1
|
Laursen ALS, Olesen MV, Folke J, Brudek T, Knecht LH, Sotty F, Lambertsen KL, Fog K, Dalgaard LT, Aznar S. Systemic inflammation activates coagulation and immune cell infiltration pathways in brains with propagating α-synuclein fibril aggregates. Mol Cell Neurosci 2024; 129:103931. [PMID: 38508542 DOI: 10.1016/j.mcn.2024.103931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/15/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
Synucleinopathies are a group of diseases characterized by brain aggregates of α-synuclein (α-syn). The gradual accumulation of α-syn and the role of inflammation in early-stage pathogenesis remain poorly understood. We explored this interaction by inducing chronic inflammation in a common pre-clinical synucleinopathy mouse model. Three weeks post unilateral intra-striatal injections of human α-syn pre-formed fibrils (PFF), mice underwent repeated intraperitoneal injections of 1 mg/ml lipopolysaccharide (LPS) for 3 weeks. Histological examinations of the ipsilateral site showed phospho-α-syn regional spread and LPS-induced neutrophil recruitment to the brain vasculature. Biochemical assessment of the contralateral site confirmed spreading of α-syn aggregation to frontal cortex and a rise in intracerebral TNF-α, IL-1β, IL-10 and KC/GRO cytokines levels due to LPS. No LPS-induced exacerbation of α-syn pathology load was observed at this stage. Proteomic analysis was performed contralateral to the PFF injection site using LC-MS/MS. Subsequent downstream Reactome Gene-Set Analysis indicated that α-syn pathology alters mitochondrial metabolism and synaptic signaling. Chronic LPS-induced inflammation further lead to an overrepresentation of pathways related to fibrin clotting as well as integrin and B cell receptor signaling. Western blotting confirmed a PFF-induced increase in fibrinogen brain levels and a PFF + LPS increase in Iba1 levels, indicating activated microglia. Splenocyte profiling revealed changes in T and B cells, monocytes, and neutrophils populations due to LPS treatment in PFF injected animals. In summary, early α-syn pathology impacts energy homeostasis pathways, synaptic signaling and brain fibrinogen levels. Concurrent mild systemic inflammation may prime brain immune pathways in interaction with peripheral immunity.
Collapse
Affiliation(s)
- Anne-Line Strange Laursen
- Centre for Neuroscience & Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, DK-2400, Copenhagen, NV, Denmark; Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, DK-2400, Copenhagen, NV, Denmark; Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000, Roskilde, Denmark.
| | - Mikkel Vestergaard Olesen
- Centre for Neuroscience & Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, DK-2400, Copenhagen, NV, Denmark; Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, DK-2400, Copenhagen, NV, Denmark.
| | - Jonas Folke
- Centre for Neuroscience & Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, DK-2400, Copenhagen, NV, Denmark; Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, DK-2400, Copenhagen, NV, Denmark.
| | - Tomasz Brudek
- Centre for Neuroscience & Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, DK-2400, Copenhagen, NV, Denmark; Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, DK-2400, Copenhagen, NV, Denmark.
| | - Luisa Harriet Knecht
- Centre for Neuroscience & Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, DK-2400, Copenhagen, NV, Denmark; Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, DK-2400, Copenhagen, NV, Denmark.
| | | | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløwsvej 21-25, DK-5000, Odense, Denmark; Department of Neurology, Odense University Hospital, J.B. Winsløwsvej 4, Odense, Denmark; BRIDGE - Brain-Research-Inter-Disciplinary Guided Excellence, Department of Clinical Institute, University of Southern Denmark, Winsløwparken 19, Odense, Denmark.
| | - Karina Fog
- H. Lundbeck A/S, Ottiliavej 9, DK-2500, Valby, Denmark.
