella asiatica (CA), Sida cordifolia (SC), and Celastrus paniculatus (CP), were selected after consultation with Ayurvedic scholars and physicians. The mode of action of methanolic herbal extracts was evaluated using the Caenorhabditis elegans BZ555 and NL5901 strains, which can be used to model the two main hallmarks of PD, namely degeneration of dopaminergic neurons and aggregation of α-synuclein protein. RESULTS All six herbal extracts exhibited neuroprotective effect. The extracts of BM and MP exhibited maximum protection against 1-methyl-4-phenylpyridinium iodide (MPP+ iodide)-induced dopaminergic neurodegeneration in the BZ555 strain. Furthermore, the herbal extracts, except CA extract, inhibited the aggregation of heterologously expressed human α-synuclein in the NL5901 strain. CONCLUSION Ayurvedic herbs used in the treatment of PD exhibited differential neuroprotective and protein aggregation mitigating effects in C. elegans.
Collapse
Affiliation(s)
- Jalagam Anjaneyulu
- Centre for Ayurveda Biology and Holistic Nutrition, The University of Trans-disciplinary Health Sciences and Technology (TDU)-Foundation for Revitalisation of Local Health Traditions (FRLHT), No 74/2, Jarakabande Kaval, Post: Attur, Via Yelahanka, Bangalore, Karnataka 560106, India
| | - Vidyashankar R
- Centre for Ayurveda Biology and Holistic Nutrition, The University of Trans-disciplinary Health Sciences and Technology (TDU)-Foundation for Revitalisation of Local Health Traditions (FRLHT), No 74/2, Jarakabande Kaval, Post: Attur, Via Yelahanka, Bangalore, Karnataka 560106, India
| | - Ashwini Godbole
- Centre for Ayurveda Biology and Holistic Nutrition, The University of Trans-disciplinary Health Sciences and Technology (TDU)-Foundation for Revitalisation of Local Health Traditions (FRLHT), No 74/2, Jarakabande Kaval, Post: Attur, Via Yelahanka, Bangalore, Karnataka 560106, India.
| |
Collapse
|
28
|
Botanical Therapeutics for Parkinson’s Disease. Chin J Integr Med 2020; 26:405-411. [DOI: 10.1007/s11655-020-3096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
|
29
|
Alikatte K, Palle S, Rajendra Kumar J, Pathakala N. Fisetin Improved Rotenone-Induced Behavioral Deficits, Oxidative Changes, and Mitochondrial Dysfunctions in Rat Model of Parkinson's Disease. J Diet Suppl 2020; 18:57-71. [PMID: 31992104 DOI: 10.1080/19390211.2019.1710646] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oxidative stress plays an important role in the pathogenesis of Parkinson's disease (PD), particularly the inhibition of mitochondrial complex-I. This study aimed to evaluate the effect of fisetin in the rotenone-induced rat model of PD. Rotenone was administered (2 mg/kg s.c.) for 35 days to induce PD in animals. Fisetin was administered at two doses (10 mg/kg and 20 mg/kg p.o.) for 25 days to the animals that were given rotenone. Behavioral experiment, i.e. cylinder test, was performed to assess the motor asymmetry. Animals were euthanized, and mid brains were isolated for the estimation of tricarboxylic acid cycle enzymes, oxidative measures (lipid peroxidation (LPO), glutathione (GSH) and catalase) and complex-I activity. In addition, histopathological studies were conducted. Fisetin treatment improved motor function in the cylinder test and reversed the rotenone-induced changes in mitochondrial enzymes, striatal dopamine levels, antioxidant enzyme levels and histological changes. An important finding of this study was both the doses of fisetin significantly (p < 0.05) enhanced rotenone-induced behavioral and biochemical changes and the effects were found to be dose dependent. Based on the present results, we hypothesize that fisetin may improve the mitochondrial enzyme activity, thereby preventing the pathogenesis of PD.
Collapse
Affiliation(s)
- Kanakalatha Alikatte
- Department of Pharmacology, St. Peters Institute of Pharmaceutical Sciences, Warangal, Telangana, India
| | - Suresh Palle
- Department of Pharmacology, Vaagdevi Institute of Pharmaceutical Sciences, Warangal, Telangana, India
| | - Jadi Rajendra Kumar
- Department of Pharmaceutics, University College of Technology, Osmania University, Hyderabad, Telangana, India
| | - Naveen Pathakala
- Department of Pharmaceutics, University College of Technology, Osmania University, Hyderabad, Telangana, India
| |
Collapse
|
30
|
Kujawska M, Jourdes M, Kurpik M, Szulc M, Szaefer H, Chmielarz P, Kreiner G, Krajka-Kuźniak V, Mikołajczak PŁ, Teissedre PL, Jodynis-Liebert J. Neuroprotective Effects of Pomegranate Juice against Parkinson's Disease and Presence of Ellagitannins-Derived Metabolite-Urolithin A-In the Brain. Int J Mol Sci 2019; 21:ijms21010202. [PMID: 31892167 PMCID: PMC6981883 DOI: 10.3390/ijms21010202] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/12/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022] Open
Abstract
Pomegranate juice is a rich source of ellagitannins (ETs) believed to contribute to a wide range of pomegranate’s health benefits. While a lot of experimental studies have been devoted to Alzheimer disease and hypoxic-ischemic brain injury, our knowledge of pomegranate’s effects against Parkinson’s disease (PD) is very limited. It is suggested that its neuroprotective effects are mediated by ETs-derived metabolites—urolithins. In this study, we examined the capability of pomegranate juice for protection against PD in a rat model of parkinsonism induced by rotenone. To evaluate its efficiency, assessment of postural instability, visualization of neurodegeneration, determination of oxidative damage to lipids and α-synuclein level, as well as markers of antioxidant defense status, inflammation, and apoptosis, were performed in the midbrain. We also check the presence of plausible active pomegranate ETs-derived metabolite, urolithin A, in the plasma and brain. Our results indicated that pomegranate juice treatment provided neuroprotection as evidenced by the postural stability improvement, enhancement of neuronal survival, its protection against oxidative damage and α-synuclein aggregation, the increase in mitochondrial aldehyde dehydrogenase activity, and maintenance of antiapoptotic Bcl-xL protein at the control level. In addition, we have provided evidence for the distribution of urolithin A to the brain.
Collapse
Affiliation(s)
- Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.)
