1
|
Fonseca-Fonseca LA, Fuentes NP, Sánchez JR, Iglesias ÁT, Outeiro TF, Silva VDAD, Costa SL, Núñez-Figueredo Y. Correlational assessment of the effects of JM-20 in a rat model of parkinsonism. Behav Brain Res 2025; 476:115269. [PMID: 39313072 DOI: 10.1016/j.bbr.2024.115269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
We previously demonstrated that JM-20, a molecule with neuroactive functions, protects rats against rotenone and 6-hydroxydopamine (6-OHDA) neurotoxicity. In addition, we demonstrated that JM-20 inhibits the aggregation and cytotoxicity of alpha-synuclein in vitro. In this study, we performed correlation studies between morphological and molecular variables, as well as the motor behavior of parkinsonian rats (6-OHDA and rotenone lesion) treated with JM-20 at different doses (oral with gavage). Our results showed that higher asymmetry evaluated in the cylinder test correlated with greater redox alterations, death of dopaminergic neurons and increased astrogliosis. In the rotenone model, our results showed that a lower number of vertical rearing was correlated with greater redox alterations and increased mitochondrial dysfunction. In both models (6-OHDA and rotenone), parkinsonian animals treated with the highest doses of JM-20 (20 and 40 mg/kg) showed reduced behavioral impairments (lower asymmetry value and higher amount of vertical rearing). Also, a reduced loss of mesencephalic dopaminergic neurons, a smaller number of astrocyte cells in this region, less redox alterations and less mitochondrial dysfunction was observed. In total, our results demonstrate a correlation between behavioral and biochemical variables evaluated in the preclinical models of parkinsonism induced by 6-OHDA and rotenone.
Collapse
Affiliation(s)
- Luis Arturo Fonseca-Fonseca
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No. 1605 Boyeros y Puentes Grandes, La Habana CP 10600, Cuba.
| | - Nancy Pavón Fuentes
- Centro Internacional de Restauración Neurológica (CIREN), Playa, La Habana, Cuba.
| | - Jeney Ramírez Sánchez
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No. 1605 Boyeros y Puentes Grandes, La Habana CP 10600, Cuba
| | - Ángela Tuero Iglesias
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No. 1605 Boyeros y Puentes Grandes, La Habana CP 10600, Cuba
| | - Tiago Fleming Outeiro
- University Medical Center Gottingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany; Max Planck Institute for Experimental Medicine, Goettingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| | - Víctor Diogenes Amaral da Silva
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia (UFBA), Av. Reitor Miguel Calmon s/n, Vale do Canela, Salvador Bahia CEP 41100-100, Brazil
| | - Silvia Lima Costa
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia (UFBA), Av. Reitor Miguel Calmon s/n, Vale do Canela, Salvador Bahia CEP 41100-100, Brazil
| | - Yanier Núñez-Figueredo
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No. 1605 Boyeros y Puentes Grandes, La Habana CP 10600, Cuba.
| |
Collapse
|
2
|
Wong-Guerra M, Montano-Peguero Y, Ramírez-Sánchez J, Alfonso EG, Hernández-Enseñat D, Isaac YA, Padrón-Yaquis AS, da Rocha JBT, Fonseca-Fonseca LA, Núñez-Figueredo Y. Effect of JM-20 on Age-Related Cognitive Impairment in Mice. Neurochem Res 2024; 50:8. [PMID: 39546064 DOI: 10.1007/s11064-024-04254-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/05/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
The decline in cognitive function associated with aging significantly impacts the well-being of elderly individuals and their families. This decline is a major recognized risk factor for neurodegenerative diseases, notably Alzheimer's disease. Animal models of aging provide a platform for evaluating drugs concerning aspects like memory and oxidative stress. JM-20 has demonstrated protective effects on short-term memory acquisition and consolidation, along with antioxidant properties and modulation of Acetylcholinesterase activity. This study assesses the potential protective JM-20 against cognitive decline and age-related memory loss. For the study, aged mice exhibiting aging-associated damage were initially selected. Experimental groups were then formed, and the effect of 8 mg/kg of JM-20 was evaluated for 40 days on aging-related behavior, such as spatial memory, novelty recognition memory, ambulatory activity, and anxiety. Subsequently, animals were sacrificed, and the hippocampal region was extracted for redox studies and to assess acetylcholinesterase activity. Results indicated that JM-20 at 8 mg/kg reversed damage to spatial working and reference memory, exhibiting performance comparable to untreated young adult animals. Furthermore, JM-20 preserved the enzymatic activity of superoxide dismutase, catalase, and total sulfhydryl levels in age-related cognitive impairment in mice, indicating a potent protective effect against oxidative events at the brain level. However, only young, healthy animals showed decreased acetylcholinesterase enzyme activity. These findings provide preclinical pharmacological evidence supporting the neuroprotective activity of JM-20, positioning it as a promising therapeutic candidate for treating memory disorders associated with aging.