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000, Roskilde, Denmark.
| | - Susana Aznar
- Centre for Neuroscience & Stereology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 6B, DK-2400, Copenhagen, NV, Denmark; Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Nielsine Nielsens Vej 4B, DK-2400, Copenhagen, NV, Denmark.
| |
Collapse
|
2
|
Signorile A, De Rasmo D. Mitochondrial Complex I, a Possible Sensible Site of cAMP Pathway in Aging. Antioxidants (Basel) 2023; 12:antiox12020221. [PMID: 36829783 PMCID: PMC9951957 DOI: 10.3390/antiox12020221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
In mammals during aging, reactive oxygen species (ROS), produced by the mitochondrial respiratory chain, cause oxidative damage of macromolecules leading to respiratory chain dysfunction, which in turn increases ROS mitochondrial production. Many efforts have been made to understand the role of oxidative stress in aging and age-related diseases. The complex I of the mitochondrial respiratory chain is the major source of ROS production and its dysfunctions have been associated with several forms of neurodegeneration, other common human diseases and aging. Complex I-ROS production and complex I content have been proposed as the major determinants for longevity. The cAMP signal has a role in the regulation of complex I activity and the decrease of ROS production. In the last years, an increasing number of studies have attempted to activate cAMP signaling to treat age-related diseases associated with mitochondrial dysfunctions and ROS production. This idea comes from a long-line of studies showing a main role of cAMP signal in the memory consolidation mechanism and in the regulation of mitochondrial functions. Here, we discuss several evidences on the possible connection between complex I and cAMP pathway in the aging process.
Collapse
Affiliation(s)
- Anna Signorile
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Domenico De Rasmo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), 70126 Bari, Italy
- Correspondence: ; Tel.: +39-080-544-8516
| |
Collapse
|
3
|
Saito ER, Warren CE, Hanegan CM, Larsen JG, du Randt JD, Cannon M, Saito JY, Campbell RJ, Kemberling CM, Miller GS, Edwards JG, Bikman BT. A Novel Ketone-Supplemented Diet Improves Recognition Memory and Hippocampal Mitochondrial Efficiency in Healthy Adult Mice. Metabolites 2022; 12:1019. [PMID: 36355101 PMCID: PMC9693360 DOI: 10.3390/metabo12111019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 09/13/2023] Open
Abstract
Mitochondrial dysfunction and cognitive impairment are common symptoms in many neurologic and psychiatric disorders, as well as nonpathological aging. Ketones have been suggested as therapeutic for their efficacy in epilepsy and other brain pathologies such as Alzheimer's disease and major depressive disorder. However, their effects on cognitive function in healthy individuals is less established. Here, we explored the mitochondrial and performative outcomes of a novel eight-week ketone-supplemented ketogenic (KETO) diet in healthy adult male and female mice. In a novel object recognition test, KETO mice spent more time with the novel, compared to familiar, object, indicating an improvement in recognition memory. High-resolution respirometry on permeabilized hippocampal tissue returned significant reductions in mitochondrial O2 consumption. No changes in ATP production were observed, yielding a significantly higher ATP:O2 ratio, a measure of mitochondrial efficiency. Together, these findings demonstrate the KETO diet improves hippocampal mitochondrial efficiency. They add to a growing body of evidence that suggests ketones and ketogenic diets are neuroprotective and metabolically and cognitively relevant, even in healthy adults. They also suggest that ketogenic lifestyle changes may be effective strategies for protecting against cognitive decline associated with aging and disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Benjamin T. Bikman
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
4
|
cAMP/PKA Signaling Modulates Mitochondrial Supercomplex Organization. Int J Mol Sci 2022; 23:ijms23179655. [PMID: 36077053 PMCID: PMC9455794 DOI: 10.3390/ijms23179655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
The oxidative phosphorylation (OXPHOS) system couples the transfer of electrons to oxygen with pumping of protons across the inner mitochondrial membrane, ensuring the ATP production. Evidence suggests that respiratory chain complexes may also assemble into supramolecular structures, called supercomplexes (SCs). The SCs appear to increase the efficiency/capacity of OXPHOS and reduce the reactive oxygen species (ROS) production, especially that which is produced by complex I. Studies suggest a mutual regulation between complex I and SCs, while SCs organization is important for complex I assembly/stability, complex I is involved in the supercomplex formation. Complex I is a pacemaker of the OXPHOS system, and it has been shown that the PKA-dependent phosphorylation of some of its subunits increases the activity of the complex, reducing the ROS production. In this work, using in ex vivo and in vitro models, we show that the activation of cAMP/PKA cascade resulted in an increase in SCs formation associated with an enhanced capacity of electron flux and ATP production rate. This is also associated with the phosphorylation of the NDUFS4 subunit of complex I. This aspect highlights the key role of complex I in cellular energy production.
