1
|
Nomura M, Wen S, Unuma K, Funakoshi T, Aki T, Uemura K. Increased fatty acid synthesis and disturbed lipid metabolism in Neuro2a cells after repeated cocaine exposure: A preliminary study. Biochem Biophys Res Commun 2024; 695:149438. [PMID: 38160532 DOI: 10.1016/j.bbrc.2023.149438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Chronic use of cocaine prompts neurodegeneration and neuroinflammation. Lipids play pivotal roles in neuronal function and pathology. Although evidence correlates cocaine use with the alteration of lipid metabolism in blood and brain, the precise mechanism remains to be elucidated. In this study, we explore the effect of cocaine on neuronal fatty acid profiles in vitro. Neuro2a cells following seven days of repeated exposure to cocaine (0, 600, 800, 1000 μM) showed apoptosis-irrelevant cell death, dysregulated autophagy, activation of atypical endoplasmic reticulum stress response, increased saturated and unsaturated fatty acid synthesis, and disrupted lipid metabolism. These preliminary findings indicated the association between lipid metabolism and cocaine-induced neurotoxicity, which should be beneficial for understanding the neurotoxicity of cocaine.
Collapse
Affiliation(s)
- Moeka Nomura
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuheng Wen
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Kana Unuma
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Funakoshi
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshihiko Aki
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichi Uemura
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
2
|
Wen S, Unuma K, Funakoshi T, Aki T, Uemura K. Cocaine induces vascular smooth muscle cells proliferation via DRP1-mediated mitochondrial fission and PI3K/HIF-1α signaling. Biochem Biophys Res Commun 2023; 676:30-35. [PMID: 37481940 DOI: 10.1016/j.bbrc.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Long-term cocaine abuse is associated with cardiovascular and pulmonary vascular complications. The vascular toxicity of cocaine can lead to vascular remodeling characterized by excessive proliferation of vascular smooth muscle cells. Though hypoxia-inducible factor (HIF) signaling and mitochondrial fission have been suggested to play essential roles in the pathogenesis of hypoxia-induced vascular remodeling, pathogenetic mechanism for cocaine-related vascular remodeling remains to be elucidated. In this study, we explore the effect of cocaine on the proliferation of vascular smooth muscle cells by in vitro experiments. The findings indicated that the cocaine-induced vascular smooth muscle cell hyperproliferation is achieved by enhancing DRP1-mediated mitochondrial fission and activating PI3K/HIF-1α signaling. Current findings suggested that mitochondrial fission would play a pivotal role in cocaine-related vascular remodeling and would be helpful in understanding the vascular toxicity of cocaine.
Collapse
Affiliation(s)
- Shuheng Wen
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kana Unuma
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Funakoshi
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshihiko Aki
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Koichi Uemura
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
3
|
Wang L, Wei Q, Xu R, Chen Y, Li S, Bu Q, Zhao Y, Li H, Zhao Y, Jiang L, Chen Y, Dai Y, Zhao Y, Cen X. Cardiolipin and OPA1 Team up for Methamphetamine-Induced Locomotor Activity by Promoting Neuronal Mitochondrial Fusion in the Nucleus Accumbens of Mice. ACS Chem Neurosci 2023; 14:1585-1601. [PMID: 37043723 DOI: 10.1021/acschemneuro.2c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Mitochondria are highly dynamic organelles with coordinated cycles of fission and fusion occurring continuously to satisfy the energy demands in the complex architecture of neurons. How mitochondria contribute to addicted drug-induced adaptable mitochondrial networks and neuroplasticity remains largely unknown. Through liquid chromatography-mass spectrometry-based lipidomics, we first analyzed the alteration of the mitochondrial lipidome of three mouse brain areas in methamphetamine (METH)-induced locomotor activity and conditioned place preference. The results showed that METH remodeled the mitochondrial lipidome of the hippocampus, nucleus accumbens (NAc), and striatum in both models. Notably, mitochondrial hallmark lipid cardiolipin (CL) was specifically increased in the NAc in METH-induced hyperlocomotor activity, which was accompanied by an elongated giant mitochondrial morphology. Moreover, METH significantly boosted mitochondrial respiration and ATP generation as well as the copy number of mitochondrial genome DNA in the NAc. By screening the expressions of mitochondrial dynamin-related proteins, we found that repeated METH significantly upregulated the expression of long-form optic atrophy type 1 (L-OPA1) and enhanced the interaction of L-OPA1 with CL, which may promote mitochondrial fusion in the NAc. On the contrary, neuronal OPA1 depletion in the NAc not only recovered the dysregulated mitochondrial morphology and synaptic vesicle distribution induced by METH but also attenuated the psychomotor effect of METH. Collectively, upregulated CL and OPA1 cooperate to mediate METH-induced adaptation of neuronal mitochondrial dynamics in the NAc, which correlates with the psychomotor effect of METH. These findings propose a potential therapeutic approach for METH addiction by inhibiting neuronal mitochondrial fusion.
