1
|
Santovito A, Lambertini M, Schleicherová D, Mirone E, Nota A. Cellular and Genomic Instability Induced by the Herbicide Glufosinate-Ammonium: An In Vitro and In Vivo Approach. Cells 2024; 13:909. [PMID: 38891041 PMCID: PMC11172084 DOI: 10.3390/cells13110909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Glufosinate-ammonium (GLA), an organophosphate herbicide, is released at high concentrations in the environment, leading to concerns over its potential genotoxic effects. However, few articles are available in the literature reporting the possible cellular and nuclear effects of this compound. We assessed, by in vitro and in vivo micronucleus assays, the genotoxicity of GLA on cultured human lymphocytes and Lymnaea stagnalis hemocytes at six concentrations: 0.010 (the established acceptable daily intake value), 0.020, 0.050, 0.100, 0.200, and 0.500 µg/mL. In human lymphocytes, our results reveal a significant and concentration-dependent increase in micronuclei frequency at concentrations from 0.100 to 0.500 μg/mL, while in L. stagnalis hemocytes, significant differences were found at 0.200 and 0.500 μg/mL. A significant reduction in the proliferation index was observed at all tested concentrations, with the only exception of 0.010 μg/mL, indicating that the exposure to GLA could lead to increased cytotoxic effects. In L. stagnalis, a significant reduction in laid eggs and body growth was also observed at all concentrations. In conclusion, we provided evidence of the genomic and cellular damage induced by GLA on both cultured human lymphocytes and a model organism's hemocytes; in addition, we also demonstrated its effects on cell proliferation and reproductive health in L. stagnalis.
Collapse
Affiliation(s)
- Alfredo Santovito
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy; (A.S.); (D.S.)
| | - Mattia Lambertini
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy;
| | - Dáša Schleicherová
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy; (A.S.); (D.S.)
| | - Enrico Mirone
- Department of Biosciences and Territory, University of Molise, Via Francesco De Sanctis 1, 86100 Campobasso, Italy;
| | - Alessandro Nota
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
2
|
Dong J, Hu Y, Su X, Yao Y, Zhou Q, Gao M. Low-background interference detection of glyphosate, glufosinate, and AMPA in foods using UPLC-MS/MS without derivatization. Anal Bioanal Chem 2024; 416:1561-1570. [PMID: 38285227 DOI: 10.1007/s00216-024-05158-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/30/2024]
Abstract
The abuse of herbicides has emerged as a great threat to food security. Herein, a low-background interference detection method based on UPLC-MS was developed for the simultaneous determination of glufosinate, glyphosate, and its metabolite aminomethylphosphonic acid (AMPA) in foods. Initially, this study proposed a simple and rapid pretreatment method, utilizing water extraction and PRiME HLB purification to isolate glyphosate, glufosinate, and AMPA from food samples. After the optimization of pretreatment conditions, the processed samples are then analyzed directly by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) without pre-column derivatization. The method can effectively reduce interference from by-products of pre-column derivatization and background substrates of food sample, showing low matrix effects (ME) ranging from - 24.83 to 32.10%. Subsequently, the method has been validated by 13 kinds of food samples. The recoveries of the three herbicides in the food samples range from 84.2 to 115.6%. The limit of detection (LOD) is lower to 0.073 mg/kg, 0.017 mg/kg, and 0.037 mg/kg, respectively. Moreover, the method shows an excellent reproducibility with relative standard deviations (RSD) within 16.9%. Thus, the method can provide high trueness, reproducibility, sensitivity, and interference-free detection to ensure human health safety.
Collapse
Affiliation(s)
- Jun Dong
- Institute of Environment and Safety, Wuhan Academy of Agricultural Sciences, Wuhan, 430070, China
| | - YiQing Hu
- Institute of Environment and Safety, Wuhan Academy of Agricultural Sciences, Wuhan, 430070, China
| | - XiaoLu Su
- Institute of Environment and Safety, Wuhan Academy of Agricultural Sciences, Wuhan, 430070, China
| | - YanXing Yao
- Institute of Environment and Safety, Wuhan Academy of Agricultural Sciences, Wuhan, 430070, China
| | - Qian Zhou
- Institute of Environment and Safety, Wuhan Academy of Agricultural Sciences, Wuhan, 430070, China
| | - MengYue Gao
- Institute of Environment and Safety, Wuhan Academy of Agricultural Sciences, Wuhan, 430070, China.