Collapse
|
5
|
Wang L, Chaudhari K, Winters A, Sun Y, Liu R, Yang SH. Characterizing region-specific glucose metabolic profile of the rodent brain using Seahorse XFe96 analyzer. J Cereb Blood Flow Metab 2022; 42:1259-1271. [PMID: 35078350 PMCID: PMC9207488 DOI: 10.1177/0271678x221077341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The brain is highly complex with diverse structural characteristics in accordance with specific functions. Accordingly, differences in regional function, cellular compositions, and active metabolic pathways may link to differences in glucose metabolism at different brain regions. In the current study, we optimized an acute biopsy punching method and characterized region-specific glucose metabolism of rat and mouse brain by a Seahorse XFe96 analyzer. We demonstrated that 0.5 mm diameter tissue punches from 180-µm thick brain sections allow metabolic measurements of anatomically defined brain structures using Seahorse XFe96 analyzer. Our result indicated that the cerebellum displays a more quiescent phenotype of glucose metabolism than cerebral cortex, basal ganglia, and hippocampus. In addition, the cerebellum has higher AMPK activation than other brain regions evidenced by the expression of pAMPK, upstream pLKB1, and downstream pACC. Furthermore, rodent brain has relatively low mitochondrial oxidative phosphorylation efficiency with up to 30% of respiration linked to proton leak. In summary, our study discovered region-specific glucose metabolic profile and relative high proton leak coupled respiration in the brain. Our study warrants future research on spatial mapping of the brain glucose metabolism in physiological and pathological conditions and exploring the mechanisms and significance of mitochondrial uncoupling in the brain.
Collapse
Affiliation(s)
- Linshu Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Kiran Chaudhari
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Ali Winters
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Yuanhong Sun
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Ran Liu
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Shao-Hua Yang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
6
|
Becker PH, Le Guillou E, Duque M, Blondel A, Gons C, Ben Souna H, Imbard A, Fournier N, Gaignard P, Thérond P. Cholesterol accumulation induced by acetylated LDL exposure modifies the enzymatic activities of the TCA cycle without impairing the respiratory chain functionality in macrophages. Biochimie 2022; 200:87-98. [PMID: 35618159 DOI: 10.1016/j.biochi.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/31/2022] [Accepted: 05/19/2022] [Indexed: 11/27/2022]
Abstract
The unregulated uptake of modified low-density lipoproteins (LDL) by macrophages leads to foam cell formation, promoting atherosclerotic plaque progression. The cholesterol efflux capacity of macrophages by the ATP-Binding Cassette transporters depends on the ATP mitochondrial production. Therefore, the mitochondrial function maintenance is crucial in limiting foam cell formation. Thus, we aimed to investigate the mechanisms involved in the mitochondrial dysfunction that may occur in cholesterol-laden macrophages. We incubated THP-1 macrophages with acetylated LDL (acLDL) to obtain cholesterol-laden cells or with mildly oxidized LDL (oxLDL) to generate cholesterol- and oxidized lipids-laden cells. Cellular cholesterol content was measured in each condition. Mitochondrial function was evaluated by measurement of several markers of energetic metabolism, oxidative phosphorylation, oxidative stress, mitochondrial biogenesis and dynamics. OxLDL-exposed macrophages exhibited a significantly reduced mitochondrial respiration and complexes I and III activities, associated to an oxidative stress state and a reduced mitochondrial DNA copy number. Meanwhile, acLDL-exposed macrophages featured an efficient oxidative phosphorylation despite the decreased activities of aconitase, isocitrate dehydrogenase and α-ketoglutarate dehydrogenase. Our study revealed that mitochondrial function was differently impacted according to the nature of modified LDL. Exposure to cholesterol and oxidized lipids carried by oxLDL leads to a mitochondrial dysfunction in macrophages, affecting the mitochondrial respiratory chain functional capacity, whereas the cellular cholesterol enrichment induced by acLDL exposure results in a tricarboxylic acid cycle shunt while maintaining mitochondrial energetic production, reflecting a metabolic adaptation to cholesterol intake. These new mechanistic insights are of direct relevance to the understanding of the mitochondrial dysfunction in foam cells.
