1
|
Liu X, Li J, Zhu L, Huang J, Zhang Q, Wang J, Xie J, Dong Q, Zou Z, Huang G, Gu Q, Wang J, Li J. Mechanistic insights into zinc oxide nanoparticles induced embryotoxicity via H3K9me3 modulation. Biomaterials 2024; 311:122679. [PMID: 38943823 DOI: 10.1016/j.biomaterials.2024.122679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/05/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
The widespread application of nanoparticles (NPs) in various fields has raised health concerns, especially in reproductive health. Our research has shown zinc oxide nanoparticles (ZnONPs) exhibit the most significant toxicity to pre-implantation embryos in mice compared to other common NPs. In patients undergoing assisted reproduction technology (ART), a significant negative correlation was observed between Zn concentration and clinical outcomes. Therefore, this study explores the impact of ZnONPs exposure on pre-implantation embryonic development and its underlying mechanisms. We revealed that both in vivo and in vitro exposure to ZnONPs impairs pre-implantation embryonic development. Moreover, ZnONPs were found to reduce the pluripotency of mouse embryonic stem cells (mESCs), as evidenced by teratoma and diploid chimera assays. Employing multi-omics approaches, including RNA-Seq, CUT&Tag, and ATAC-seq, the embryotoxicity mechanisms of ZnONPs were elucidated. The findings indicate that ZnONPs elevate H3K9me3 levels, leading to increased heterochromatin and consequent inhibition of gene expression related to development and pluripotency. Notably, Chaetocin, a H3K9me3 inhibitor, sucessfully reversed the embryotoxicity effects induced by ZnONPs. Additionally, the direct interaction between ZnONPs and H3K9me3 was verified through pull-down and immunoprecipitation assays. Collectively, these findings offer new insights into the epigenetic mechanisms of ZnONPs toxicity, enhancing our understanding of their impact on human reproductive health.
Collapse
Affiliation(s)
- Xuemei Liu
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jie Li
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Ling Zhu
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jiayu Huang
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Zhang
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jianwu Wang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Juan Xie
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Qiang Dong
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Guoning Huang
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China.
| | - Qi Gu
- State Key Laboratory of Membrane Biology and the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Jianyu Wang
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
| | - Jingyu Li
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China.
| |
Collapse
|
2
|
Mao Y, Meng Y, Zou K, Qin N, Wang Y, Yan J, Chen P, Cheng Y, Shi W, Zhou C, Chen H, Sheng J, Liu X, Pan J, Huang H. Advanced paternal age exacerbates neuroinflammation in offspring via m6A modification-mediated intergenerational inheritance. J Neuroinflammation 2024; 21:249. [PMID: 39367406 PMCID: PMC11453047 DOI: 10.1186/s12974-024-03248-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND The trend of postponing childbearing age is prevalent worldwide. Advanced paternal age (APA) is associated with adverse pregnancy outcomes and offspring health. However, the underlying mechanism by which paternal aging affects the risk of offspring neuropsychiatric disorders is unclear. Our study aims to explore the behavioral phenotypes and the pathologic epigenetic alterations of APA offspring inherited from aging sperm. METHODS Behavioral tests, ELISA assay, immunofluorescence and western blotting were performed on offspring mice. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA immunoprecipitation sequencing (RIP-seq) were used to investigate the modified N6-methyladenosine (m6A) profiles of paternal sperm and offspring hippocampus. Intervention of gene expression by lentivirus and adeno-associated virus in both vivo and vitro examined the potential therapeutic targets of intergenerational inherited neuroinflammation. RESULTS In our study, APA offspring exhibit cognitive impairment and autism-like behavior. An increase in neuroinflammation in APA offspring is associated with microglial overactivation, which manifests as abnormal morphology and augmented engulfment. MeRIP-seq of F0 sperm and F1 hippocampus reveal that Nr4a2 is hypermethylated with decreased expression in APA offspring involving in synaptic plasticity and microglial function. In addition, Ythdc1, an m6A reader protein, is markedly elevated in aging sperm and remains elevated in adult hippocampus of APA group. Enhanced Ythdc1 recognizes and suppresses the hypermethylated Nr4a2, thereby contributing to the abnormal phenotype in offspring. The overexpression of Ythdc1 triggers microglial activation in vitro and its suppression in the hippocampus of APA progeny alleviates behavioral aberrations and attenuates neuroinflammation. CONCLUSION Our study provides additional evidence of the abnormal behavioral phenotypes of APA offspring and reveals potential epigenetic inheritance signatures and targeted genes for future research.
Collapse
Affiliation(s)
- Yiting Mao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, (No. 2019RU056), Shanghai, China
| | - Yicong Meng
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kexin Zou
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ningxin Qin
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yinyu Wang
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Yan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - PinJia Chen
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Yi Cheng
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Weihui Shi
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Chengliang Zhou
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huixi Chen
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianzhong Sheng
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Xinmei Liu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China.
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, (No. 2019RU056), Shanghai, China.
| | - Jiexue Pan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China.
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, (No. 2019RU056), Shanghai, China.