- Correspondence: ; Tel.: +48-61-847-20-81 (ext. 156)
| | - Michael Jourdes
- Université de Bordeaux, ISVV, EA 4577, Œnologie, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
- INRA, ISVV, USC 1366 INRA, IPB, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
| | - Monika Kurpik
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.)
| | - Michał Szulc
- Department of Pharmacology, Poznan University of Medical Sciences, Rokietnicka 5a, 60-806 Poznan, Poland
| | - Hanna Szaefer
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland
| | - Piotr Chmielarz
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland
| | | | - Pierre-Louis Teissedre
- Université de Bordeaux, ISVV, EA 4577, Œnologie, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
- INRA, ISVV, USC 1366 INRA, IPB, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
| | - Jadwiga Jodynis-Liebert
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.)
| |
Collapse
|
31
|
Hasan W, Kori RK, Thakre K, Yadav RS, Jat D. Synthesis, characterization and efficacy of mitochondrial targeted delivery of TPP-curcumin in rotenone-induced toxicity. ACTA ACUST UNITED AC 2019; 27:557-570. [PMID: 31264184 DOI: 10.1007/s40199-019-00283-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/14/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mitochondrial impairments due to free radicals are implicated in a wide range of neurotoxicological alterations. Curcumin, an active ingredient of turmeric has shown protective efficacy against oxidative damage due to its strong antioxidant potential, but its efficiency is restricted due to low bioavailability in the mitochondria. In view of this, we have synthesized mitochondria-targeted curcumin (MTC) with an aim to investigate its efficacy against rotenone-induced oxidative damage in mice and isolated mitochondria. METHODS MTC was synthesized by attaching the triphenylphosphonium cation (TPP) as a cationic carrier to the curcumin to assess its protective efficacy in rotenone-induced in-vitro and in-vivo toxicity in mice. RESULTS In-vitro treatment of rotenone in isolated mitochondria caused a significant increase in lipid peroxidation (2.74 fold, 3.62 fold), protein carbonyl contents (2.62 fold, 1.81 fold), and decrease in levels of reduced glutathione (2.02 fold, 1.70 fold) as compared to control. Pre-treatment of curcumin and MTC along with rotenone in the isolated mitochondria significantly reduce the oxidative stress as compared to those treated with rotenone alone. Rotenone treatment in mice significantly increased lipid peroxidation (2.02 fold) and decreased the levels of reduced glutathione (2.99 fold), superoxide dismutase (2.09 fold) and catalase (3.60 fold) in the liver as compared to controls. Co-treatment of curcumin and MTC along with rotenone significantly reduced lipid peroxidation (1.26 fold, 1.76 fold) and increased the levels of reduced glutathione (1.60 fold, 2.43 fold), superoxide dismutase (1.45 fold, 1.99 fold) and catalase (2.32 fold, 2.90 fold) as compared to those treated with rotenone alone. CONCLUSION The results of the present study indicate that the protective efficacy of MTC against rotenone-induced oxidative damage was more promising than curcumin in both in-vitro and in-vivo system which indicates the enhanced bioavailability of MTC. Graphical abstract Effect of mitochondrial targeted delivery of TPP-curcumin in rotenone-induced toxicity.
Collapse
Affiliation(s)
- Whidul Hasan
- Neuroscience Research Lab, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Rajesh Kumar Kori
- Department of Criminology and Forensic Science, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Khilashwar Thakre
- Department of Chemistry, School of Chemical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Rajesh Singh Yadav
- Department of Criminology and Forensic Science, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Deepali Jat
- Neuroscience Research Lab, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India.
| |
Collapse
|
32
|
da Rosa HS, Coelho IS, da Silva MD, Fernandes MS, Bertelli PR, Minetto L, Moura S, de Paula F, Santos AR, Mendez ASL, Folmer V. Sida tuberculata extract reduces the nociceptive response by chemical noxious stimuli in mice: Implications for mechanism of action, relation to chemical composition and molecular docking. Phytother Res 2018; 33:224-233. [PMID: 30375066 DOI: 10.1002/ptr.6220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 11/06/2022]
Abstract
Sida tuberculata R.E.Fr. (Malvaceae) is a medicinal plant widely found in Southern Brazil, and popularly used for inflammatory disorders and to pain relief. A phytochemical analysis followed by an investigation about antinociceptive potential and mechanism of action were performed with leaves and roots extracts. Methanolic extracts, designated as S. tuberculata leaves extract (STLE) and S. tuberculata roots extract, were analyzed both by UHPLC–MS. The in vivo antinociceptive potential of STLE (10–300 mg kg−1) was assessed in mice subjected to the acetic acid‐induced abdominal writhes and formalin model. Agonist/antagonist tests and computational docking suggest the involvement of opioid and adenosinergic systems. The main chemical class detected on extracts was the ecdysteroids, and 20‐hydoxyecdysone (20HE) was confirmed as the major phytoconstituent. The pretreatment with STLE (100 mg kg−1) reduced more than 70% abdominal contortions induced by acetic acid model and produced significant inhibition on formalin‐induced licking response. The mechanism of action study revealed STLE might act through opioid and adenosine systems. Molecular docking suggested kaempferol derivative and 20HE might interacting with μ‐opioid receptor. Thus, the results suggest the existence of antinociceptive potential from S. tuberculata extracts being in accordance to the traditional use.