Collapse
Affiliation(s)
- Maylin Wong-Guerra
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26 No. 1605 Boyeros y Puentes Grandes, La Habana, 10600, Cuba
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Alameda, 3363, Chile
| | - Yanay Montano-Peguero
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26 No. 1605 Boyeros y Puentes Grandes, La Habana, 10600, Cuba
- Facultad de Ciencias Químicas y Farmacéuticas, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Casilla 233, Santiago, Chile
| | - Jeney Ramírez-Sánchez
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26 No. 1605 Boyeros y Puentes Grandes, La Habana, 10600, Cuba
| | - Enrique García Alfonso
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26 No. 1605 Boyeros y Puentes Grandes, La Habana, 10600, Cuba
| | - Daniela Hernández-Enseñat
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26 No. 1605 Boyeros y Puentes Grandes, La Habana, 10600, Cuba
| | - Yeniceis Alcántara Isaac
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26 No. 1605 Boyeros y Puentes Grandes, La Habana, 10600, Cuba
| | - Alejandro Saúl Padrón-Yaquis
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26 No. 1605 Boyeros y Puentes Grandes, La Habana, 10600, Cuba
| | - João Batista Teixeira da Rocha
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Avenida Roraima 1000, Santa Maria, RS, 97105-900, Brazil
| | - Luis Arturo Fonseca-Fonseca
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26 No. 1605 Boyeros y Puentes Grandes, La Habana, 10600, Cuba.
| | - Yanier Núñez-Figueredo
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26 No. 1605 Boyeros y Puentes Grandes, La Habana, 10600, Cuba.
| |
Collapse
|
3
|
Dos Santos MM, Ferreira SA, de Macedo GT, Claro MT, Müller TE, Prestes ADS, da Rocha JBT, Núñez-Figueredo Y, Barbosa NDV. JM-20 potently prevents the onset of caffeine-induced anxiogenic phenotypes in zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2024; 277:109843. [PMID: 38237841 DOI: 10.1016/j.cbpc.2024.109843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/29/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Anxiety is among the most prevalent mental disorders present in the general population. Benzodiazepines are the most commonly prescribed drugs for the treatment of anxiety. Using zebrafish as a model organism, we investigated the anxiolytic activity of JM-20, a novel hybrid molecule with a 1,5-benzodiazepine ring fused to a dihydropyridine moiety. Firstly, we carried out some assays to analyze the possible toxicity mediated by JM-20. For this, zebrafish were exposed to different JM-20 concentrations (0-5 μM) for 96 h. Then, using the novel tank test, we evaluated both locomotor and anxiety-like behavior of the animals. Furthermore, brain, liver and plasma were removed to assess toxicity parameters. JM-20 exposure did not cause changes on novel tank, and also did not alter brain viability, hepatic LDH and plasma ALT levels. Afterward, we investigated whether a pre-exposure to JM-20 would prevent the anxiogenic effect evoked by caffeine. In the novel tank test, caffeine significantly decreased the time spent at the top, as well as the number of transitions to the top area. Moreover, caffeine decreased both the total and average time spent in the lit area, as well as increased the number of risk episodes evaluated by the light-dark test. Whole-body cortisol levels were also increased by caffeine exposure. Interestingly, pre-treatment with JM-20 abolished all alterations induced by caffeine. The anxiolytic effect profile of JM-20 was similar to those found for diazepam (positive control). Our findings show, for the first time, the anxiolytic effect of JM-20 in zebrafish, and its relationship with cortisol regulation.