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, (No. 2019RU056), Shanghai, China.
| |
Collapse
|
3
|
Makhado BP, Oladipo AO, Gumbi NN, De Kock LA, Andraos C, Gulumian M, Nxumalo EN. Unravelling the toxicity of carbon nanomaterials - From cellular interactions to mechanistic understanding. Toxicol In Vitro 2024; 100:105898. [PMID: 39029601 DOI: 10.1016/j.tiv.2024.105898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
The application of carbon nanomaterials in diverse fields has substantially increased their demand for commercial usage. Within the earliest decade, the development of functional materials has further increased the significance of this element. Despite the advancements recorded, the potential harmful impacts of embracing carbon nanomaterials for biological applications must be balanced against their advantages. Interestingly, many studies have neglected the intriguing and dynamic cellular interaction of carbon nanomaterials and the mechanistic understanding of their property-driven behaviour, even though common toxicity profiles have been reported. Reiterating the toxicity issue, several researchers conclude that these materials have minimal toxicity and may be safe for contact with biological systems at certain dosages. Here, we aim to provide a report on the significance of some of the properties that influence their toxicity. After that, a description of the implication of nanotoxicology in humans and living systems, revealing piece by piece their exposure routes and possible risks, will be provided. Then, an extensive discussion of the mechanistic puzzle modulating the interface between various human cellular systems and carbon nanomaterials such as carbon nanotubes, carbon dots, graphene, fullerenes, and nanodiamonds will follow. Finally, this review also sheds light on the organization that handles the risk associated with nanomaterials.
Collapse
Affiliation(s)
- Bveledzani P Makhado
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Adewale O Oladipo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Roodepoort 1710, South Africa
| | - Nozipho N Gumbi
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Lueta A De Kock
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Charlene Andraos
- Water Research Group, Unit for Environmental Sciences and Management, North-West University Potchefstroom, South Africa; National Institute for Occupational Health (NIOH), National Health Laboratory Service (NHLS), Johannesburg, South Africa; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mary Gulumian
- Water Research Group, Unit for Environmental Sciences and Management, North-West University Potchefstroom, South Africa
| | - Edward N Nxumalo
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa.
| |
Collapse
|
4
|
Shang Y, Zhao K, Xue W, An J, Zhong Y, Chen Y, Zeng Q, Tang Q, Qiu X. Comparative assessment of acute neurotoxicity of real-world ultra-fine black carbon emitted from residential solid fuel combustion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176597. [PMID: 39349200 DOI: 10.1016/j.scitotenv.2024.176597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Incomplete combustion of residential solid fuel is one of the main anthropogenic sources for black carbon (BC). Fresh BC, mainly enriched in ultra-fine fraction of particles, can directly cross blood-brain barrier and are reported to be associated with neurodegenerative diseases. Because of the difficulties in collection and purification of BC from ambient particles, there are still significant knowledge gaps in understanding neurotoxicity caused by real-world BC. The purpose of this study is to compare the neurotoxic effects caused by BCs emitted from combustion of six residential solid fuels, and try to reveal associated biological mechanisms in SH-SY5Y cells. Two straw BC (Wheat-BC and Corn-BC) showed highest neurotoxic effects followed by wood BC (Pine-BC and Aspen-BC) and coal BC (Xvzhou and Longkou Coal), as indicated by viability, lactic dehydrogenase, malondialdehyde, adenosine triphosphate and acetylcholine levels. Coal BC caused nearly no toxicity in human neuroblastoma (SH-SY5Y) cells within highest dose of 200 μg/mL. RNA sequence and bioinformatics analysis were applied to effectively identify differential genes and signaling pathways. Based on Gene Ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, Protein Protein Interaction network (PPI network) construction, we found biomass BC affected mitochondrial function, interfered with cellular metabolic processes, disturbed redox homeostasis, and finally resulted in cellular damages. Coal-BC mainly caused cytokine/chemokine related inflammatory responses. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting methods were further applied to find out related signaling pathways. Biomass BC activated IL6R/JAK3/STAT3 and JAK3/STAT6 pathways leading to oxidative stress and inflammatory responses. Coal BC activated JAK3/STAT3 pathway leading to chemokine related responses. This study revealed the heterogeneity in neurotoxicity of BCs from different combustion sources and provided important data for health risk assessment. BC-related neurotoxicity should be considered when making air pollution emission control strategies, with residential biomass receiving more policy attention.
Collapse
Affiliation(s)
- Yu Shang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Kunming Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wanlei Xue
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jing An
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yufang Zhong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qingming Zeng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qisheng Tang
- Fudan University Huashan Hospital, Department of Neurosurgery, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Shanghai Medical College-Fudan University, Shanghai 200040, China.