Collapse
Affiliation(s)
- Hemerson S da Rosa
- Laboratório de Bioquímica e Toxicologia de Produtos Naturais e Sintéticos, Universidade Federal do Pampa, Uruguaiana, Brazil.,Laboratório de Desenvolvimento e Controle de Qualidade em Medicamentos, Universidade Federal do Pampa, Uruguaiana, Brazil.,Programa de Pós-graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, Brazil
| | - Igor S Coelho
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.,Laboratório de Neurobiologia da Dor e Inflamação, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Mariana S Fernandes
- Laboratório de Desenvolvimento e Controle de Qualidade em Medicamentos, Universidade Federal do Pampa, Uruguaiana, Brazil
| | - Pablo Ricardo Bertelli
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos, Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, Brazil
| | - Luciane Minetto
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos, Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, Brazil
| | - Sidnei Moura
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos, Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, Brazil
| | - Fávero de Paula
- Laboratório de Desenvolvimento e Controle de Qualidade em Medicamentos, Universidade Federal do Pampa, Uruguaiana, Brazil
| | - Adair R Santos
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.,Laboratório de Neurobiologia da Dor e Inflamação, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Andreas S L Mendez
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Vanderlei Folmer
- Laboratório de Bioquímica e Toxicologia de Produtos Naturais e Sintéticos, Universidade Federal do Pampa, Uruguaiana, Brazil.,Programa de Pós-graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, Brazil
| |
Collapse
|
33
|
Azmy MS, Menze ET, El-Naga RN, Tadros MG. Neuroprotective Effects of Filgrastim in Rotenone-Induced Parkinson's Disease in Rats: Insights into its Anti-Inflammatory, Neurotrophic, and Antiapoptotic Effects. Mol Neurobiol 2018; 55:6572-6588. [PMID: 29327204 DOI: 10.1007/s12035-017-0855-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022]
Abstract
All current treatments of Parkinson's disease (PD) focus on enhancing the dopaminergic effects and providing symptomatic relief; however, they cannot delay the disease progression. Filgrastim, a recombinant methionyl granulocyte colony-stimulating factor, demonstrated neuroprotection in many neurodegenerative and neurological diseases. This study aimed to assess the neuroprotective effects of filgrastim in rotenone-induced rat model of PD and investigate the potential underlying mechanisms of filgrastim actions. The effects of two doses of filgrastim (20 and 40 μg/kg) on spontaneous locomotion, catalepsy, body weight, histology, and striatal dopamine (DA) content, as well as tyrosine hydroxylase (TH) and α-synuclein expression, were evaluated. Then, the effective dose was further tested for its potential anti-inflammatory, neurotrophic, and antiapoptotic effects. Filgrastim (40 μg/kg) prevented rotenone-induced motor deficits, weight reduction, striatal DA depletion, and histological damage. Besides, it significantly inhibited rotenone-induced decrease in TH expression and increase in α-synuclein immunoreactivity in the midbrains and striata of the rats. These effects were associated with reduction of rotenone-induced neuroinflammation, apoptosis, and brain-derived neurotrophic factor depletion. Collectively, these results suggest that filgrastim might be a good candidate for management of PD.
Collapse
Affiliation(s)
- Mariama S Azmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Esther T Menze
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Reem N El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
34
|
Tong H, Zhang X, Meng X, Lu L, Mai D, Qu S. Simvastatin Inhibits Activation of NADPH Oxidase/p38 MAPK Pathway and Enhances Expression of Antioxidant Protein in Parkinson Disease Models. Front Mol Neurosci 2018; 11:165. [PMID: 29872377 PMCID: PMC5972184 DOI: 10.3389/fnmol.2018.00165] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/01/2018] [Indexed: 11/13/2022] Open
Abstract
Evidence suggests that oxidative stress is involved in the pathogenesis of Parkinson disease (PD). Simvastatin has been suggested to protect against oxidative stress in several diseases. However, the molecular mechanisms by which simvastatin protects against neuropathology and oxidative damage in PD are poorly elucidated. In this study, we aimed to investigate the potential neuroprotective effects of simvastatin owing to its anti-oxidative properties in 6-hydroxydopamine (6-OHDA)-treated SH-SY5Y cells and mice. The results of 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence and CCK-8 assay demonstrated that simvastatin reduced intracellular reactive oxygen species (ROS) levels and reversed apoptosis in 6-OHDA-treated SH-SY5Y cells. Mechanistic studies revealed that 6-OHDA-induced activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase/p38 mitogen-activated protein kinase (MAPK) pathway was inhibited and nuclear factor-κB (NF-κB) nuclear transcription decreased in SH-SY5Y cells after simvastatin treatment. Enhanced expression levels of superoxide dismutase (SOD), heme oxygenase-1 (HO-1), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and glutamate-cysteine ligase modifier subunit (GCLM) were observed after simvastatin treatment in 6-OHDA-treated SH-SY5Y cells. In vivo studies revealed that administration of simvastatin by gavage decreased limb-use asymmetry and apomorphine-induced rotations in 6-OHDA-lesioned mice. Simvastatin increased dopaminergic neurons and reduced protein tyrosine nitration and gliosis in the midbrain of PD mice. An inhibitory effect on activation of the NADPH oxidase/p38 MAPK was observed, and increased antioxidant protein expression in the midbrain were seen in the simvastatin plus 6-OHDA group compared with the 6-OHDA-lesioned group. Taken together, these results demonstrate that simvastatin might inhibit the activation of NADPH oxidase/p38 MAPK pathway, enhance antioxidant protein expression and protect against oxidative stress, thereby providing a novel antioxidant mechanism that has therapeutic validity.
Collapse
Affiliation(s)
- Huichun Tong
- Clinical Medicine Research Center, Shunde Hospital, Southern Medical University, Foshan, China
| | - Xiuping Zhang
- Teaching Center of Experimental Medicine, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xingjun Meng
- Clinical Medicine Research Center, Shunde Hospital, Southern Medical University, Foshan, China
| | - Lingli Lu
- Clinical Medicine Research Center, Shunde Hospital, Southern Medical University, Foshan, China
| | - Dongmei Mai
- Clinical Medicine Research Center, Shunde Hospital, Southern Medical University, Foshan, China
| | - Shaogang Qu
- Clinical Medicine Research Center, Shunde Hospital, Southern Medical University, Foshan, China
| |
Collapse
|
35
|
Palle S, Neerati P. Improved neuroprotective effect of resveratrol nanoparticles as evinced by abrogation of rotenone-induced behavioral deficits and oxidative and mitochondrial dysfunctions in rat model of Parkinson's disease. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:445-453. [PMID: 29411055 DOI: 10.1007/s00210-018-1474-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/24/2018] [Indexed: 12/21/2022]
Abstract
The objective of the present study was to evaluate the protective effect of resveratrol nanoparticles (NRSV) against rotenone-induced neurodegeneration in rats. NRSV were prepared by temperature-controlled antisolvent precipitation method and characterized for its particle size, shape, and dissolution properties. Moreover, NRSV effects compared with the free resveratrol (RSV). Animals were divided into four groups: (I) control, (II) rotenone (2 mg/kg s.c.), (III) RSV (40 mg/kg, p.o.) + rotenone, and (IV) NRSV (40 mg/kg, p.o.) + rotenone. Animals received treatments 30 min before rotenone administration for a period of 35 days. Behavioral quantifications were done using rota rod test and rearing behavior after 24 h of last dose. Animals were euthanized, and mid brains were isolated for the estimation of tricarboxylic acid cycle enzymes, oxidative measures (lipid peroxidation (LPO), glutathione (GSH), and catalase), and complex-I activity. In addition, histopathological studies were also performed. Our results showed that chronic rotenone treatment causes motor deficits, decreased rearing behavior, mitochondrial dysfunction, and oxidative stress. Furthermore, histological analysis demonstrated neuronal degeneration in rotenone-treated rats. An important finding of the present study was NRSV showed comparatively better efficacy than the RSV treatment in attenuating the rotenone-induced Parkinson's like behavioral alterations, biochemical and histological changes, oxidative stress, and mitochondrial dysfunction in rats.