Collapse
Affiliation(s)
- Pierre-Hadrien Becker
- Université Paris-Saclay, EA 7357, Lipides: systèmes analytiques et biologiques, Châtenay-Malabry, 92296, France; Hôpital Bicêtre, AP-HP, Laboratoire de Biochimie, Le Kremlin Bicêtre, 94270, France.
| | - Edouard Le Guillou
- Hôpital Bicêtre, AP-HP, Laboratoire de Biochimie, Le Kremlin Bicêtre, 94270, France
| | - Mathilde Duque
- Hôpital Bicêtre, AP-HP, Laboratoire de Biochimie, Le Kremlin Bicêtre, 94270, France
| | - Amélie Blondel
- Hôpital Bicêtre, AP-HP, Laboratoire de Biochimie, Le Kremlin Bicêtre, 94270, France
| | - Camille Gons
- Hôpital Bicêtre, AP-HP, Laboratoire de Biochimie, Le Kremlin Bicêtre, 94270, France
| | - Hajar Ben Souna
- Hôpital Bicêtre, AP-HP, Laboratoire de Biochimie, Le Kremlin Bicêtre, 94270, France
| | - Apolline Imbard
- Université Paris-Saclay, EA 7357, Lipides: systèmes analytiques et biologiques, Châtenay-Malabry, 92296, France; Hôpital Necker-Enfants Malades, AP-HP, Laboratoire de Biochimie Métabolique, Paris, 75015, France
| | - Natalie Fournier
- Université Paris-Saclay, EA 7357, Lipides: systèmes analytiques et biologiques, Châtenay-Malabry, 92296, France; Hôpital Européen Georges Pompidou, AP-HP, Laboratoire de Biochimie, Paris, 75015, France
| | - Pauline Gaignard
- Université Paris-Saclay, EA 7357, Lipides: systèmes analytiques et biologiques, Châtenay-Malabry, 92296, France; Hôpital Bicêtre, AP-HP, Laboratoire de Biochimie, Le Kremlin Bicêtre, 94270, France
| | - Patrice Thérond
- Université Paris-Saclay, EA 7357, Lipides: systèmes analytiques et biologiques, Châtenay-Malabry, 92296, France; Hôpital Bicêtre, AP-HP, Laboratoire de Biochimie, Le Kremlin Bicêtre, 94270, France
| |
Collapse
|
7
|
Prasuhn J, Brüggemann N. Gene Therapeutic Approaches for the Treatment of Mitochondrial Dysfunction in Parkinson's Disease. Genes (Basel) 2021; 12:genes12111840. [PMID: 34828446 PMCID: PMC8623067 DOI: 10.3390/genes12111840] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Mitochondrial dysfunction has been identified as a pathophysiological hallmark of disease onset and progression in patients with Parkinsonian disorders. Besides the overall emergence of gene therapies in treating these patients, this highly relevant molecular concept has not yet been defined as a target for gene therapeutic approaches. Methods: This narrative review will discuss the experimental evidence suggesting mitochondrial dysfunction as a viable treatment target in patients with monogenic and idiopathic Parkinson’s disease. In addition, we will focus on general treatment strategies and crucial challenges which need to be overcome. Results: Our current understanding of mitochondrial biology in parkinsonian disorders opens up the avenue for viable treatment strategies in Parkinsonian disorders. Insights can be obtained from primary mitochondrial diseases. However, substantial knowledge gaps and unique challenges of mitochondria-targeted gene therapies need to be addressed to provide innovative treatments in the future. Conclusions: Mitochondria-targeted gene therapies are a potential strategy to improve an important primary disease mechanism in Parkinsonian disorders. However, further studies are needed to address the unique design challenges for mitochondria-targeted gene therapies.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany;
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany;
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Correspondence:
| |
Collapse
|
8
|
Resveratrol Treatment in Human Parkin-Mutant Fibroblasts Modulates cAMP and Calcium Homeostasis Regulating the Expression of Mitochondria-Associated Membranes Resident Proteins. Biomolecules 2021; 11:biom11101511. [PMID: 34680144 PMCID: PMC8534032 DOI: 10.3390/biom11101511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022] Open
Abstract
Parkin plays an important role in ensuring efficient mitochondrial function and calcium homeostasis. Parkin-mutant human fibroblasts, with defective oxidative phosphorylation activity, showed high basal cAMP level likely ascribed to increased activity/expression of soluble adenylyl cyclase and/or low expression/activity of the phosphodiesterase isoform 4 and to a higher Ca2+ level. Overall, these findings support the existence, in parkin-mutant fibroblasts, of an abnormal Ca2+ and cAMP homeostasis in mitochondria. In our previous studies resveratrol treatment of parkin-mutant fibroblasts induced a partial rescue of mitochondrial functions associated with stimulation of the AMPK/SIRT1/PGC-1α pathway. In this study we provide additional evidence of the potential beneficial effects of resveratrol inducing an increase in the pre-existing high Ca2+ level and remodulation of the cAMP homeostasis in parkin-mutant fibroblasts. Consistently, we report in these fibroblasts higher expression of proteins implicated in the tethering of ER and mitochondrial contact sites along with their renormalization after resveratrol treatment. On this basis we hypothesize that resveratrol-mediated enhancement of the Ca2+ level, fine-tuned by the ER-mitochondria Ca2+ crosstalk, might modulate the pAMPK/AMPK pathway in parkin-mutant fibroblasts.