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Exposure and Health Risk Management, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Chen F, Zhang L, Liu Y, Zhang A, Wang W. Resveratrol alleviates perinatal methylmercury-induced neurobehavioral impairments by modulating the gut microbiota composition and neurotransmitter disturbances. ENVIRONMENTAL TOXICOLOGY 2024; 39:329-340. [PMID: 37713589 DOI: 10.1002/tox.23973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/09/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
Methylmercury (MeHg), a potent neurotoxic substance, causes adverse health outcomes by modulating metabolites through altered gut microbiota patterns. Among the many metabolites, neurotransmitters play a particularly important role in the nervous system and behavior. Resveratrol (RSV) has been investigated as an antiaging, antioxidant, anti-inflammatory, and neuroprotective agent. The current study evaluated that RSV is protective of neurodevelopmental toxicity induced by MeHg and further explored the underlying mechanisms. Sprague-Dawley rats were treated with 1.2 mg/kg/d of MeHg, and the effects were evaluated after supplementation with RSV (20 mg/kg/d). The results indicated that MeHg had adverse effects on early neurodevelopmental indicators in the experimental group offspring as compared to control pups. Interestingly, RSV significantly improved the MeHg-induced delays in the neurobehavioral reflexes and reduced the total mercury (THg) concentration in the colons of the offspring rats. In agreement, RSV administration improved the gut microbiota diversity and structure by increasing the abundance of probiotics and upregulating the expression of tight junction proteins. It also ameliorated the MeHg-induced abnormalities in the expression profiles of neurotransmitters. Furthermore, eight key bacteria that were strongly linked with the neurotransmitters and neuroreflex parameters were identified. Taken together, these results demonstrate that RSV treatment effectively reduces the occurrence of neurodevelopmental toxicity caused by perinatal MeHg exposure by modulating the intestinal flora and neurotransmitter metabolism. These findings provide a new therapeutic approach for treating MeHg-induced neurotoxicity. The cover image is based on the Research Article Resveratrol alleviates perinatal methylmercury-induced neurobehavioral impairments by modulating the gut microbiota composition and neurotransmitter disturbances by Fang Chen et al., https://doi.org/10.1002/tox.23973.
Collapse
Affiliation(s)
- Fang Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Li Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Yi Liu
- Guiyang Maternal and Child Health Care Hospital, Guiyang, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Wenjuan Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, China
| |
Collapse
|
6
|
Kunovac A, Hathaway QA, Thapa D, Durr AJ, Taylor AD, Rizwan S, Sharif D, Valentine SJ, Hollander JM. N 6-methyladenosine (M 6A) in fetal offspring modifies mitochondrial gene expression following gestational nano-TiO 2 inhalation exposure. Nanotoxicology 2023; 17:651-668. [PMID: 38180356 PMCID: PMC10988778 DOI: 10.1080/17435390.2023.2293144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024]
Abstract
N6-methyladenosine (m6A) is the most prominent epitranscriptomic modification to RNA in eukaryotes, but it's role in adaptive changes within the gestational environment are poorly understood. We propose that gestational exposure to nano titanium dioxide (TiO2) contributes to cardiac m6A methylation in fetal offspring and influences mitochondrial gene expression. 10-week-old pregnant female FVB/NJ wild-type mice underwent 6 nonconsecutive days of whole-body inhalation exposure beginning on gestational day (GD) 5. Mice were exposed to filtered room air or nano-TiO2 with a target aerosol mass concentration of 12 mg/m3. At GD 15 mice were humanely killed and cardiac RNA and mitochondrial proteins extracted. Immunoprecipitation with m6A antibodies was performed followed by sequencing of immunoprecipitant (m6A) and input (mRNA) on the Illumina NextSeq 2000. Protein extraction, preparation, and LC-MS/MS were used for mitochondrial protein quantification. There were no differences in maternal or fetal pup weights, number of pups, or pup heart weights between exposure and control groups. Transcriptomic sequencing revealed 3648 differentially expressed mRNA in nano-TiO2 exposed mice (Padj ≤ 0.05). Transcripts involved in mitochondrial bioenergetics were significantly downregulated (83 of 85 genes). 921 transcripts revealed significant m6A methylation sites (Padj ≤ 0.10). 311 of the 921 mRNA were identified to have both 1) significantly altered expression and 2) differentially methylated sites. Mitochondrial proteomics revealed decreased expression of ATP Synthase subunits in the exposed group (P ≤ 0.05). The lack of m6A modifications to mitochondrial transcripts suggests a mechanism for decreased transcript stability and reduced protein expression due to gestational nano-TiO2 inhalation exposure.
Collapse
Affiliation(s)
- Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Quincy A. Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Medical Education, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Dharendra Thapa
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Andrya J. Durr
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Andrew D. Taylor
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Saira Rizwan
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Daud Sharif
- Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | | | - John M. Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
7
|
Wu S, Liu K, Zhou B, Wu S. N6-methyladenosine modifications in maternal-fetal crosstalk and gestational diseases. Front Cell Dev Biol 2023; 11:1164706. [PMID: 37009476 PMCID: PMC10060529 DOI: 10.3389/fcell.2023.1164706] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
As a medium among pregnant women, environment and fetus, placenta owns powerful and delicate epigenetic processes to regulate gene expression and maintain cellular homeostasis. N6-methyladenosine (m6A) is the most prevalent modification that determines the fate of RNA, and its dynamic reversibility indicates that m6A may serve as a sensitive responder to environmental stimuli. Emerging evidence suggests that m6A modifications play an essential role in placental development and maternal-fetal crosstalk, and are closely related to gestational diseases. Herein, we summarized the latest techniques for m6A sequencing and highlighted current advances of m6A modifications in maternal-fetal crosstalk and the underlying mechanisms in gestational diseases. Therefore, proper m6A modifications are important in placental development, but its disturbance mainly caused by various environmental factors can lead to abnormal placentation and function with possible consequences of gestational diseases, fetal growth and disease susceptibility in adulthood.