Collapse
Affiliation(s)
- Matheus Mülling Dos Santos
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil; Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), 96203-900 Rio Grande, RS, Brazil.
| | - Sabrina Antunes Ferreira
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Gabriel Teixeira de Macedo
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Mariana Torri Claro
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Talise Ellwanger Müller
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Alessandro de Souza Prestes
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - João Batista Teixeira da Rocha
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Yanier Núñez-Figueredo
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No. 1605. Boyeros y Puentes Grandes, CP 10600, La Habana, Cuba
| | - Nilda de Vargas Barbosa
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| |
Collapse
|
4
|
Aminochrome Induces Neuroinflammation and Dopaminergic Neuronal Loss: A New Preclinical Model to Find Anti-inflammatory and Neuroprotective Drugs for Parkinson's Disease. Cell Mol Neurobiol 2023; 43:265-281. [PMID: 34988761 DOI: 10.1007/s10571-021-01173-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/21/2021] [Indexed: 01/07/2023]
Abstract
Studies have suggested aminochrome as an endogenous neurotoxin responsible for the dopaminergic neuron degeneration in Parkinson's disease (PD). However, neuroinflammation, an important alteration in PD pathogenesis, has been strictly induced in vitro by aminochrome. The aim of this study was to characterize the neuroinflammation induced in vivo by aminochrome. Wistar rats (male, 250-270 g) received a unilateral single dose by stereotaxic injection of saline into three sites in the striatum in the negative control group, or 32 nmol 6-hydroxydopamine (6-OHDA) in the positive control, or 6 nmol aminochrome. After 14 days, histological and molecular analyses were performed. We observed by immunofluorescence that aminochrome, as well as 6-OHDA, induced an increase in the number of Iba-1+ cells and in the number of activated (Iba-1+/ CD68+) microglia. An increase in the number of S100b+ cells and in the GFAP expression were also evidenced in the striatum and the SNpc of animals from aminochrome and positive control group. Dopaminergic neuronal loss was marked by reduction of TH+ cells and confirmed with reduction in the number of Nissl-stained neurons in the SNpc of rats from aminochrome and positive control groups. In addition, we observed by qPCR that aminocrhome induced an increase in the levels of IL-1β, TNF-α, NLRP3, CCL5 and CCR2 mRNA in the SNpc. This work provides the first evidence of microgliosis, astrogliosis and neuroinflammation induced by aminochrome in an in vivo model. Since aminochrome is an endogenous molecule derived from dopamine oxidation present in the targeted neurons in PD, these results reinforce the potential of aminochrome as a useful preclinical model to find anti-inflammatory and neuroprotective drugs for PD. Aminochrome induced dopaminergic neuronal loss, microglial activation, astroglial activation and neuroinflammation marked by an increase in NLRP3, IL1β, TNF-α, CCL2, CCL5 and CCR2.
Collapse
|
5
|
JM-20, a Benzodiazepine-Dihydropyridine Hybrid Molecule, Inhibits the Formation of Alpha-Synuclein-Aggregated Species. Neurotox Res 2022; 40:2135-2147. [PMID: 35997936 DOI: 10.1007/s12640-022-00559-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/20/2022] [Accepted: 08/11/2022] [Indexed: 12/31/2022]
Abstract
Studies showed that JM-20, a benzodiazepine-dihydropyridine hybrid molecule, protects against rotenone and 6-hydroxydopamine neurotoxicity. However, its protective effects against cytotoxicity induced by endogenous neurotoxins involved in Parkinson's disease (PD) pathogenesis have never been investigated. In this study, we evaluated the ability of JM-20 to inhibit alpha-synuclein (aSyn) aggregation. We also evaluated the interactions of JM-20 with aSyn by molecular docking and molecular dynamics and assessed the protective effect of JM-20 against aminochrome cytotoxicity. We demonstrated that JM-20 induced the formation of heterogeneous amyloid fibrils, which were innocuous to primary cultures of mesencephalic cells. Moreover, JM-20 reduced the average size of aSyn positive inclusions in H4 cells transfected with SynT wild-type and synphilin-1-V5, but not in HEK cells transfected with synphilin-1-GFP. In silico studies showed the interaction between JM-20 and the aSyn-binding site. Additionally, we showed that JM-20 protects SH-SY5Y cells against aminochrome cytotoxicity. These results reinforce the potential of JM-20 as a neuroprotective compound for PD and suggest aSyn as a molecular target for JM-20.