Collapse
|
9
|
Patalas-Krawczyk P, Malinska D, Walczak J, Kratzer G, Prill M, Michalska B, Drabik K, Titz B, Eb-Levadoux Y, Schneider T, Szymanski J, Hoeng J, Peitsch MC, Duszynski J, Szczepanowska J, Van der Toorn M, Mathis C, Wieckowski MR. Effects of plant alkaloids on mitochondrial bioenergetic parameters. Food Chem Toxicol 2021; 154:112316. [PMID: 34089800 DOI: 10.1016/j.fct.2021.112316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 10/21/2022]
Abstract
Mitochondria are among the first responders to various stress factors that challenge cell and tissue homeostasis. Various plant alkaloids have been investigated for their capacity to modulate mitochondrial activities. In this study, we used isolated mitochondria from mouse brain and liver tissues to assess nicotine, anatabine and anabasine, three alkaloids found in tobacco plant, for potential modulatory activity on mitochondrial bioenergetics parameters. All alkaloids decreased basal oxygen consumption of mouse brain mitochondria in a dose-dependent manner without any effect on the ADP-stimulated respiration. None of the alkaloids, at 1 nM or 1.25 μM concentrations, influenced the maximal rate of swelling of brain mitochondria. In contrast to brain mitochondria, 1.25 μM anatabine, anabasine and nicotine increased maximal rate of swelling of liver mitochondria suggesting a toxic effect. Only at 1 mM concentration, anatabine slowed down the maximal rate of Ca2+-induced swelling and increased the time needed to reach the maximal rate of swelling. The observed mitochondrial bioenergetic effects are probably mediated through a pathway independent of nicotinic acetylcholine receptors, as quantitative proteomic analysis could not confirm their expression in pure mitochondrial fractions isolated from mouse brain tissue.
Collapse
Affiliation(s)
| | - Dominika Malinska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Jaroslaw Walczak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Gilles Kratzer
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Monika Prill
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Bernadeta Michalska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Karolina Drabik
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Bjorn Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Yvan Eb-Levadoux
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | | | - Jedrzej Szymanski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Jerzy Duszynski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Joanna Szczepanowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Marco Van der Toorn
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Carole Mathis
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Mariusz R Wieckowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
10
|
PGC-1s in the Spotlight with Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22073487. [PMID: 33800548 PMCID: PMC8036867 DOI: 10.3390/ijms22073487] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease is one of the most common neurodegenerative disorders worldwide, characterized by a progressive loss of dopaminergic neurons mainly localized in the substantia nigra pars compacta. In recent years, the detailed analyses of both genetic and idiopathic forms of the disease have led to a better understanding of the molecular and cellular pathways involved in PD, pointing to the centrality of mitochondrial dysfunctions in the pathogenic process. Failure of mitochondrial quality control is now considered a hallmark of the disease. The peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1) family acts as a master regulator of mitochondrial biogenesis. Therefore, keeping PGC-1 level in a proper range is fundamental to guarantee functional neurons. Here we review the major findings that tightly bond PD and PGC-1s, raising important points that might lead to future investigations.