| |
Collapse
|
3
|
Izumi H, Demura M, Imai A, Ogawa R, Fukuchi M, Okubo T, Tabata T, Mori H, Yoshida T. Developmental synapse pathology triggered by maternal exposure to the herbicide glufosinate ammonium. Front Mol Neurosci 2023; 16:1298238. [PMID: 38098940 PMCID: PMC10720911 DOI: 10.3389/fnmol.2023.1298238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Environmental and genetic factors influence synapse formation. Numerous animal experiments have revealed that pesticides, including herbicides, can disturb normal intracellular signals, gene expression, and individual animal behaviors. However, the mechanism underlying the adverse outcomes of pesticide exposure remains elusive. Herein, we investigated the effect of maternal exposure to the herbicide glufosinate ammonium (GLA) on offspring neuronal synapse formation in vitro. Cultured cerebral cortical neurons prepared from mouse embryos with maternal GLA exposure demonstrated impaired synapse formation induced by synaptic organizer neuroligin 1 (NLGN1)-coated beads. Conversely, the direct administration of GLA to the neuronal cultures exhibited negligible effect on the NLGN1-induced synapse formation. The comparison of the transcriptomes of cultured neurons from embryos treated with maternal GLA or vehicle and a subsequent bioinformatics analysis of differentially expressed genes (DEGs) identified "nervous system development," including "synapse," as the top-ranking process for downregulated DEGs in the GLA group. In addition, we detected lower densities of parvalbumin (Pvalb)-positive neurons at the postnatal developmental stage in the medial prefrontal cortex (mPFC) of offspring born to GLA-exposed dams. These results suggest that maternal GLA exposure induces synapse pathology, with alterations in the expression of genes that regulate synaptic development via an indirect pathway distinct from the effect of direct GLA action on neurons.
Collapse
Affiliation(s)
- Hironori Izumi
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Maina Demura
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Ayako Imai
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Ryohei Ogawa
- Department of Radiology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Mamoru Fukuchi
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, Gunma, Japan
| | - Taisaku Okubo
- Laboratory for Biological Information Processing, Faculty of Engineering, University of Toyama, Toyama, Japan
| | - Toshihide Tabata
- Laboratory for Biological Information Processing, Faculty of Engineering, University of Toyama, Toyama, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Research Center for Pre-Disease Science, University of Toyama, Toyama, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
4
|
Zhang Y, Dang Y, Pei F, Yuan Y, Yuan J, Gu Z, Wang J. Sub-acute toxicity of the herbicide glufosinate-ammonium exposure in adult red swamp crayfish (Procambarus clarkii). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122605. [PMID: 37742863 DOI: 10.1016/j.envpol.2023.122605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Glufosinateammonium (GLA) is one of the most widely used agricultural herbicides. It is frequently detected in surface waters near farmland and may pose a risk to non-target aquatic species. This study aimed to explore the toxicity of subacute GLA exposure in crayfish. Adult red swamp crayfish were exposed to GLA (0, 1, 10, and 100 mg/L) for 21 days. Bioaccumulation, oxidative stress, nonspecific immunity, and the expression of genes encoding xenobiotic detoxification-related enzymes were examined. The results showed GLA accumulation and hepatopancreatic histopathological changes (dilation of hepatic tubules and vacuolation of hepatocytes) in the exposed crayfish. GLA exposure induced ROS production, inhibited glutathione expression, and catalase activity in the crayfish hepatopancreas, as well as inhibited immunoenzyme expression (acid phosphatase, alkaline phosphatase, and lysozyme) in the hemolymph. In addition, the total hemocyte number decreased, and the proportion of hemocyte subsets changed significantly. Superoxide dismutase first increased and then decreased with increasing GLA dosage. GLA promoted the expression of biotransformation enzymes (cypb5, gst) in the hepatopancreas. Our results suggest that subacute GLA exposure caused structural damage to the hepatopancreatic tissue and decreased antioxidant capacity and non-specific immunity in crayfish. These findings provide insight into the toxicity of herbicides on non-target organisms.