Collapse
Affiliation(s)
- Suqi Wu
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ketong Liu
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Bingyan Zhou
- Hubei Clinical Center of Hirschsprung’s Disease and Allied Disorders, Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Bingyan Zhou, ; Suwen Wu,
| | - Suwen Wu
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- *Correspondence: Bingyan Zhou, ; Suwen Wu,
| |
Collapse
|
8
|
Zhu X, Fu H, Sun J, Xu Q. Interaction between N6-methyladenosine (m6A) modification and environmental chemical-induced diseases in various organ systems. Chem Biol Interact 2023; 373:110376. [PMID: 36736874 DOI: 10.1016/j.cbi.2023.110376] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
A wide variety of chemicals are ubiquitous in the environment and thus exposure to these environmental chemicals poses a serious threat to public health. Particularly, environmental factors such as air pollution, heavy metals, and endocrine-disrupting chemicals (EDCs) can lead to diseases in various organ systems. Recent research in environmental epigenetics has demonstrated that N6-methyladenosine (m6A) modification is a key mechanism of environment-related diseases. m6A modification is the most abundant chemical modification in mRNAs, which can specifically regulate gene expression by affecting RNA translation, stability, processing, and nuclear export. In this review, we discussed how environmental chemicals affected m6A modification and mediated environment-related disease occurrence by classifying the diseases of various systems. Here, we conclude that environmental chemicals alter the levels of m6A and its modulators, which then participate in the occurrence of diseases in various systems by regulating gene expression and downstream signaling pathways such as METTL3/m6A ZBTB4/YTHDF2/EZH2, Foxo3a/FTO/m6A ephrin-B2/YTHDF2, and HIF1A/METTL3/m6A BIRC5/IGF2BP3/VEGFA. Considering the significant role of m6A and its modulators in response to environmental chemicals, they are expected to be used as biomarkers of environment-related diseases. Additionally, targeting m6A modulators using small molecule inhibitors and activators is expected to be a new method for the treatment of environment-related diseases. This review systematically and comprehensively clarifies the important role of m6A in diseases caused by environmental chemicals, thus establishing a scientific basis for the treatment of diseases in various organ systems.
Collapse
Affiliation(s)
- Xiaofang Zhu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Ding jia qiao Road, Gulou District, Nanjing, 210009, China
| | - Haowei Fu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Ding jia qiao Road, Gulou District, Nanjing, 210009, China
| | - Jiahui Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Ding jia qiao Road, Gulou District, Nanjing, 210009, China
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Ding jia qiao Road, Gulou District, Nanjing, 210009, China.
| |
Collapse
|
9
|
Zhu H, Liu G, Chang Q, Yan M, Yang K, Li Y, Nie Y, Li X, Han S, Wang P, Zhang L. Prenatal Lipopolysaccharide Exposure Alters Hepatic Drug-Metabolizing Enzyme Expression in Mouse Offspring via Histone Modifications. TOXICS 2023; 11:82. [PMID: 36668808 PMCID: PMC9866336 DOI: 10.3390/toxics11010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Inflammation is a major regulator of drug-metabolizing enzymes (DMEs), therefore contributing to the interindividual variability of drug effects. However, whether prenatal inflammation affects DMEs expression in offspring remains obscure. This study investigated the effects of prenatal lipopolysaccharide (LPS) exposure on hepatic expression of inflammatory-related genes, nuclear receptors, and DMEs in offspring mice. Prenatal LPS exposure on gestational day (GD) 10 led to higher expression of NF-κB, Pxr, and Cyp2b10, while lower expression of Car, Ahr, Cyp3a11, and Ugt1a1 in postnatal day (PD) 30 offspring. However, multiple doses of LPS exposure on GD10-14 resulted in higher levels of inflammatory-related genes, Cyp1a2, and Cyp2b10, and lower levels of Pxr and Cyp3a11 in PD30 offspring liver. For PD60 offspring, decreased hepatic expression of NF-κB and IL-6, and increased expression of Pxr and Cyp3a11 were seen in single-dose LPS groups, whereas opposite results were observed in the multiple-dose LPS groups. Notably, enhanced H3K4me3 levels in the PXR response elements of the Cyp3a11 promoter were observed in the liver of PD60 offspring mice from dams treated with multiple doses of LPS during pregnancy. Overall, this study suggests that parental LPS exposure could persistently alter the hepatic expression of DMEs, and histone modifications may contribute to the long-term effects.