Collapse
|
6
|
JM-20 affects GABA neurotransmission in Caenorhabditis elegans. Neurotoxicology 2022; 93:37-44. [PMID: 36029931 DOI: 10.1016/j.neuro.2022.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/22/2022]
Abstract
Along with the discovery of new candidate molecules for pharmaceuticals, several studies have emerged showing different mechanisms of action and toxicological aspects. 3-ethoxycarbonyl-2-methyl-4- (2-nitrophenyl)4,11-dihydro-1H-pyrido [2,3-b] [1,5] benzodiazepine (JM-20) is a hybrid molecule. It is derived from 1,5-benzodiazepines and structurally differentiated by the addition of 1,4-dihydropyridine bonded to the benzodiazepine ring. This gives this molecule potential neuroprotective, antioxidant, and anxiolytic activity. As this is a promising multi-target molecule, further studies are necessary to improve the knowledge about its mechanism of action. In our study, we used Caenorhabditis elegans (C. elegans) to investigate the effects of chronic treatment with JM-20. Nematodes from the wild-type strain (N2) were treated chronically at different concentrations of JM-20. Our results show that JM-20 does not cause mortality, but higher concentrations can delay the development of worms after 48h exposure. We assessed basic behaviors in the worm, and our data demonstrate decreased defecation cycle. Our results suggest that JM-20 acts on the C. elegans GABAergic system because GABA neurotransmission is associated with the worm intestine. We also observed increased locomotor activity and decreased egg-laying after JM-20 treatment. When both behaviors were evaluated in mutants with have reduced levels of GABA (unc-25), this effect is no observed, suggesting the GABAergic modulation. Still, the JM-20 exert similar effect of Diazepam in basic behaviors observed. To reinforce neuromodulatory action, computational analysis was performed, and results showed a JM-20 binding on allosteric sites of nematodes GABA receptors. Overall, this work provided a better understanding of the effects of JM-20 in C. elegans as well as showed the effects of this new molecule on the GABAergic system in this animal model.
Collapse
|
7
|
Chalán-Gualán S, Castro V, Oropeza R, Suárez M, Albericio F, Rodríguez H. 3,4-Dihydro-2(1 H)-Pyridones as Building Blocks of Synthetic Relevance. Molecules 2022; 27:5070. [PMID: 36014305 PMCID: PMC9416769 DOI: 10.3390/molecules27165070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 11/23/2022] Open
Abstract
3,4-Dihydro-2(1H)-pyridones (3,4-DHPo) and their derivatives are privileged structures, which has increased their relevance due to their biological activity in front of a broad range of targets, but especially for their importance as synthetic precursors of a variety of compounds with marked biological activity. Taking into account the large number of contributions published over the years regarding this kind of heterocycle, here, we presented a current view of 3,4-dihydro-2(1H)-pyridones (3,4-DHPo). The review includes general aspects such as those related to nomenclature, synthesis, and biological activity, but also highlights the importance of DHPos as building blocks of other relevant structures. Additional to the conventional multicomponent synthesis of the mentioned heterocycle, nonconventional procedures are revised, demonstrating the increasing efficiency and allowing reactions to be carried out in the absence of the solvent, becoming an important contribution to green chemistry. Biological activities of 3,4-DHPo, such as vasorelaxant, anti-HIV, antitumor, antibacterial, and antifungal, have demonstrated this heterocycle's potential in medicinal chemistry.