Collapse
Affiliation(s)
- Yang Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Fucheng Pei
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongchao Yuan
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junfa Yuan
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Zemao Gu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Haslea ostrearia Pigment Marennine Affects Key Actors of Neuroinflammation and Decreases Cell Migration in Murine Neuroglial Cell Model. Int J Mol Sci 2023; 24:ijms24065388. [PMID: 36982463 PMCID: PMC10049552 DOI: 10.3390/ijms24065388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Haslea ostrearia, a cosmopolitan marine pennate diatom, produces a characteristic blue pigment called marennine that causes the greening of filter-feeding organisms, such as oysters. Previous studies evidenced various biological activities of purified marennine extract, such as antibacterial, antioxidant and antiproliferative effects. These effects could be beneficial to human health. However, the specific biological activity of marennine remains to be characterized, especially regarding primary cultures of mammals. In the present study, we aimed to determine in vitro the effects of a purified extract of marennine on neuroinflammatory and cell migratory processes. These effects were assessed at non-cytotoxic concentrations of 10 and 50μg/mL on primary cultures of neuroglial cells. Marennine strongly interacts with neuroinflammatory processes in the immunocompetent cells of the central nervous system, represented by astrocytes and microglial cells. An anti-migratory activity based on a neurospheres migration assay has also been observed. These results encourage further study of Haslea blue pigment effects, particularly the identification of molecular and cellular targets affected by marennine, and strengthen previous studies suggesting that marennine has bioactivities which could be beneficial for human health applications.
Collapse
|
6
|
Méresse S, Larrigaldie V, Oummadi A, de Concini V, Morisset-Lopez S, Reverchon F, Menuet A, Montécot-Dubourg C, Mortaud S. β-N-Methyl-Amino-L-Alanine cyanotoxin promotes modification of undifferentiated cells population and disrupts the inflammatory status in primary cultures of neural stem cells. Toxicology 2022; 482:153358. [DOI: 10.1016/j.tox.2022.153358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
|
7
|
Pallier PN, Ferrara M, Romagnolo F, Ferretti MT, Soreq H, Cerase A. Chromosomal and environmental contributions to sex differences in the vulnerability to neurological and neuropsychiatric disorders: Implications for therapeutic interventions. Prog Neurobiol 2022; 219:102353. [PMID: 36100191 DOI: 10.1016/j.pneurobio.2022.102353] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Neurological and neuropsychiatric disorders affect men and women differently. Multiple sclerosis, Alzheimer's disease, anxiety disorders, depression, meningiomas and late-onset schizophrenia affect women more frequently than men. By contrast, Parkinson's disease, autism spectrum condition, attention-deficit hyperactivity disorder, Tourette's syndrome, amyotrophic lateral sclerosis and early-onset schizophrenia are more prevalent in men. Women have been historically under-recruited or excluded from clinical trials, and most basic research uses male rodent cells or animals as disease models, rarely studying both sexes and factoring sex as a potential source of variation, resulting in a poor understanding of the underlying biological reasons for sex and gender differences in the development of such diseases. Putative pathophysiological contributors include hormones and epigenetics regulators but additional biological and non-biological influences may be at play. We review here the evidence for the underpinning role of the sex chromosome complement, X chromosome inactivation, and environmental and epigenetic regulators in sex differences in the vulnerability to brain disease. We conclude that there is a pressing need for a better understanding of the genetic, epigenetic and environmental mechanisms sustaining sex differences in such diseases, which is critical for developing a precision medicine approach based on sex-tailored prevention and treatment.