Collapse
Affiliation(s)
- Hanhan Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Department of Pharmacology, School of Pharmacy, Zhengzhou University, Zhengzhou 450001, China
- Translational Medical Center, Weifang Second People’s Hospital, The Second Affiliated Hospital of Weifang Medical University, Weifang 261041, China
| | - Guangming Liu
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Provincial People’s Hospital, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Qi Chang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyao Yan
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kun Yang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yanxin Li
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yali Nie
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaotian Li
- Department of Pharmacology, School of Pharmacy, Zhengzhou University, Zhengzhou 450001, China
| | - Shengna Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
10
|
Lei X, Zhang Y, Wang Z, Lu Z, Pan C, Zhang S, Chen Q, Yuan T, Zhang J, Gao Y, Tian Y. Effects of prenatal exposure to PM 2.5 and its composition on cognitive and motor functions in children at 12 months of age: The Shanghai Birth Cohort Study. ENVIRONMENT INTERNATIONAL 2022; 170:107597. [PMID: 36327589 DOI: 10.1016/j.envint.2022.107597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/30/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Prenatal fine particulate matter (PM2.5) exposure has been linked to infant cognitive and motor functions, but the effects of PM2.5 chemical composition remain unclear. OBJECTIVES We aimed to explore the associations of prenatal PM2.5 and its composition exposure with infant cognitive and motor functions. METHODS We studied 2,435 mother-infant pairs in the Shanghai Birth Cohort Study. PM2.5 and its seven compositions [primary particles (black carbon, mineral dust and sea salts) and secondary particles (NH4+, NO3-, SO42- and organic matter)] during thethreetrimesters ofpregnancy were retrieved from the V4.CH.03 product developed by using a combined geoscience-statistical method. At the 12-month-old follow-up, infant cognitive and motor functions in five domains were assessed using the Ages and Stages Questionnaire (ASQ). We used multivariable linear regressions to estimate the effects of PM2.5 and its composition on the ASQ scores, for all infants and stratifying by sex and breastfeeding duration. RESULTS PM2.5 exposure was negatively associated with gross motor, problem-solving and personal-social scores for all infants. PM2.5 compositions were inversely associated with ASQ scores in all five domains, and the effects of different compositions varied across domains. Specifically, all compositions except organic matter were correlated with lower problem-solving scores [e.g., ( [Formula: see text] = - 10.79, 95 % CI: -17.40, -4.18) ∼ ( [Formula: see text] = - 4.68, 95 % CI: -7.84, -1.53); for each 10 μg/m3 increase in PM2.5 compositions during the third trimester]. Primary and some secondary particles (organic matter, NO3-) were related to lower gross motor scores. Secondary particles were also inversely associated with communication (organic matter and NO3-), fine motor (NH4+, NO3-, SO42-) and personal-social (NH4+) scores. Additionally, boys and infants breastfed for < 6 months appeared to be more susceptible. CONCLUSIONS We found negative associations of PM2.5 and its compositions with infant cognitive and motor functions over a range of domains, especially the problem-solving domain.
Collapse
Affiliation(s)
- Xiaoning Lei
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zixia Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhenping Lu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chengyu Pan
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shanyu Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qian Chen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Tao Yuan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Gao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Ying Tian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
11
|
Sun Q, Li T, Yu Y, Li Y, Sun Z, Duan J. The critical role of epigenetic mechanisms involved in nanotoxicology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1789. [PMID: 35289073 DOI: 10.1002/wnan.1789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Over the past decades, nanomaterials (NMs) have been widely applied in the cosmetic, food, engineering, and medical fields. Along with the prevalence of NMs, the toxicological characteristics exhibited by these materials on health and the environment have gradually attracted attentions. A growing number of evidences have indicated that epigenetics holds an essential role in the onset and development of various diseases. NMs could cause epigenetic alterations such as DNA methylation, noncoding RNA (ncRNA) expression, and histone modifications. NMs might alternate either global DNA methylation or the methylation of specific genes to affect the biological function. Abnormal upregulation or downregulation of ncRNAs might also be a potential mechanism for the toxic effects caused by NMs. In parallel, the phosphorylation, acetylation, and methylation of histones also take an important part in the process of NMs-induced toxicity. As the adverse effects of NMs continue to be explored, mechanisms such as chromosomal remodeling, genomic imprinting, and m6 A modification are also gradually coming into the limelight. Since the epigenetic alterations often occur in the early development of diseases, thus the relevant studies not only provide insight into the pathogenesis of diseases, but also screen for the prospective biomarkers for early diagnosis and prevention. This review summarizes the epigenetic alterations elicited by NMs, hoping to provide a clue for nanotoxicity studies and security evaluation of NMs. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Feng Y, Liu T, Xu S, Ren Y, Ge Y, Yin L, Pu Y, Liang G. The role of N6-methyladenosine methylation in environmental exposure-induced health damage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69153-69175. [PMID: 35951238 DOI: 10.1007/s11356-022-22093-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The health risks caused by environmental pollution have long been of substantial concern. With the development of epigenetics, a large number of studies have demonstrated that N6-methyladenosine (m6A) modification is involved in the regulation of various important life activities associated with various diseases. Recent studies have revealed that m6A plays a key role in health damage caused by environmental exposure by regulating post-transcriptional gene expression. Therefore, our study outlined the effects of environmental pollutant exposure on m6A methylation and its regulator levels. Moreover, we found that m6A methylation modifications were involved in the development of various health damages by regulating important life activities in vivo, such as reactive oxygen species imbalance, apoptosis, epithelial-mesenchymal transition (EMT), and inflammatory processes. More importantly, we delved into the regulatory mechanisms of m6A methylation dysregulation in environmental pollution-induced diseases. Finally, by examining the published literature, we found that methyltransferase-like protein 3 (METTL3) and fat mass- and obesity-associated protein (FTO) were potentially used as biomarkers of health damage induced by particulate matter exposure and heavy metal exposure, respectively. The current studies on regulators of METTL3 and FTO were more promising to bring new perspectives for the treatment of environmental health-related diseases.