Collapse
Affiliation(s)
- Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Qingfan Wei
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Rui Xu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yaxing Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Shu Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Qian Bu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Ying Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yue Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Linhong Jiang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yuanyuan Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yanping Dai
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| |
Collapse
|
4
|
D'Acunzo P, Ungania JM, Kim Y, Barreto BR, DeRosa S, Pawlik M, Canals-Baker S, Erdjument-Bromage H, Hashim A, Goulbourne CN, Neubert TA, Saito M, Sershen H, Levy E. Cocaine perturbs mitovesicle biology in the brain. J Extracell Vesicles 2023; 12:e12301. [PMID: 36691887 PMCID: PMC9871795 DOI: 10.1002/jev2.12301] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/06/2022] [Accepted: 12/26/2022] [Indexed: 01/25/2023] Open
Abstract
Cocaine, an addictive psychostimulant, has a broad mechanism of action, including the induction of a wide range of alterations in brain metabolism and mitochondrial homeostasis. Our group recently identified a subpopulation of non-microvesicular, non-exosomal extracellular vesicles of mitochondrial origin (mitovesicles) and developed a method to isolate mitovesicles from brain parenchyma. We hypothesised that the generation and secretion of mitovesicles is affected by mitochondrial abnormalities induced by chronic cocaine exposure. Mitovesicles from the brain extracellular space of cocaine-administered mice were enlarged and more numerous when compared to controls, supporting a model in which mitovesicle biogenesis is enhanced in the presence of mitochondrial alterations. This interrelationship was confirmed in vitro. Moreover, cocaine affected mitovesicle protein composition, causing a functional alteration in mitovesicle ATP production capacity. These data suggest that mitovesicles are previously unidentified players in the biology of cocaine addiction and that target therapies to fine-tune brain mitovesicle functionality may be beneficial to mitigate the effects of chronic cocaine exposure.
Collapse
Affiliation(s)
- Pasquale D'Acunzo
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
| | - Jonathan M Ungania
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Yohan Kim
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
| | - Bryana R Barreto
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Steven DeRosa
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Monika Pawlik
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Stefanie Canals-Baker
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, USA
| | - Audrey Hashim
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Chris N Goulbourne
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Thomas A Neubert
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, USA
| | - Mariko Saito
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Henry Sershen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Efrat Levy
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
- Department of Biochemistry & Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
5
|
Thymic involution caused by repeated cocaine administration includes apoptotic cell loss followed by ectopic adipogenesis. PLoS One 2022; 17:e0277032. [PMID: 36441681 PMCID: PMC9704633 DOI: 10.1371/journal.pone.0277032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022] Open
Abstract
Cocaine abuse has a negative impact on the immune system. To investigate the adverse effects of binge cocaine administration on lymphoid organs such as thymus and spleen, we examined the effects of repeated intravenous (i.v.) administration of cocaine on rats. Sprague Dawley rats (male, 8 weeks old) received 20 mg/kg body weight of cocaine hydrochloride per day for 7 or 14 days. In addition to a significant loss in the weight of the spleen, consistent with our previous intraperitoneal (i.p.) injection model of binge cocaine abuse (50 mg/kg cocaine for 7 days), we also found a significant loss of weight as well as apparent shrinkage of the thymus in the cocaine group. Transcriptome analysis of the thymus revealed increased expressions of genes involved in apoptosis, such as Ifi27 and Traf2, as well as decreased expressions of several genes related to lipid metabolism, such as Cd36, Adipoq, Scd1, and Fabp4, in the thymus of the cocaine group (7 days), suggesting an apoptotic loss of thymic cells as well as alterations in lipid metabolism. Paradoxically, cocaine activates PPARγ, a key transcriptional factor activating lipid metabolism, although ectopic adipogenesis was scarcely observed in the thymus. Further analysis of rats administered 20 mg/kg cocaine for 14 days revealed ectopic adipogenesis, which was accompanied with the activation of PPARγ as well as increased expression of Adipoq and Fabp4, in the thymus. Taken together, these results indicate that repeated cocaine administration induces thymic involution, which is initiated by the loss of thymic cells through apoptosis and subsequent ectopic adipocyte development.