Collapse
Affiliation(s)
- Patrick N Pallier
- Blizard Institute, Centre for Neuroscience, Surgery and Trauma, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | - Maria Ferrara
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, United States; Women's Brain Project (WBP), Switzerland
| | - Francesca Romagnolo
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Hermona Soreq
- The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, 9190401, Israel
| | - Andrea Cerase
- EMBL-Rome, Via Ramarini 32, 00015 Monterotondo, RM, Italy; Blizard Institute, Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; Department of Biology, University of Pisa, SS12 Abetone e Brennero 4, 56127 Pisa, Italy.
| |
Collapse
|
8
|
Wang Y, Gao W, Li Y, Xiao Y, Song W, Yao T, Cheng M, Wang W, Hou R. Establishment of a HPLC-MS/MS Detection Method for Glyphosate, Glufosinate-Ammonium, and Aminomethyl Phosphoric Acid in Tea and Its Use for Risk Exposure Assessment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7969-7978. [PMID: 34232658 DOI: 10.1021/acs.jafc.1c01757] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The tea shrub is grown in long-standing orchards, an environment that is suitable for persistent weed growth, which is increasingly controlled by herbicides. Therefore, there is increasing concern that tea consumers may be exposed to herbicide residues. In this study, the levels of glufosinate-ammonium (GLU), glyphosate [N-(phosphonomethyl) glycine; PMG], and its metabolite aminomethyl phosphoric acid (AMPA) were determined in tea samples by HPLC-MS/MS using several current purification methods and a new method that we developed herein. The matrix effect of our proposed method was between -27.3 and 27.7%, which was lower than that in other methods, indicating that this method effectively reduced the interference of tea matrix in the mass spectrometry process. This method was used to determine the levels of PMG, GLU, and AMPA in 780 samples, including six traditional Chinese teas (green tea, black tea, oolong tea, dark tea, white tea, and yellow tea) and a floral tea, from 14 provinces of China. Probability estimates showed that the 95th percentile risk entropy values of the three pesticide residues were far below the acceptable risk level. The risk assessment results showed that exposure to PMG, GLU, and AMPA caused by drinking tea beverages poses no significant risk to human health.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Tea Plant Biology and Utilization; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
- Analysis and Testing Center, Huangshan University, Huangshan 245000, China
| | - Wanjun Gao
- State Key Laboratory of Tea Plant Biology and Utilization; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yeyun Li
- State Key Laboratory of Tea Plant Biology and Utilization; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yu Xiao
- Hefei Customs District Technical Center, Anhui Key Lab of Analysis and Detection for Food Safety, Hefei 230022, China
| | - Wei Song
- Hefei Customs District Technical Center, Anhui Key Lab of Analysis and Detection for Food Safety, Hefei 230022, China
| | - Ting Yao
- Analysis and Testing Center, Huangshan University, Huangshan 245000, China
| | - Manhuan Cheng
- Analysis and Testing Center, Huangshan University, Huangshan 245000, China
| | - Wenjuan Wang
- Analysis and Testing Center, Huangshan University, Huangshan 245000, China
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
9
|
Wang Y, Lafon PA, Salvador-Prince L, Gines AR, Trousse F, Torrent J, Prevostel C, Crozet C, Liu J, Perrier V. Prenatal exposure to low doses of fungicides corrupts neurogenesis in neonates. ENVIRONMENTAL RESEARCH 2021; 195:110829. [PMID: 33548298 DOI: 10.1016/j.envres.2021.110829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Neurogenesis plays a crucial role during neurodevelopment and its dysfunction can lead to neurodevelopmental disorders. A recent hypothesis stipulates that exogenous factors could corrupt this process and predispose to neurodegenerative disorders later in life. The presence of pesticide residues in the diet represents a threat of which we have recently become aware of. Indeed, they could corrupt neurogenesis, especially during gestation, potentially leading to impaired neuronal and synaptic functions. Since the effects of this low-noise contamination have not yet been evaluated on the neurodevelopment, we investigated the impact of fungicide residues on WT mice exposed throughout gestation. Thus, mice were exposed to fungicides, cyprodinil, mepanipyrim and pyrimethanil, alone at 0.1 μg/L during gestation until P3. Besides, another group was exposed to a cocktail of these three fungicides (0.1 μg/L each) for the same time. Exposure was performed through drinking water at the regulatory limit dose of the European countries (0.1 μg/L). No general toxicity was observed in neonates on body and brain weight upon fungicide exposure. However, results showed that gestational exposure to fungicide residues substantially promoted an increase of neural precursor cells at P3. This corrupted neurogenesis was linked to increased levels of β-catenin, likely through the crosstalk of the PI3K/Akt and Wnt/β-catenin pathways, both involved in cell proliferation. Fungicide exposure also altered protein expression of PSD95 and NMDA receptors in P3 neonates, two targets of the β-catenin signaling pathway. Adult neural stem cell extractions from mice treated with the fungicide cocktail, showed an increase proliferation and differentiation combined with a reduction of their migration properties. In addition, in vitro studies on hippocampal primary cell cultures treated with various concentrations of fungicides showed neurotoxic effects. To conclude, corruption of neurogenesis by this chemical assault could be a fertile ground for the development of neurological diseases later in life.