Collapse
Affiliation(s)
- Suresh Palle
- DMPK & Clinical Pharmacology Division, Department of Pharmacology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, TS, 506002, India
| | - Prasad Neerati
- DMPK & Clinical Pharmacology Division, Department of Pharmacology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, TS, 506002, India.
| |
Collapse
|
36
|
Wang J, Wang F, Wang Z, Li S, Chen L, Liu C, Sun D. Protective effect of GDNF-engineered amniotic fluid-derived stem cells on the renal ischaemia reperfusion injury in vitro. Cell Prolif 2017; 51:e12400. [PMID: 29114949 DOI: 10.1111/cpr.12400] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/25/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Amniotic fluid-derived stem cells (AFSCs) possessing multilineage differentiation potential are proposed as a novel and accessible source for cell-based therapy and tissue regeneration. Glial-derived neurotrophic factor (GDNF) has been hypothesized to promote the therapeutic effect of AFSCs on markedly ameliorating renal dysfunction. The aim of this study was to investigate whether AFSCs equipped with GDNF (GDNF-AFSCs) had capabilities of attenuating mouse renal tubular epithelial cells (mRTECs) apoptosis and evaluate its potential mechanisms. MATERIALS AND METHODS A hypoxia-reoxygenation (H/R) model of the mRTECs was established. Injured mRTECs were co-cultured with GDNF-AFSCs in a transwell system. The mRNA expressions of hepatocytes growth factor (HGF) and fibroblast growth factor (bFGF) were detected by qRT-PCR. Changes of intracelluar reactive oxygen species (ROS) and the level of superoxide dismutase (SOD) and malondialdehyde (MDA) were examined. The expressions of nitrotyrosine, Gp91-phox, Bax, and Bcl-2 were determined by Western blotting. Cell apoptosis was assayed by flow cytometry, and caspase-3 activity was monitored by caspase-3 activity assay kit. RESULTS Our study revealed that expression of growth factors was increased and oxidative stress was dramatically counteracted in GDNF-AFSCs-treated group. Furthermore, apoptosis induced by H/R injury was inhibited in mRTECs by GDNF-AFSCs. CONCLUSIONS These data indicated that GDNF-AFSCs are beneficial to repairing damaged mRTECs significantly in vitro, which suggests GDNF-AFSCs provide new hopes of innovative interventions in different kidney disease.
Collapse
Affiliation(s)
- Jia Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Fengzhen Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Pharmaceutics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhuojun Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shulin Li
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lu Chen
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Caixia Liu
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
37
|
New insights into the ameliorative effects of ferulic acid in pathophysiological conditions. Food Chem Toxicol 2017; 103:41-55. [PMID: 28237775 DOI: 10.1016/j.fct.2017.02.028] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 12/21/2022]
Abstract
Ferulic acid, a natural phytochemical has gained importance as a potential therapeutic agent by virtue of its easy commercial availability, low cost and minimal side-effects. It is a derivative of curcumin and possesses the necessary pharmacokinetic properties to be retained in the general circulation for several hours. The therapeutic effects of ferulic acid are mediated through its antioxidant and anti-inflammatory properties. It exhibits different biological activities such as anti-inflammatory, anti-apoptotic, anti-carcinogenic, anti-diabetic, hepatoprotective, cardioprotective, neuroprotective actions, etc. The current review addresses its therapeutic effects under different pathophysiological conditions (eg. cancer, cardiomyopathy, skin disorders, brain disorders, viral infections, diabetes etc.).
Collapse
|
38
|
Liu HF, Ho PWL, Leung GCT, Lam CSC, Pang SYY, Li L, Kung MHW, Ramsden DB, Ho SL. Combined LRRK2 mutation, aging and chronic low dose oral rotenone as a model of Parkinson's disease. Sci Rep 2017; 7:40887. [PMID: 28098219 PMCID: PMC5241661 DOI: 10.1038/srep40887] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/22/2016] [Indexed: 12/18/2022] Open
Abstract
Aging, genetics and environmental toxicity are important etiological factors in Parkinson’s disease (PD). However, its pathogenesis remains unclear. A major obstacle is the lack of an appropriate experimental model which incorporates genetic susceptibility, aging and prolonged environmental toxicity. Here, we explored the interplay amongst these factors using mutant LRRK2R1441G (leucine-rich-repeat-kinase-2) knockin mice. We found that mutant primary cortical and mesencephalic dopaminergic neurons were more susceptible to rotenone-induced ATP deficiency and cell death. Compared with wild-type controls, striatal synaptosomes isolated from young mutant mice exhibited significantly lower dopamine uptake after rotenone toxicity, due to reduced striatal synaptosomal mitochondria and synaptic vesicular proton pump protein (V-ATPase H) levels. Mutant mice developed greater locomotor deficits in open-field tests than wild-type mice following low oral rotenone doses given twice weekly over 50 weeks (half their lifespan). The increased locomotor deficit was associated with specific reduction in striatal mitochondrial Complex-I (NDUFS4) in rotenone-treated mutant but not in similarly treated wild-type mice. Our unique experimental model which incorporates genetic effect, natural aging and prolonged oral environmental toxicity administered to mutant knockin LRRK2 mice over half their life span, with observable and measurable phenotype, is invaluable in further studies of the pathogenic process and therapeutics of PD.