Collapse
Affiliation(s)
- Yanlu Feng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Tong Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Siyi Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Yiyi Ren
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Yiling Ge
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China.
| |
Collapse
|
13
|
Li S, Liu Y, Liu B, Hu YQ, Ding YQ, Zhang J, Feng L. Maternal urban particulate matter exposure and signaling pathways in fetal brains and neurobehavioral development in offspring. Toxicology 2022; 474:153225. [PMID: 35659516 DOI: 10.1016/j.tox.2022.153225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 11/08/2022]
Abstract
It is well understood that exposure to particulate matter (PM) can have adverse effects on the nervous system. When pregnant women are exposed to PM, their fetuses are also affected through the placenta. However, the mechanisms by which fetal brain development is regulated between mother and fetus remain unclear. C57BL/6J pregnant mice were exposed to PM at embryonic day (E) 2.5, 5.5, 8.5, 11.5, 14.5, and 17.5 via nasal drip at three doses (3, 6, 12 mg/kg of body weight) or PBS control. Neurobehavioral changes in the offspring were examined at 5-6-week-old by open field test (OFT) and elevated plus maze (EPM). The maternal and fetal brain and placenta were collected at E18.5, and molecular signal changes were explored using transcriptome analysis. We found that both male and female low-dose pups and male middle-dose pups traveled a significantly longer distance than controls in EPM tests. Both male and female low-dose pups showed a higher frequency of entering the center area and female low-dose pups exhibited a higher percentage of distance moved in the center area than controls in OFT tests. Gene expression in the maternal brain, fetal brain, and placenta at E18.5 was altered. Differentially expressed genes were enriched in the neuroactive ligand-receptor interaction pathway in all three tissue types. Pathway analysis revealed that the PI3K-Akt and PKC signaling was dysregulated in the fetal brain in the high-dose group compared with the control group. The pathways play a role in neuronal survival and apoptosis. Furthermore, there is a dose-dependent increase in Caspase-6, neuronal apoptosis and neurodegeneration biomarker, levels in E18.5 fetal brain (P = 0.06). In conclusion, our study demonstrated that prenatal PM exposure enhanced exploration and locomotor activity in adolescent offspring and altered molecular events in maternal brain, fetal brain, and placenta. The connections of these changes warrant further investigations.
Collapse
Affiliation(s)
- Shuman Li
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yongjie Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Bin Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yun-Qing Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Yu-Qiang Ding
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, No.130 Dong'an Road, Shanghai 200032, China; Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| | - Liping Feng
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China; Department of Obstetrics and Gynecology, Duke University, Durham, NC, USA.
| |
Collapse
|
14
|
Nanosafety: An Evolving Concept to Bring the Safest Possible Nanomaterials to Society and Environment. NANOMATERIALS 2022; 12:nano12111810. [PMID: 35683670 PMCID: PMC9181910 DOI: 10.3390/nano12111810] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
Abstract
The use of nanomaterials has been increasing in recent times, and they are widely used in industries such as cosmetics, drugs, food, water treatment, and agriculture. The rapid development of new nanomaterials demands a set of approaches to evaluate the potential toxicity and risks related to them. In this regard, nanosafety has been using and adapting already existing methods (toxicological approach), but the unique characteristics of nanomaterials demand new approaches (nanotoxicology) to fully understand the potential toxicity, immunotoxicity, and (epi)genotoxicity. In addition, new technologies, such as organs-on-chips and sophisticated sensors, are under development and/or adaptation. All the information generated is used to develop new in silico approaches trying to predict the potential effects of newly developed materials. The overall evaluation of nanomaterials from their production to their final disposal chain is completed using the life cycle assessment (LCA), which is becoming an important element of nanosafety considering sustainability and environmental impact. In this review, we give an overview of all these elements of nanosafety.
Collapse
|
15
|
Onoda A, Hagiwara S, Kubota N, Yanagita S, Takeda K, Umezawa M. A Novel Staining Method for Detection of Brain Perivascular Injuries Induced by Nanoparticle: Periodic Acid-Schiff and Immunohistochemical Double-Staining. FRONTIERS IN TOXICOLOGY 2022; 4:825984. [PMID: 35391824 PMCID: PMC8979793 DOI: 10.3389/ftox.2022.825984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: To protect developing brain from any unfavorable effects, it is necessary to construct experimental techniques that can sensitively detect and evaluate developmental toxicity. We have previously shown that brain perivascular tissues, especially perivascular macrophages (PVMs), respond sensitively even to weak stimuli by foreign toxicants such as low-dose exposure to nanoparticle. This paper shows the protocol of a novel staining method that enables easy detection and rapid evaluation of brain perivascular abnormalities.Methods: As weak stimulus, low-dose of carbon black nanoparticle (95 μg/kg) or titanium dioxide nanoparticle (100 μg/kg) was intranasally administered to pregnant mice at gestational days 5 and 9. The offspring brains were used to confirm the properties of PVMs and to find suitable protocols for the detection and evaluation of the mild denaturation of PVMs. Furthermore, various procedures of novel combinational double staining including periodic acid-Schiff (PAS) staining and immunohistochemistry were examined. In addition, we checked the alterations in neurotransmitter levels and the behaviors of the offspring.Results and discussion: Maternal exposure to low-dose of nanoparticle at levels where no significant effects on the brain were observed, such as abnormal behavior, alteration of neurotransmitter levels, or microglial activation, resulted in mild denaturation of the PVMs, which was captured by PAS staining. However, it was difficult to detect and determine slight histopathological alterations. Therefore, we established PAS-immunohistochemical double-staining method for the brain. This double staining method enabled easy detection and rapid evaluation of brain perivascular abnormalities and the relationship between PVMs and the surrounding cells. In addition, this double staining allows evaluation of the histopathological denaturation of the PVMs and the associated abnormalities in the surrounding tissues in the same section.Conclusion: The slight responses of brain perivascular tissues, such as mild denaturation of PVMs, were sensitively and easily determined by the PAS-immunohistochemical double-staining method. This double staining method is a powerful tool to assess brain perivascular injuries including PVM denaturation and the relationship between the expression of various molecules and the morphology of PVMs. We propose that the observation of the tissue around brain blood vessels using the double staining provides potential endpoints to evaluate developmental neurotoxicity.