Collapse
Affiliation(s)
- Sisa Chalán-Gualán
- School of Chemical Science and Engineering, Yachay University for Experimental Technology and Research (Yachay Tech), Yachay City of Knowledge, Urcuqui 100119, Ecuador
| | - Vida Castro
- Institute for Research in Biomedicine, Barcelona Science Park, 08028 Barcelona, Spain
| | - Ruth Oropeza
- School of Chemical Science and Engineering, Yachay University for Experimental Technology and Research (Yachay Tech), Yachay City of Knowledge, Urcuqui 100119, Ecuador
| | - Margarita Suárez
- Laboratorio de Síntesis Orgánica, Facultad de Química, Universidad de La Habana, Ciudad Habana 10400, Cuba
| | - Fernando Albericio
- CIBER-BBN, Networking Centre of Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, 08034 Barcelona, Spain
- Department of Organic Chemistry, University of Barcelona and CIBER-BBN, 08028 Barcelona, Spain
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Hortensia Rodríguez
- School of Chemical Science and Engineering, Yachay University for Experimental Technology and Research (Yachay Tech), Yachay City of Knowledge, Urcuqui 100119, Ecuador
| |
Collapse
|
8
|
The Anti-Parkinson Potential of Gingko biloba-Supplement Mitigates Cortico-Cerebellar Degeneration and Neuropathobiological Alterations via Inflammatory and Apoptotic Mediators in Mice. Neurochem Res 2022; 47:2211-2229. [DOI: 10.1007/s11064-022-03600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
|
9
|
Miranda C, Ruiz-Picazo A, Pomares P, Gonzalez-Alvarez I, Bermejo M, Gonzalez-Alvarez M, Avdeef A, Cabrera-Pérez MÁ. Integration of In Silico, In Vitro and In Situ Tools for the Preformulation and Characterization of a Novel Cardio-Neuroprotective Compound during the Early Stages of Drug Development. Pharmaceutics 2022; 14:182. [PMID: 35057075 PMCID: PMC8780741 DOI: 10.3390/pharmaceutics14010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 11/18/2022] Open
Abstract
The main aim of this work is the biopharmaceutical characterization of a new hybrid benzodiazepine-dihydropyridine derivative, JM-20, derived with potent anti-ischemic and neuroprotective effects. In this study, the pKa and the pH-solubility profile were experimentally determined. Additionally, effective intestinal permeability was measured using three in vitro epithelial cell lines (MDCK, MDCK-MDR1 and Caco-2) and an in situ closed-loop intestinal perfusion technique. The results indicate that JM-20 is more soluble at acidic pH (9.18 ± 0.16); however, the Dose number (Do) was greater than 1, suggesting that it is a low-solubility compound. The permeability values obtained with in vitro cell lines as well as with the in situ perfusion method show that JM-20 is a highly permeable compound (Caco-2 value 3.8 × 10-5). The presence of an absorption carrier-mediated transport mechanism was also demonstrated, as well as the efflux effect of P-glycoprotein on the permeability values. Finally, JM-20 was provisionally classified as class 2 according to the biopharmaceutical classification system (BCS) due to its high intestinal permeability and low solubility. The potential good oral absorption of this compound could be limited by its solubility.
Collapse
Affiliation(s)
- Claudia Miranda
- Unit of Modeling & Experimental Biopharmaceutics, Central “Marta Abreu” de Las Villas, Centro de Bioactivos Químicos Universidad, Santa Clara 50100, Cuba; (C.M.); (M.-Á.C.-P.)
| | - Alejandro Ruiz-Picazo
- Department Engineering of Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 Alicante, Spain; (A.R.-P.); (P.P.); (I.G.-A.); (M.B.)
| | - Paula Pomares
- Department Engineering of Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 Alicante, Spain; (A.R.-P.); (P.P.); (I.G.-A.); (M.B.)
| | - Isabel Gonzalez-Alvarez
- Department Engineering of Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 Alicante, Spain; (A.R.-P.); (P.P.); (I.G.-A.); (M.B.)
| | - Marival Bermejo
- Department Engineering of Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 Alicante, Spain; (A.R.-P.); (P.P.); (I.G.-A.); (M.B.)
| | - Marta Gonzalez-Alvarez
- Department Engineering of Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 Alicante, Spain; (A.R.-P.); (P.P.); (I.G.-A.); (M.B.)
| | - Alex Avdeef
- In-ADME Research, 1732 First Avenue # 102, New York, NY 10128, USA;
| | - Miguel-Ángel Cabrera-Pérez
- Unit of Modeling & Experimental Biopharmaceutics, Central “Marta Abreu” de Las Villas, Centro de Bioactivos Químicos Universidad, Santa Clara 50100, Cuba; (C.M.); (M.-Á.C.-P.)