Collapse
Affiliation(s)
- Hui-Fang Liu
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong
| | - Philip Wing-Lok Ho
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong
| | | | - Colin Siu-Chi Lam
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong
| | - Shirley Yin-Yu Pang
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong
| | - Lingfei Li
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong
| | | | - David Boyer Ramsden
- Institute of Metabolism and Systems Research, University of Birmingham, United Kingdom
| | - Shu-Leong Ho
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong
| |
Collapse
|
39
|
The Role of Reactive Oxygen Species in the Pathogenesis of Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease: A Mini Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8590578. [PMID: 28116038 PMCID: PMC5223034 DOI: 10.1155/2016/8590578] [Citation(s) in RCA: 302] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/06/2016] [Accepted: 11/13/2016] [Indexed: 11/18/2022]
Abstract
Neurodegenerative diseases affect not only the life quality of aging populations, but also their life spans. All forms of neurodegenerative diseases have a massive impact on the elderly. The major threat of these brain diseases includes progressive loss of memory, Alzheimer's disease (AD), impairments in the movement, Parkinson's disease (PD), and the inability to walk, talk, and think, Huntington's disease (HD). Oxidative stress and mitochondrial dysfunction are highlighted as a central feature of brain degenerative diseases. Oxidative stress, a condition that occurs due to imbalance in oxidant and antioxidant status, has been known to play a vital role in the pathophysiology of neurodegenerative diseases including AD, PD, and HD. A large number of studies have utilized oxidative stress biomarkers to investigate the severity of these neurodegenerative diseases and medications are available, but these only treat the symptoms. In traditional medicine, a large number of medicinal plants have been used to treat the symptoms of these neurodegenerative diseases. Extensive studies scientifically validated the beneficial effect of natural products against neurodegenerative diseases using suitable animal models. This short review focuses the role of oxidative stress in the pathogenesis of AD, PD, and HD and the protective efficacy of natural products against these diseases.
Collapse
|
40
|
Kishore Kumar SN, Deepthy J, Saraswathi U, Thangarajeswari M, Yogesh Kanna S, Ezhil P, Kalaiselvi P. Morinda citrifolia mitigates rotenone-induced striatal neuronal loss in male Sprague-Dawley rats by preventing mitochondrial pathway of intrinsic apoptosis. Redox Rep 2016; 22:418-429. [PMID: 27882828 DOI: 10.1080/13510002.2016.1253449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVES Parkinson disease (PD) is a neurodegenerative disorder affecting mainly the motor system, as a result of death of dopaminergic neurons in the substantia nigra pars compacta. The present scenario of research in PD is directed to identify novel molecules that can be administered individually or co-administered with L-Dopa to prevent the L-Dopa-Induced Dyskinesia (LID) like states that arise during chronic L-Dopa administration. Hence, in this study, we investigated whether Morinda citrifolia has therapeutic effects in rotenone-induced Parkinson's disease (PD) with special reference to mitochondrial dysfunction mediated intrinsic apoptosis. METHODS Male Sprague-Dawley rats were stereotaxically infused with rotenone (3 µg in both SNPc and VTA) and co-treated with the ethyl acetate extract of Morinda citrifolia and levodopa. RESULTS The results revealed that rotenone-induced cell death was reduced by MCE treatment as measured by decline in the levels of pro-apoptotic proteins. Moreover, MCE treatment significantly augmented the levels of anti-apoptotic Bcl2 and blocks the release of cytochrome c, thereby alleviating the rotenone-induced dopaminergic neuronal loss, as evidenced by tyrosine hydroxylase (TH) immunostaining in the striatum. DISCUSSION Taken together, the results suggest that Morinda citrifolia may be beneficial for the treatment of neurodegenerative diseases like PD.
Collapse
Affiliation(s)
| | - Jayakumar Deepthy
- a Department of Medical Biochemistry , University of Madras , Taramani, Chennai , India
| | | | - Mohan Thangarajeswari
- a Department of Medical Biochemistry , University of Madras , Taramani, Chennai , India
| | | | | | | |
Collapse
|
41
|
Jiang T, Sun Q, Chen S. Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson's disease and Alzheimer's disease. Prog Neurobiol 2016; 147:1-19. [PMID: 27769868 DOI: 10.1016/j.pneurobio.2016.07.005] [Citation(s) in RCA: 425] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/19/2016] [Accepted: 07/11/2016] [Indexed: 12/14/2022]
Abstract
Oxidative stress reflects an imbalance between the overproduction and incorporation of free radicals and the dynamic ability of a biosystem to detoxify reactive intermediates. Free radicals produced by oxidative stress are one of the common features in several experimental models of diseases. Free radicals affect both the structure and function of neural cells, and contribute to a wide range of neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. Although the precise mechanisms that result in the degeneration of neurons and the relevant pathological changes remain unclear, the crucial role of oxidative stress in the pathogenesis of neurodegenerative diseases is associated with several proteins (such as α-synuclein, DJ-1, Amyloid β and tau protein) and some signaling pathways (such as extracellular regulated protein kinases, phosphoinositide 3-kinase/Protein Kinase B pathway and extracellular signal-regulated kinases 1/2) that are tightly associated with the neural damage. In this review, we present evidence, gathered over the last decade, concerning a variety of pathogenic proteins, their important signaling pathways and pathogenic mechanisms associated with oxidative stress in Parkinson's disease and Alzheimer's disease. Proper control and regulation of these proteins' functions and the related signaling pathways may be a promising therapeutic approach to the patients. We also emphasizes antioxidative options, including some new neuroprotective agents that eliminate excess reactive oxygen species efficiently and have a certain therapeutic effect; however, controversy surrounds some of them in terms of the dose and length of therapy. These agents require further investigation by clinical application in patients suffering Parkinson's disease and Alzheimer's disease.
Collapse
Affiliation(s)
- Tianfang Jiang
- Department of Neurology, Institute of Neurology and the Collaborative Innovation Center for Brain Science, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qian Sun
- Department of Neurology, Institute of Neurology and the Collaborative Innovation Center for Brain Science, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shengdi Chen
- Department of Neurology, Institute of Neurology and the Collaborative Innovation Center for Brain Science, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Laboratory of Neurodegenerative Diseases, Institute of Health Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Science & Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
42
|
Niedzielska E, Smaga I, Gawlik M, Moniczewski A, Stankowicz P, Pera J, Filip M. Oxidative Stress in Neurodegenerative Diseases. Mol Neurobiol 2016; 53:4094-4125. [PMID: 26198567 PMCID: PMC4937091 DOI: 10.1007/s12035-015-9337-5] [Citation(s) in RCA: 485] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/01/2015] [Indexed: 12/12/2022]
Abstract
The pathophysiologies of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD), are far from being fully explained. Oxidative stress (OS) has been proposed as one factor that plays a potential role in the pathogenesis of neurodegenerative disorders. Clinical and preclinical studies indicate that neurodegenerative diseases are characterized by higher levels of OS biomarkers and by lower levels of antioxidant defense biomarkers in the brain and peripheral tissues. In this article, we review the current knowledge regarding the involvement of OS in neurodegenerative diseases, based on clinical trials and animal studies. In addition, we analyze the effects of the drug-induced modulation of oxidative balance, and we explore pharmacotherapeutic strategies for OS reduction.