Collapse
|
11
|
Elbassiouny AA, Lovejoy NR, Chang BSW. Convergent patterns of evolution of mitochondrial oxidative phosphorylation (OXPHOS) genes in electric fishes. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190179. [PMID: 31787042 PMCID: PMC6939368 DOI: 10.1098/rstb.2019.0179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2019] [Indexed: 12/26/2022] Open
Abstract
The ability to generate and detect electric fields has evolved in several groups of fishes as a means of communication, navigation and, occasionally, predation. The energetic burden required can account for up to 20% of electric fishes' daily energy expenditure. Despite this, molecular adaptations that enable electric fishes to meet the metabolic demands of bioelectrogenesis remain unknown. Here, we investigate the molecular evolution of the mitochondrial oxidative phosphorylation (OXPHOS) complexes in the two most diverse clades of weakly electric fishes-South American Gymnotiformes and African Mormyroidea, using codon-based likelihood approaches. Our analyses reveal that although mitochondrial OXPHOS genes are generally subject to strong purifying selection, this constraint is significantly reduced in electric compared to non-electric fishes, particularly for complexes IV and V. Moreover, analyses of concatenated mitochondrial genes show strong evidence for positive selection in complex I genes on the two branches associated with the independent evolutionary origins of electrogenesis. These results suggest that adaptive evolution of proton translocation in the OXPHOS cellular machinery may be associated with the evolution of bioelectrogenesis. Overall, we find striking evidence for remarkably similar effects of electrogenesis on the molecular evolution of mitochondrial OXPHOS genes in two independently derived clades of electrogenic fishes. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- Ahmed A. Elbassiouny
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | - Nathan R. Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | - Belinda S. W. Chang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Nilsson A, Björnson E, Flockhart M, Larsen FJ, Nielsen J. Complex I is bypassed during high intensity exercise. Nat Commun 2019; 10:5072. [PMID: 31699973 PMCID: PMC6838197 DOI: 10.1038/s41467-019-12934-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/10/2019] [Indexed: 12/28/2022] Open
Abstract
Human muscles are tailored towards ATP synthesis. When exercising at high work rates muscles convert glucose to lactate, which is less nutrient efficient than respiration. There is hence a trade-off between endurance and power. Metabolic models have been developed to study how limited catalytic capacity of enzymes affects ATP synthesis. Here we integrate an enzyme-constrained metabolic model with proteomics data from muscle fibers. We find that ATP synthesis is constrained by several enzymes. A metabolic bypass of mitochondrial complex I is found to increase the ATP synthesis rate per gram of protein compared to full respiration. To test if this metabolic mode occurs in vivo, we conduct a high resolved incremental exercise tests for five subjects. Their gas exchange at different work rates is accurately reproduced by a whole-body metabolic model incorporating complex I bypass. The study therefore shows how proteome allocation influences metabolism during high intensity exercise.
Collapse
Affiliation(s)
- Avlant Nilsson
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE41296, Sweden
| | - Elias Björnson
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE41296, Sweden.,Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Mikael Flockhart
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Filip J Larsen
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE41296, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800, Kongens Lyngby, Denmark.
| |
Collapse
|
13
|
Crescenzo R, Spagnuolo MS, Cancelliere R, Iannotta L, Mazzoli A, Gatto C, Iossa S, Cigliano L. Effect of Initial Aging and High-Fat/High-Fructose Diet on Mitochondrial Bioenergetics and Oxidative Status in Rat Brain. Mol Neurobiol 2019; 56:7651-7663. [PMID: 31089964 DOI: 10.1007/s12035-019-1617-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/17/2019] [Indexed: 12/19/2022]
Abstract
Middle age is an early stage of the aging process, during which the consumption of diets rich in saturated fats and/or simple sugars might influence brain function, but only few data are available on this issue. We therefore investigated the impact of a diet rich in saturated fat and fructose (HFF) on mitochondrial physiology in hippocampus and frontal cortex of middle-aged rats (1 year old), by including a group of adult rats (90 days) as a "negative control," lacking the putative effect of aging. Middle-aged rats were fed HFF or control diet for 4 weeks. Mitochondrial function was analyzed by high-resolution respirometry and by assessing the amount of respiratory complexes. Markers of oxidative balance, as well as the protein content of uncoupling protein 2 (UCP2), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and peroxisome proliferator-activated receptor alpha (PPARα), were also assessed. A decrease in the activity of complex I was detected in both brain areas of middle-aged rats. In hippocampus, mitochondrial respiratory capacity and complex IV content decreased with age and increased with HFF diet. Higher protein oxidative damage, decreased antioxidant defenses, and increased UCP2 and PGC-1α content were found in hippocampus of middle-aged rats. HFF feeding induced a significant reduction in the amount of UCP2, PGC-1α, and PPARα, together with higher protein oxidative damage, in both brain areas. Overall, our results point to middle age as a condition of early brain aging for mitochondrial function, with hippocampus being an area more susceptible to metabolic impairment than frontal cortex.