Collapse
|
6
|
Wen S, Unuma K, Funakoshi T, Aki T, Uemura K. Contraction Band Necrosis with Dephosphorylated Connexin 43 in Rat Myocardium after Daily Cocaine Administration. Int J Mol Sci 2022; 23:ijms231911978. [PMID: 36233284 PMCID: PMC9570416 DOI: 10.3390/ijms231911978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 11/12/2022] Open
Abstract
Contraction band necrosis (CBN) is a common abnormality found in the myocardium of cocaine abusers, but is rarely reported in experimental models of cocaine abuse. Connexin 43 (Cx43) is essential for cardiac intercellular communication and the propagation of CBN. Under stress or injury, cardiac Cx43 is dephosphorylated, which is related to cardiomyocyte dysfunction and pathogenesis, whereas adiponectin exerts beneficial effects in the myocardium. In this study, we explore the effects of cocaine on cardiac Cx43 in vivo. Rats were administered cocaine via the tail vein at 20 mg/kg/day for 14 days, and showed widespread CBN, microfocal myocarditis and myocardial fibrosis, corresponding to a dysfunction of cardiac mitochondria under increased oxidative stress. The increase in dephosphorylated cardiac Cx43 and its negative correlation with the myocardial distribution of CBN after cocaine administration were determined. In addition, apoptosis and necroptosis, as well as increased adiponectin levels, were observed in the myocardium after cocaine exposure. Accordingly, we found altered profiles of cardiac Cx43, CBN and its negative correlation with dephosphorylated cardiac Cx43, and the possible involvement of adiponectin in the myocardium after 14 days of cocaine administration. The latter might play a protective role in the cardiotoxicity of cocaine. The current findings would be beneficial for establishing novel therapeutic strategies in cocaine-induced cardiac consequences.
Collapse
|
7
|
Hernandez J, Kaun KR. Alcohol, neuronal plasticity, and mitochondrial trafficking. Proc Natl Acad Sci U S A 2022; 119:e2208744119. [PMID: 35858366 PMCID: PMC9303853 DOI: 10.1073/pnas.2208744119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- John Hernandez
- Department of Neuroscience, Brown University, Providence, RI 02912
| | - Karla R. Kaun
- Department of Neuroscience, Brown University, Providence, RI 02912
| |
Collapse
|
8
|
Role of Mitochondrial Dynamics in Cocaine's Neurotoxicity. Int J Mol Sci 2022; 23:ijms23105418. [PMID: 35628228 PMCID: PMC9145816 DOI: 10.3390/ijms23105418] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 01/25/2023] Open
Abstract
The dynamic balance of mitochondrial fission and fusion maintains mitochondrial homeostasis and optimal function. It is indispensable for cells such as neurons, which rely on the finely tuned mitochondria to carry out their normal physiological activities. The potent psychostimulant cocaine impairs mitochondria as one way it exerts its neurotoxicity, wherein the disturbances in mitochondrial dynamics have been suggested to play an essential role. In this review, we summarize the neurotoxicity of cocaine and the role of mitochondrial dynamics in cellular physiology. Subsequently, we introduce current findings that link disturbed neuronal mitochondrial dynamics with cocaine exposure. Finally, the possible role and potential therapeutic value of mitochondrial dynamics in cocaine neurotoxicity are discussed.