| |
Collapse
|
10
|
Wong-Guerra M, Montano-Peguero Y, Ramírez-Sánchez J, Jiménez-Martin J, Fonseca-Fonseca LA, Hernández-Enseñat D, Nonose Y, Valdés O, Mondelo-Rodriguez A, Ortiz-Miranda Y, Bergado G, Carmenate T, Soto Del Valle RM, Pardo-Andreu G, Outeiro TF, Padrón-Yaquis AS, Martimbianco de Assis A, O Souza D, Nuñez-Figueredo Y. JM-20 treatment prevents neuronal damage and memory impairment induced by aluminum chloride in rats. Neurotoxicology 2021; 87:70-85. [PMID: 34481871 DOI: 10.1016/j.neuro.2021.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 02/05/2023]
Abstract
The number of people with dementia worldwide is estimated at 50 million by 2018 and continues to rise mainly due to increasing aging and population growth. Clinical impact of current interventions remains modest and all efforts aimed at the identification of new therapeutic approaches are therefore critical. Previously, we showed that JM-20, a dihydropyridine-benzodiazepine hybrid molecule, protected memory processes against scopolamine-induced cholinergic dysfunction. In order to gain further insight into the therapeutic potential of JM-20 on cognitive decline and Alzheimer's disease (AD) pathology, here we evaluated its neuroprotective effects after chronic aluminum chloride (AlCl3) administration to rats and assessed possible alterations in several types of episodic memory and associated pathological mechanisms. Oral administration of aluminum to rodents recapitulates several neuropathological alterations and cognitive impairment, being considered a convenient tool for testing the efficacy of new therapies for dementia. We used behavioral tasks to test spatial, emotional- associative and novel object recognition memory, as well as molecular, enzymatic and histological assays to evaluate selected biochemical parameters. Our study revealed that JM-20 prevented memory decline alongside the inhibition of AlCl3 -induced oxidative stress, increased AChE activity, TNF-α and pro-apoptotic proteins (like Bax, caspase-3, and 8) levels. JM-20 also protected against neuronal damage in the hippocampus and prefrontal cortex. Our findings expanded our understanding of the ability of JM-20 to preserve memory in rats under neurotoxic conditions and confirm its potential capacity to counteract cognitive impairment and etiological factors of AD by breaking the progression of key steps associated with neurodegeneration.
Collapse
Affiliation(s)
- Maylin Wong-Guerra
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Yanay Montano-Peguero
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Jeney Ramírez-Sánchez
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Javier Jiménez-Martin
- Department of Physiology, Otago School of Medical Sciences, University of Otago, P.O. Box 913, Dunedin, 9016, New Zealand
| | - Luis Arturo Fonseca-Fonseca
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Daniela Hernández-Enseñat
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Yasmine Nonose
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Odalys Valdés
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Abel Mondelo-Rodriguez
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Yaquelin Ortiz-Miranda
- Centro de Inmunología Molecular, Calle 216 esq 15, Atabey, Playa, PO Box 16040, Havana, Cuba
| | - Gretchen Bergado
- Centro de Inmunología Molecular, Calle 216 esq 15, Atabey, Playa, PO Box 16040, Havana, Cuba
| | - Tania Carmenate
- Centro de Inmunología Molecular, Calle 216 esq 15, Atabey, Playa, PO Box 16040, Havana, Cuba
| | | | - Gilberto Pardo-Andreu
- Centro de Estudio para las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos, Universidad de La Habana, Calle 222, No. 2317, e/ 23 y 31, La Coronela, La Lisa, CP 13600, La Habana, Cuba
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Gottingen, Göttingen, Germany; Max Planck Institute for Experimental Medicine, Goettingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle, UK
| | - Alejandro Saúl Padrón-Yaquis
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Adriano Martimbianco de Assis
- University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK; Post-graduate Program in Health and Behavior, Health Sciences Centre, Universidade Católica de Pelotas, Pelotas, Brazil
| | - Diogo O Souza
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Yanier Nuñez-Figueredo
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba.
| |
Collapse
|