Collapse
Affiliation(s)
- Ewa Niedzielska
- Department of Toxicology, Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Irena Smaga
- Department of Toxicology, Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Maciej Gawlik
- Department of Toxicology, Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Andrzej Moniczewski
- Department of Toxicology, Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Piotr Stankowicz
- Department of Toxicology, Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Joanna Pera
- Department of Neurology, Faculty of Medicine, Jagiellonian University, Medical College, Botaniczna 3, 31-503, Krakow, Poland
| | - Małgorzata Filip
- Department of Toxicology, Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland.
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
43
|
da Rosa HS, Salgueiro ACF, Colpo AZC, Paula FR, Mendez ASL, Folmer V. Sida tuberculata (Malvaceae): a study based on development of extractive system and in silico and in vitro properties. Braz J Med Biol Res 2016; 49:S0100-879X2016000800602. [PMID: 27409335 PMCID: PMC4954737 DOI: 10.1590/1414-431x20165282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/28/2016] [Indexed: 11/29/2022] Open
Abstract
Sida tuberculata (Malvaceae) is a medicinal plant traditionally used in Brazil as an antimicrobial and anti-inflammatory agent. Here, we aimed to investigate the different extractive techniques on phytochemical parameters, as well as to evaluate the toxicity and antioxidant capacity of S. tuberculata extracts using in silico and in vitro models. Therefore, in order to determine the dry residue content and the main compound 20-hydroxyecdysone (20E) concentration, extracts from leaves and roots were prepared testing ethanol and water in different proportions. Extracts were then assessed by Artemia salina lethality test, and toxicity prediction of 20E was estimated. Antioxidant activity was performed by DPPH and ABTS radical scavenger assays, ferric reducing power assay, nitrogen derivative scavenger, deoxyribose degradation, and TBARS assays. HPLC evaluation detected 20E as main compound in leaves and roots. Percolation method showed the highest concentrations of 20E (0.134 and 0.096 mg/mL of extract for leaves and roots, respectively). All crude extracts presented low toxic potential on A. salina (LD50 >1000 µg/mL). The computational evaluation of 20E showed a low toxicity prediction. For in vitro antioxidant tests, hydroethanolic extracts of leaves were most effective compared to roots. In addition, hydroethanolic extracts presented a higher IC50 antioxidant than aqueous extracts. TBARS formation was prevented by leaves hydroethanolic extract from 0.015 and 0.03 mg/mL and for roots from 0.03 and 0.3 mg/mL on egg yolk and rat tissue, respectively (P<0.05). These findings suggest that S. tuberculata extracts are a considerable source of ecdysteroids and possesses a significant antioxidant property with low toxic potential.
Collapse
Affiliation(s)
- H S da Rosa
- Laboratório de Bioquímica e Toxicologia de Produtos Naturais e Sintéticos, Universidade Federal do Pampa, Uruguaiana, RS, Brasil
- Laboratório de Desenvolvimento e Controle de Qualidade em Medicamentos, Universidade Federal do Pampa, Uruguaiana, RS, Brasil
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, RS, Brasil
| | - A C F Salgueiro
- Laboratório de Bioquímica e Toxicologia de Produtos Naturais e Sintéticos, Universidade Federal do Pampa, Uruguaiana, RS, Brasil
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, RS, Brasil
| | - A Z C Colpo
- Laboratório de Bioquímica e Toxicologia de Produtos Naturais e Sintéticos, Universidade Federal do Pampa, Uruguaiana, RS, Brasil
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, RS, Brasil
| | - F R Paula
- Laboratório de Desenvolvimento e Controle de Qualidade em Medicamentos, Universidade Federal do Pampa, Uruguaiana, RS, Brasil
| | - A S L Mendez
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, RS, Brasil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - V Folmer
- Laboratório de Bioquímica e Toxicologia de Produtos Naturais e Sintéticos, Universidade Federal do Pampa, Uruguaiana, RS, Brasil
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, RS, Brasil
| |
Collapse
|
44
|
Asakawa T, Fang H, Sugiyama K, Nozaki T, Hong Z, Yang Y, Hua F, Ding G, Chao D, Fenoy AJ, Villarreal SJ, Onoe H, Suzuki K, Mori N, Namba H, Xia Y. Animal behavioral assessments in current research of Parkinson's disease. Neurosci Biobehav Rev 2016; 65:63-94. [PMID: 27026638 DOI: 10.1016/j.neubiorev.2016.03.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder, is traditionally classified as a movement disorder. Patients typically suffer from many motor dysfunctions. Presently, clinicians and scientists recognize that many non-motor symptoms are associated with PD. There is an increasing interest in both motor and non-motor symptoms in clinical studies on PD patients and laboratory research on animal models that imitate the pathophysiologic features and symptoms of PD patients. Therefore, appropriate behavioral assessments are extremely crucial for correctly understanding the mechanisms of PD and accurately evaluating the efficacy and safety of novel therapies. This article systematically reviews the behavioral assessments, for both motor and non-motor symptoms, in various animal models involved in current PD research. We addressed the strengths and weaknesses of these behavioral tests and their appropriate applications. Moreover, we discussed potential mechanisms behind these behavioral tests and cautioned readers against potential experimental bias. Since most of the behavioral assessments currently used for non-motor symptoms are not particularly designed for animals with PD, it is of the utmost importance to greatly improve experimental design and evaluation in PD research with animal models. Indeed, it is essential to develop specific assessments for non-motor symptoms in PD animals based on their characteristics. We concluded with a prospective view for behavioral assessments with real-time assessment with mobile internet and wearable device in future PD research.