Collapse
Affiliation(s)
- Atsuto Onoda
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Tokyo University of Science, Noda, Japan
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Japan
- *Correspondence: Atsuto Onoda,
| | - Shin Hagiwara
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Natsuko Kubota
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Tokyo University of Science, Noda, Japan
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Japan
- Institute of Arts and Sciences, Tokyo University of Science, Noda, Japan
| | - Shinya Yanagita
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Tokyo University of Science, Noda, Japan
- Institute of Arts and Sciences, Tokyo University of Science, Noda, Japan
| | - Ken Takeda
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Tokyo University of Science, Noda, Japan
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Japan
| | - Masakazu Umezawa
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Tokyo University of Science, Noda, Japan
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
16
|
Wen Y, Hu L, Li J, Geng Y, Yang Y, Wang J, Chen X, Yu L, Tang H, Han T, Yang Y, Liu X. Exposure to two-dimensional ultrathin Ti3C2 (MXene) nanosheets during early pregnancy impairs neurodevelopment of offspring in mice. J Nanobiotechnology 2022; 20:108. [PMID: 35248077 PMCID: PMC8898431 DOI: 10.1186/s12951-022-01313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background Two-dimensional ultrathin Ti3C2 (MXene) nanosheets have been extensively explored for various biomedical applications. However, safety issues and the effects of Ti3C2 on human health remain poorly understood. Results To explore the influence on foetal or offspring after exposure to Ti3C2 nanosheets, we established a mouse model exposed to different doses of Ti3C2 nanosheets during early pregnancy in this study. We found that Ti3C2 nanosheets had negligible effect on the reproductive ability of maternal mice, including average pregnancy days, number of new-borns, and neonatal weight, etc. Unexpectedly, abnormal neurobehavior and pathological changes in the cerebral hippocampus and cortex in adult offspring were observed following Ti3C2 nanosheet treatment. In further studies, it was found that Ti3C2 exposure led to developmental and functional defects in the placenta, including reduced area of labyrinth, disordered secretion of placental hormones, and metabolic function derailment. The long-chain unsaturated fatty acids were significantly higher in the placenta after Ti3C2 exposure, especially docosahexaenoic acid (DHA) and linoleic acid. The metabolic pathway analysis showed that biosynthesis of unsaturated fatty acids was upregulated while linoleic acid metabolism was downregulated. Conclusions These developmental and functional defects, particularly metabolic function derailment in placenta may be the cause for the neuropathology in the offspring. This is the first report about the effects of Ti3C2 nanosheet exposure on pregnancy and offspring. The data provides a better understanding of Ti3C2 nanosheets safety. It is suggested that future studies should pay more attention to the long-term effects of nanomaterials exposure, including the health of offspring in adulthood, rather than only focus on short-term effects, such as pregnancy outcomes. Metabolomics could provide clues for finding the prevention targets of the biological negative effect of Ti3C2 nanosheets. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01313-z.
Collapse
|
17
|
Nanoparticle-Induced m6A RNA Modification: Detection Methods, Mechanisms and Applications. NANOMATERIALS 2022; 12:nano12030389. [PMID: 35159736 PMCID: PMC8839700 DOI: 10.3390/nano12030389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
With the increasing application of nanoparticles (NPs) in medical and consumer applications, it is necessary to ensure their safety. As m6A (N6-methyladenosine) RNA modification is one of the most prevalent RNA modifications involved in many diseases and essential biological processes, the relationship between nanoparticles and m6A RNA modification for the modulation of these events has attracted substantial research interest. However, there is limited knowledge regarding the relationship between nanoparticles and m6A RNA modification, but evidence is beginning to emerge. Therefore, a summary of these aspects from current research on nanoparticle-induced m6A RNA modification is timely and significant. In this review, we highlight the roles of m6A RNA modification in the bioimpacts of nanoparticles and thus elaborate on the mechanisms of nanoparticle-induced m6A RNA modification. We also summarize the dynamic regulation and biofunctions of m6A RNA modification. Moreover, we emphasize recent advances in the application perspective of nanoparticle-induced m6A RNA modification in medication and toxicity of nanoparticles to provide a potential method to facilitate the design of nanoparticles by deliberately tuning m6A RNA modification.