Collapse
Affiliation(s)
- Yunyun Wang
- Cellular Signalling Laboratory, International Research Centre for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China; MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France
| | - Pierre-André Lafon
- Cellular Signalling Laboratory, International Research Centre for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China; MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France
| | - Lucie Salvador-Prince
- MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France; INM, Univ Montpellier, INSERM, CNRS, Montpellier, France
| | - Aroa Relano Gines
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | | | - Joan Torrent
- MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France; INM, Univ Montpellier, INSERM, CNRS, Montpellier, France
| | | | - Carole Crozet
- INM, Univ Montpellier, INSERM, CNRS, Montpellier, France; IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Jianfeng Liu
- Cellular Signalling Laboratory, International Research Centre for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Véronique Perrier
- MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France; INM, Univ Montpellier, INSERM, CNRS, Montpellier, France.
| |
Collapse
|
10
|
Benbrook CM, Davis DR. The dietary risk index system: a tool to track pesticide dietary risks. Environ Health 2020; 19:103. [PMID: 33050918 PMCID: PMC7557078 DOI: 10.1186/s12940-020-00657-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/15/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND For years the United States Department of Agriculture's Pesticide Data Program and the United Kingdom's Food Standards Agency have published annual or quarterly data on pesticide residues in foods. Both programs report residues in conventionally grown, organic, and imported foods. The US program has tested about 288,000 food samples since 1992, primarily fruits and vegetables consumed by children. Since 1999 the UK has tested about 72,000 samples of a wider range of foods. These data are vital inputs in tracking trends in pesticide dietary risks. METHODS The Dietary Risk Index (DRI) system facilitates detailed analyses of US and UK pesticide residue data, trends, and chronic risk distributions. The DRI value for a pesticide is the dietary intake of that pesticide from a single serving of food divided by the pesticide's acceptable daily intake as set by the US Environmental Protection Agency. It can be calculated based on average annual residue concentrations, and on residue levels in individual samples of food. DRI values can be aggregated over multiple pesticides in single foods, and over individual pesticides in multiple foods. RESULTS The DRI system provides insights into the levels, trends, and distribution of pesticide dietary risk across most widely consumed foods. By drawing on both US Pesticide Data Program and UK-Food Standards Agency residue data, the DRI is capable of assessing pesticide risks in a significant portion of the global food supply. Substantial reductions in pesticide dietary risks occurred in the early 2000s, primarily from replacement of organophosphate insecticides with seemingly lower-risk neonicotinoids. However, there remain several areas of concern and opportunities to reduce risks. Both herbicide and fungicide dietary risks are rising. Organically grown produce poses risks far lower than corresponding, conventionally grown produce. Risk differences are inconsistent between domestic and imported foods. CONCLUSIONS The surest ways to markedly reduce pesticide dietary risks are to shift relatively high-risk fruits and vegetables to organic production. For other foods, reducing reliance on pesticides overall, and especially high-risk pesticides, will incrementally lower risks. The DRI system can help focus such efforts and track progress in reducing pesticide dietary risk.