Collapse
Affiliation(s)
- Tetsuya Asakawa
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan; Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan.
| | - Huan Fang
- Department of Pharmacy, Jinshan Hospital of Fudan University, Shanghai, China
| | - Kenji Sugiyama
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Takao Nozaki
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Zhen Hong
- Department of Neurology, Huashan Hospital of Fudan University, Shanghai, China
| | - Yilin Yang
- The First People's Hospital of Changzhou, Soochow University School of Medicine, Changzhou, China
| | - Fei Hua
- The First People's Hospital of Changzhou, Soochow University School of Medicine, Changzhou, China
| | - Guanghong Ding
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Dongman Chao
- Department of Neurosurgery, The University of Texas McGovern Medical School,Houston, TX, USA
| | - Albert J Fenoy
- Department of Neurosurgery, The University of Texas McGovern Medical School,Houston, TX, USA
| | - Sebastian J Villarreal
- Department of Neurosurgery, The University of Texas McGovern Medical School,Houston, TX, USA
| | - Hirotaka Onoe
- Functional Probe Research Laboratory, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Katsuaki Suzuki
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Norio Mori
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Hiroki Namba
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Ying Xia
- Department of Neurosurgery, The University of Texas McGovern Medical School,Houston, TX, USA.
| |
Collapse
|
45
|
Sengupta T, Vinayagam J, Singh R, Jaisankar P, Mohanakumar KP. Plant-Derived Natural Products for Parkinson's Disease Therapy. ADVANCES IN NEUROBIOLOGY 2016; 12:415-96. [PMID: 27651267 DOI: 10.1007/978-3-319-28383-8_23] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Plant-derived natural products have made their own niche in the treatment of neurological diseases since time immemorial. Parkinson's disease (PD), the second most prevalent neurodegenerative disorder, has no cure and the treatment available currently is symptomatic. This chapter thoughtfully and objectively assesses the scientific basis that supports the increasing use of these plant-derived natural products for the treatment of this chronic and progressive disorder. Proper considerations are made on the chemical nature, sources, preclinical tests and their validity, and mechanisms of behavioural or biochemical recovery observed following treatment with various plants derived natural products relevant to PD therapy. The scientific basis underlying the neuroprotective effect of 6 Ayurvedic herbs/formulations, 12 Chinese medicinal herbs/formulations, 33 other plants, and 5 plant-derived molecules have been judiciously examined emphasizing behavioral, cellular, or biochemical aspects of neuroprotection observed in the cellular or animal models of the disease. The molecular mechanisms triggered by these natural products to promote cell survivability and to reduce the risk of cellular degeneration have also been brought to light in this study. The study helped to reveal certain limitations in the scenario: lack of preclinical studies in all cases barring two; heavy dependence on in vitro test systems; singular animal or cellular model to establish any therapeutic potential of drugs. This strongly warrants further studies so as to reproduce and confirm these reported effects. However, the current literature offers scientific credence to traditionally used plant-derived natural products for the treatment of PD.
Collapse
Affiliation(s)
- T Sengupta
- Division of Cell Biology & Physiology, Indian Institute of Chemical Biology (CSIR, Govt of India), 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700 032, India
| | - J Vinayagam
- Division of Chemistry, Indian Institute of Chemical Biology (CSIR, Govt of India), 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - R Singh
- Division of Cell Biology & Physiology, Indian Institute of Chemical Biology (CSIR, Govt of India), 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700 032, India
| | - P Jaisankar
- Division of Chemistry, Indian Institute of Chemical Biology (CSIR, Govt of India), 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - K P Mohanakumar
- Division of Cell Biology & Physiology, Indian Institute of Chemical Biology (CSIR, Govt of India), 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700 032, India. .,Inter University Centre for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board PO, Kottayam, 686009, Kerala, India.
| |
Collapse
|
46
|
Dinda B, Das N, Dinda S, Dinda M, SilSarma I. The genus Sida L. - A traditional medicine: Its ethnopharmacological, phytochemical and pharmacological data for commercial exploitation in herbal drugs industry. JOURNAL OF ETHNOPHARMACOLOGY 2015; 176:135-176. [PMID: 26497766 DOI: 10.1016/j.jep.2015.10.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/17/2015] [Accepted: 10/17/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sida L. (Malvaceae) has been used for centuries in traditional medicines in different countries for the prevention and treatment of different diseases such as diarrhea, dysentery, gastrointestinal and urinary infections, malarial and other fevers, childbirth and miscarriage problems, skin ailments, cardiac and neural problems, asthma, bronchitis and other respiratory problems, weight loss aid, rheumatic and other inflammations, tuberculosis, etc. AIMS OF THIS REVIEW To assess the scientific evidence for therapeutic potential of Sida L. and to identify the gaps of future research needs. METHODS The available information on the ethnomedicinal uses, phytochemistry, pharmacology and toxicology of Sida species was collected via a library and electronic searches in SciFinder, PubMed, ScienceDirect, Google Scholar for the period, 1933-2015. RESULTS A variety of ethnomedicinal uses of Sida species have been found in India, China, Afrian and American countries. Phytochemical investigation of this genus has resulted in identification of about 142 chemical constituents, among which alkaloids, flavonoids and ecdysteroids are the predominant groups. The crude extracts and isolates have exhibited a wide spectrum of in vitro and in vivo pharmacological effects involving antimicrobial, analgesic, anti-inflammatory, abortifacient, neuroprotective, cardiovascular and cardioprotective, antimalarial, antitubercular, antidiabetic and antiobesity, antioxidant and nephroprotective activities among others. Ethnopharmacological preparations containing Sida species as an ingredient in India, African and American countries possess good efficacy in health disorders. From the toxicity perspective, only three Sida species have been assessed and found safe for oral use in rats. CONCLUSIONS Pharmacological results supported some of the uses of Sida species in the traditional medicine. Alkaloids, flavonoids, other phenolics and ecdysteroids were perhaps responsible for the activities of extracts of the plants of this genus. No clinical study was reported. The detailed study on mechanism of action of isolates and extracts and their clinical study are needed for their use in modern medicine. More attention should be paid to Sida acuta, Sida cordifolia, Sida spinosa, Sida rhombifolia and Sida veronicaefolia in the domain of diarrhea, dysentery, gastrointestinal and urinary infections, skin ailments, asthma, bronchitis and other respiratory problems, malaria, childbirth and miscarriage problems, cardiac and neural problems, weight loss aid, and rheumatic and other inflammations, etc. Furthermore, detailed study on quality and safety assurance data on available ethnopharmacological preparations is needed for their commercial exploitation in local and global markets.