Collapse
|
18
|
Tang Q, Tu B, Jiang X, Zhang J, Bai L, Meng P, Zhang L, Qin X, Wang B, Chen C, Zou Z. Exposure to carbon black nanoparticles during pregnancy aggravates lipopolysaccharide-induced lung injury in offspring: an intergenerational effect. Am J Physiol Lung Cell Mol Physiol 2021; 321:L900-L911. [PMID: 34585979 DOI: 10.1152/ajplung.00545.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carbon black nanoparticles (CBNPs) are one of the most frequently used nanoparticles. Exposure to CBNPs during pregnancy (PrE to CBNPs) can directly induce inflammation, lung injury, and genotoxicity in dams and results in abnormalities in offspring. However, whether exposure to CBNPs during pregnancy enhances the susceptibility of offspring to environmental stimuli remains unknown. To address this issue, in this study, we intranasally treated pregnant mice with mock or CBNPs from gestational day (GD) 9 to GD18, and F1 and F2 offspring were normally obtained. By intratracheal instillation of mice with lipopolysaccharide (LPS) to trigger a classic animal model for acute lung injury, we intriguingly found that after LPS treatment, F1 and F2 offspring after exposure during pregnancy to CBNPs both exhibited more pronounced lung injury symptoms, including more degenerative histopathological changes, vascular leakage, elevated MPO activity, and activation of inflammation-related signaling transduction, compared with F1 and F2 offspring in the mock group, suggesting PrE to CBNPs would aggravate LPS-induced lung injury in offspring, and this effect was intergenerational. We also observed that PrE to CBNPs upregulated the mRNA expression of DNA methyltransferases (Dnmt) 1/3a/3b and DNA hypermethylation in both F1 and F2 offspring, which might partially account for the intergenerational effect. Together, our study demonstrates for the first time that PrE to CBNPs can enhance sensitivity to LPS in both F1 and F2 offspring, and this intergenerational effect may be related to DNA hypermethylation caused by CBNPs.
Collapse
Affiliation(s)
- Qianghu Tang
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, People's Republic of China
| | - Baijie Tu
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, grid.203458.8Chongqing Medical University, Chongqing, People's Republic of China
| | - Lulu Bai
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, People's Republic of China
| | - Pan Meng
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, People's Republic of China
| | - Longbin Zhang
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Bin Wang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, grid.203458.8Chongqing Medical University, Chongqing, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, People's Republic of China.,Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, grid.203458.8Chongqing Medical University, Chongqing, People's Republic of China.,Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
19
|
Zhao S, Lu J, Chen Y, Wang Z, Cao J, Dong Y. Exploration of the potential roles of m6A regulators in the uterus in pregnancy and infertility. J Reprod Immunol 2021; 146:103341. [PMID: 34116483 DOI: 10.1016/j.jri.2021.103341] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/07/2021] [Accepted: 05/31/2021] [Indexed: 11/29/2022]
Abstract
Infertility is a prevalent female reproductive disease worldwide. Currently, there are many unknown etiologies of infertility. N6-methyladenosine (m6A) is the most prevalent modification of eukaryotic mRNA. This study intended to investigate the implications of m6A regulators in the uterus for pregnancy and infertility. Pregnant ICR mice on days (D) 0, 4, 6, 10, and 15 were used to monitor m6A methylation in the uterus by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and then m6A methylation regulators were detected by real-time quantitative PCR (qPCR), western blot and immunohistochemistry (IHC). We found that m6A levels increased and that m6A regulators were expressed differently in the uterus during pregnancy. Then, we acquired expression data from endometrial tissue from women with infertility and recurrent pregnancy loss from the Gene Expression Omnibus (GEO) database. The expression of m6A regulators in infertility was significantly dysregulated according to the data mining technique. Specifically, the mRNA levels of METTL16 (p = 0.0147) and WTAP (p = 0.028) were lower and those of ALKBH5 (p = 0.0432) and IGF2BP2 (p = 0.0016) were higher in the endometrium of infertile patients. Meanwhile, many immunity-related pathways are abnormal in infertility, such as cytokine-cytokine receptor interactions, natural killer cell-mediated cytotoxicity and leukocyte transendothelial migration. In conclusion, we found that the m6A levels in the uterus increased as pregnancy progressed, and these regulators were dysregulated in the endometrium of infertility patients. These results suggest that m6A methylation may be very important in the establishment of implantation and maintenance of pregnancy and may become a new direction for research on infertility.
Collapse
Affiliation(s)
- Shisu Zhao
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, Haidian, 100193, People's Republic of China.
| | - Jiayin Lu
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, Haidian, 100193, People's Republic of China.
| | - Yaoxing Chen
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, Haidian, 100193, People's Republic of China.
| | - Zixu Wang
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, Haidian, 100193, People's Republic of China.
| | - Jing Cao
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, Haidian, 100193, People's Republic of China.
| | - Yulan Dong
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, Haidian, 100193, People's Republic of China; Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, China Agricultural University, Beijing, Haidian, 100193, People's Republic of China.
| |
Collapse
|