Collapse
Affiliation(s)
- Charles M. Benbrook
- Benbrook Consulting Services, 10526 SE Vashon Vista Drive, Port Orchard, WA 98367 USA
| | - Donald R. Davis
- Biochemical Institute, The University of Texas, Austin, TX 78712 USA
| |
Collapse
|
11
|
Dong T, Guan Q, Hu W, Zhang M, Zhang Y, Chen M, Wang X, Xia Y. Prenatal exposure to glufosinate ammonium disturbs gut microbiome and induces behavioral abnormalities in mice. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122152. [PMID: 32004847 DOI: 10.1016/j.jhazmat.2020.122152] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Glufosinate ammonium (GLA) is a widely used organophosphate herbicide, which could be commonly detected in body fluids of both pregnant women and newborns. Existing evidences indicate that GLA has reproductive toxicity, while data concerning the effects of prenatal GLA exposure on neurodevelopment is rather limited. Here we employed a mouse model exposed to GLA prenatally. Reduced locomotor activity, impaired memory formation and autism-like behaviors were observed in the treatment group. Marked alteration in gut microbiome of the treatment offspring mice could be found at 4th week, and seemed to recover over time. Fecal metabolomics analysis indicated remarkable changes in microbiome-related metabolism in the treatment group, which could be the cause of behavioral abnormality in mice. Present study suggested that prenatal exposure to GLA disturbed gut microbiome and metabolism, and thereby induced behavioral abnormalities in mice.
Collapse
Affiliation(s)
- Tianyu Dong
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Quanquan Guan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Weiyue Hu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mingzhi Zhang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yuqing Zhang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
12
|
Neuropathological Mechanisms Associated with Pesticides in Alzheimer's Disease. TOXICS 2020; 8:toxics8020021. [PMID: 32218337 PMCID: PMC7355712 DOI: 10.3390/toxics8020021] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/14/2020] [Accepted: 03/22/2020] [Indexed: 12/12/2022]
Abstract
Environmental toxicants have been implicated in neurodegenerative diseases, and pesticide exposure is a suspected environmental risk factor for Alzheimer’s disease (AD). Several epidemiological analyses have affirmed a link between pesticides and incidence of sporadic AD. Meanwhile, in vitro and animal models of AD have shed light on potential neuropathological mechanisms. In this paper, a perspective on neuropathological mechanisms underlying pesticides’ induction of AD is provided. Proposed mechanisms range from generic oxidative stress induction in neurons to more AD-specific processes involving amyloid-beta (Aβ) and hyperphosphorylated tau (p-tau). Mechanisms that are more speculative or indirect in nature, including somatic mutation, epigenetic modulation, impairment of adult neurogenesis, and microbiota dysbiosis, are also discussed. Chronic toxicity mechanisms of environmental pesticide exposure crosstalks in complex ways and could potentially be mutually enhancing, thus making the deciphering of simplistic causal relationships difficult.
Collapse
|
13
|
Naidenko OV. Application of the Food Quality Protection Act children's health safety factor in the U.S. EPA pesticide risk assessments. Environ Health 2020; 19:16. [PMID: 32041625 PMCID: PMC7011289 DOI: 10.1186/s12940-020-0571-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/03/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND The Food Quality Protection Act of 1996, or FQPA, required the Environmental Protection Agency to set allowable levels for pesticides in a way that would "ensure that there is a reasonable certainty that no harm will result to infants and children from aggregate exposure to the pesticide chemical residue." The act stipulated that an additional tenfold margin of safety for pesticide risk assessments shall be applied to account for pre- and postnatal toxicity and for any data gaps regarding pesticide exposure and toxicity, unless there are reliable data to demonstrate that a different margin would be safe for infants and children. DISCUSSION To examine the implementation of the FQPA-mandated additional margin of safety, this analysis reviews 59 pesticide risk assessments published by the EPA between 2011 and 2019. The list includes 12 pesticides used in the largest amount in the U.S.; a group of 35 pesticides detected on fruits and vegetables; and 12 organophosphate pesticides. For the non-organophosphate pesticides reviewed here, the EPA applied an additional children's health safety factor in 13% of acute dietary exposure scenarios and 12% of chronic dietary exposure scenarios. For incidental oral, dermal and inhalation exposures, additional FQPA factors were applied for 15, 31, and 41%, respectively, of the non-organophosphate pesticides, primarily due to data uncertainties. For the organophosphate pesticides as a group, a tenfold children's health safety factor was proposed in 2015. Notably, in 2017 that decision was reversed for chlorpyrifos. CONCLUSIONS For the majority of pesticides reviewed in this study, the EPA did not apply an additional FQPA safety factor, missing an opportunity to fully use the FQPA authority for protecting children's health.
Collapse
Affiliation(s)
- Olga V Naidenko
- Environmental Working Group, 1436 U St NW, Suite 100, Washington DC, 20009, USA.
| |
Collapse
|