Collapse
Affiliation(s)
- Biswanath Dinda
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala 799022, Tripura, India.
| | - Niranjan Das
- Department of Chemistry, Netaji Subhas Mahavidyalaya, Udaipur 799114, Gomati Tripura, India
| | - Subhajit Dinda
- Department of Chemistry, Dasaratha Deb Memorial College, Lalchera, Khowai 799201, Tripura, India
| | - Manikarna Dinda
- Department of Life Science and Biotechnology, Jadavpur University, Jadavpur, Kolkata 700032, India
| | - Indrajit SilSarma
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala 799022, Tripura, India
| |
Collapse
|
47
|
Lin WC, Chou KH, Lee PL, Huang YC, Tsai NW, Chen HL, Cheng KY, Wang HC, Lin TK, Li SH, Chen MH, Lu CH, Lin CP. Brain mediators of systemic oxidative stress on perceptual impairments in Parkinson's disease. J Transl Med 2015; 13:386. [PMID: 26692087 PMCID: PMC4687285 DOI: 10.1186/s12967-015-0749-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/04/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is well documented to be associated with elevated systemic oxidative stress and perceptual impairments. Furthermore, the striatum and extrastriatal cortical areas, which are involved in the coordination of perceptual functions, are impaired at an early stage of the disease. However, the possible pathophysiology involved in perceptual impairments remains unclear. This raises the possibility that structural abnormalities might mediate the relationship between oxidative stress and perceptual impairments. METHODS We explored the differences between 27 patients with PD and 25 healthy controls in terms of serum oxidative stress, perceptual functions, and regional gray matter. A single-level three-variable mediation model was used to investigate the possible relationships between serum oxidative stress, regional gray matter volume, and different domains of perceptual functioning. RESULTS The results demonstrate that increased serum oxidative stress (as indicated by thiobarbituric acid reactive substances) was associated with declined perceptual functioning in PD patients. We further explored significant gray matter volume reductions in the bilateral temporal gyri (middle temporal gyrus and fusiform gyrus), bilateral frontal gyri, limbic lobe (hippocampus and uncus), left inferior parietal lobule, right caudate nucleus, and insula in PD. Further mediation analysis showed that gray matter volumes in the middle temporal gyrus, inferior parietal lobule, hippocampus, and insula served as brain mediators between elevated serum oxidative stress and perceptual impairments. CONCLUSIONS These results suggest that higher oxidative stress levels adversely impact perceptual functions by causing temporal and mesolimbic abnormalities.
Collapse
Affiliation(s)
- Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Kun-Hsien Chou
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.
| | - Pei-Lin Lee
- Department of Biomedical Imaging and Radiological Sciences, Institute of Neuroscience, National Yang-Ming University, 155 Li-Nong St., Sec. 2, Peitou, Taipei, Taiwan.
| | - Yung-Cheng Huang
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Nai-Wen Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123, Ta Pei Road, Niao Sung, Kaohsiung, Taiwan.
| | - Hsiu-Ling Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan. .,Department of Biomedical Imaging and Radiological Sciences, Institute of Neuroscience, National Yang-Ming University, 155 Li-Nong St., Sec. 2, Peitou, Taipei, Taiwan.
| | - Kuei-Yueh Cheng
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123, Ta Pei Road, Niao Sung, Kaohsiung, Taiwan.
| | - Hung-Chen Wang
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Tsu-Kung Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123, Ta Pei Road, Niao Sung, Kaohsiung, Taiwan.
| | - Shau-Hsuan Li
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Meng-Hsiang Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Cheng-Hsien Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123, Ta Pei Road, Niao Sung, Kaohsiung, Taiwan.
| | - Ching-Po Lin
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan. .,Department of Biomedical Imaging and Radiological Sciences, Institute of Neuroscience, National Yang-Ming University, 155 Li-Nong St., Sec. 2, Peitou, Taipei, Taiwan.
| |
Collapse
|
48
|
Santhosh Kumar J, Krishna V, Seethapathy G, Senthilkumar U, Ragupathy S, Ganeshaiah K, Ganesan R, Newmaster SG, Ravikanth G, Uma Shaanker R. DNA barcoding to assess species adulteration in raw drug trade of “Bala” (genus: Sida L.) herbal products in South India. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.07.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Abdelsalam RM, Safar MM. Neuroprotective effects of vildagliptin in rat rotenone Parkinson's disease model: role of RAGE-NFκB and Nrf2-antioxidant signaling pathways. J Neurochem 2015; 133:700-7. [DOI: 10.1111/jnc.13087] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 02/25/2015] [Accepted: 03/02/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Rania M. Abdelsalam
- Faculty of Pharmacy; Department of Pharmacology and Toxicology; Cairo University; Cairo Egypt
| | - Marwa M. Safar
- Faculty of Pharmacy; Department of Pharmacology and Toxicology; Cairo University; Cairo Egypt
| |
Collapse
|
50
|
Protective effects of poly (butyl) cyanoacrylate nanoparticles containing vasoactive intestinal peptide against 6-hydroxydopamine-induced neurotoxicity in vitro. J Mol Neurosci 2014; 55:854-64. [PMID: 25326789 DOI: 10.1007/s12031-014-0438-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 09/29/2014] [Indexed: 12/25/2022]
Abstract
The present study investigated brain delivery system of vasoactive intestinal peptide (VIP) adsorbed on poly (butyl cyanoacrylate) nanoparticles coated with polysorbate 80 (P80-poly (butyl) cyanoacrylate (PBCA)-nanoparticles (NPs)) and the neuroprotective effects on the formulation in the model of 6-hydroxydopamine (6-OHDA)-induced Parkinsonian dysfunction in the human neuroblastoma cell line SH-SY5Y. Drug-loaded nanoparticles were prepared by emulsion polymerization method using VIP and PBCA and then stirring with polysorbate 80. The resulting nanoparticles possessed high entrapment efficiency and favorable stability against CaCl2 or fetal bovine serum (FBS)-induced aggregation. Use of fluorescein isothiocyanate (FITC)-conjugated polysorbate 80-PBCA nanoparticles in confocal microscopy revealed that nanoparticles are located inside, while the FITC solution could not penetrate into the cells. The blank nanoparticles showed no significant effects on cell viability, indicating that they had no role in protection; however, polysorbate 80-modified VIP-loading PBCA nanoparticles showed enhanced cell viability compared to free VIP in 6-OHDA-mimic cellular model of Parkinson's disease. In addition, the nanoparticles strikingly increased the anti-apoptosis activity and restored the loss of mitochondrial membrane potential (MMP) significantly after the treatment of 6-OHDA. These results demonstrated that the activity of VIP was enhanced by polysorbate 80-PBCA nanoparticles compared to control solutions, suggesting that PBCA nanoparticles coated with polysorbate 80 could be an effective carrier system for VIP.
Collapse
|