Collapse
|
9
|
Disrupted mitochondrial homeostasis coupled with mitotic arrest generates antineoplastic oxidative stress. Oncogene 2022; 41:427-443. [PMID: 34773075 PMCID: PMC8755538 DOI: 10.1038/s41388-021-02105-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) serve as critical signals in various cellular processes. Excessive ROS cause cell death or senescence and mediates the therapeutic effect of many cancer drugs. Recent studies showed that ROS increasingly accumulate during G2/M arrest, the underlying mechanism, however, has not been fully elucidated. Here, we show that in cancer cells treated with anticancer agent TH287 or paclitaxel that causes M arrest, mitochondria accumulate robustly and produce excessive mitochondrial superoxide, which causes oxidative DNA damage and undermines cell survival and proliferation. While mitochondrial mass is greatly increased in cells arrested at M phase, the mitochondrial function is compromised, as reflected by reduced mitochondrial membrane potential, increased SUMOylation and acetylation of mitochondrial proteins, as well as an increased metabolic reliance on glycolysis. CHK1 functional disruption decelerates cell cycle, spares the M arrest and attenuates mitochondrial oxidative stress. Induction of mitophagy and blockade of mitochondrial biogenesis, measures that reduce mitochondrial accumulation, also decelerate cell cycle and abrogate M arrest-coupled mitochondrial oxidative stress. These results suggest that cell cycle progression and mitochondrial homeostasis are interdependent and coordinated, and that impairment of mitochondrial homeostasis and the associated redox signaling may mediate the antineoplastic effect of the M arrest-inducing chemotherapeutics. Our findings provide insights into the fate of cells arrested at M phase and have implications in cancer therapy.
Collapse
|
10
|
Wen S, Unuma K, Funakoshi T, Aki T, Uemura K. Altered cardiac mitochondrial dynamics and biogenesis in rat after short-term cocaine administration. Sci Rep 2021; 11:24129. [PMID: 34916603 PMCID: PMC8677764 DOI: 10.1038/s41598-021-03631-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/30/2021] [Indexed: 11/10/2022] Open
Abstract
Abuse of the potent psychostimulant cocaine is widely established to have cardiovascular consequences. The cardiotoxicity of cocaine is mainly associated with oxidative stress and mitochondrial dysfunction. Mitochondrial dynamics and biogenesis, as well as the mitochondrial unfolded protein response (UPRmt), guarantee cardiac mitochondrial homeostasis. Collectively, these mechanisms act to protect against stress, injury, and the detrimental effects of chemicals on mitochondria. In this study, we examined the effects of cocaine on cardiac mitochondrial dynamics, biogenesis, and UPRmt in vivo. Rats administered cocaine via the tail vein at a dose of 20 mg/kg/day for 7 days showed no structural changes in the myocardium, but electron microscopy revealed a significant increase in the number of cardiac mitochondria. Correspondingly, the expressions of the mitochondrial fission gene and mitochondrial biogenesis were increased after cocaine administration. Significant increase in the expression and nuclear translocation of activating transcription factor 5, the major active regulator of UPRmt, were observed after cocaine administration. Accordingly, our findings show that before any structural changes are observable in the myocardium, cocaine alters mitochondrial dynamics, elevates mitochondrial biogenesis, and induces the activation of UPRmt. These alterations might reflect cardiac mitochondrial compensation to protect against the cardiotoxicity of cocaine.
Collapse
Affiliation(s)
- Shuheng Wen
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Kana Unuma
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Takeshi Funakoshi
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Toshihiko Aki
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| | - Koichi Uemura
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| |
Collapse
|
11
|
The role of mitochondria in cocaine addiction. Biochem J 2021; 478:749-764. [PMID: 33626141 DOI: 10.1042/bcj20200615] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 01/03/2023]
Abstract
The incidence of cocaine abuse is increasing especially in the U.K. where the rates are among the highest in Europe. In addition to its role as a psychostimulant, cocaine has profound effect on brain metabolism, impacting glycolysis and impairing oxidative phosphorylation. Cocaine exposure alters metabolic gene expression and protein networks in brain regions including the prefrontal cortex, the ventral tegmental area and the nucleus accumbens, the principal nuclei of the brain reward system. Here, we focus on how cocaine impacts mitochondrial function, in particular through alterations in electron transport chain function, reactive oxygen species (ROS) production and oxidative stress (OS), mitochondrial dynamics and mitophagy. Finally, we describe the impact of cocaine on brain energy metabolism in the developing brain following prenatal exposure. The plethora of mitochondrial functions altered following cocaine exposure suggest that therapies maintaining mitochondrial functional integrity may hold promise in mitigating cocaine pathology and addiction.
Collapse
|