Collapse
Affiliation(s)
- Raffaella Crescenzo
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia, I-80126, Naples, Italy
| | - Maria Stefania Spagnuolo
- Department of Bio-Agrofood Science, Institute for the Animal Production System in Mediterranean Environment, National Research Council (CNR-ISPAAM), Naples, Italy
| | - Rosa Cancelliere
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia, I-80126, Naples, Italy
| | - Lucia Iannotta
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia, I-80126, Naples, Italy
| | - Arianna Mazzoli
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia, I-80126, Naples, Italy
| | - Cristina Gatto
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia, I-80126, Naples, Italy
| | - Susanna Iossa
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia, I-80126, Naples, Italy.
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia, I-80126, Naples, Italy
| |
Collapse
|
14
|
Gaignard P, Fréchou M, Liere P, Thérond P, Schumacher M, Slama A, Guennoun R. Sex differences in brain mitochondrial metabolism: influence of endogenous steroids and stroke. J Neuroendocrinol 2018. [PMID: 28650095 DOI: 10.1111/jne.12497] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Steroids are neuroprotective and a growing body of evidence indicates that mitochondria are a potential target of their effects. The mitochondria are the site of cellular energy synthesis, regulate oxidative stress and play a key role in cell death after brain injury and neurodegenerative diseases. After providing a summary of the literature on the general functions of mitochondria and the effects of sex steroid administrations on mitochondrial metabolism, we summarise and discuss our recent findings concerning sex differences in brain mitochondrial function under physiological and pathological conditions. To analyse the influence of endogenous sex steroids, the oxidative phosphorylation system, mitochondrial oxidative stress and brain steroid levels were compared between male and female mice, either intact or gonadectomised. The results obtained show that females have higher a mitochondrial respiration and lower oxidative stress compared to males and also that these differences were suppressed by ovariectomy but not orchidectomy. We have also shown that the decrease in brain mitochondrial respiration induced by ischaemia/reperfusion is different according to sex. In both sexes, treatment with progesterone reduced the ischaemia/reperfusion-induced mitochondrial alterations. Our findings indicate sex differences in brain mitochondrial function under physiological conditions, as well as after stroke, and identify mitochondria as a target of the neuroprotective properties of progesterone. Thus, it is necessary to investigate sex specificity in brain physiopathological mechanisms, especially when mitochondria impairment is involved.
Collapse
Affiliation(s)
- P Gaignard
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Kremlin-Bicêtre, France
- Biochemistry Laboratory, Bicêtre Hospital, Assistance-Publique Hôpitaux de Paris, Kremlin-Bicêtre, France
| | - M Fréchou
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Kremlin-Bicêtre, France
| | - P Liere
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Kremlin-Bicêtre, France
| | - P Thérond
- Biochemistry Laboratory, Bicêtre Hospital, Assistance-Publique Hôpitaux de Paris, Kremlin-Bicêtre, France
| | - M Schumacher
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Kremlin-Bicêtre, France
| | - A Slama
- Biochemistry Laboratory, Bicêtre Hospital, Assistance-Publique Hôpitaux de Paris, Kremlin-Bicêtre, France
| | - R Guennoun
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Kremlin-Bicêtre, France
| |
Collapse
|
15
|
Thomsen K, Yokota T, Hasan-Olive MM, Sherazi N, Fakouri NB, Desler C, Regnell CE, Larsen S, Rasmussen LJ, Dela F, Bergersen LH, Lauritzen M. Initial brain aging: heterogeneity of mitochondrial size is associated with decline in complex I-linked respiration in cortex and hippocampus. Neurobiol Aging 2018; 61:215-224. [DOI: 10.1016/j.neurobiolaging.2017.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 11/30/2022]
|
16
|
Korolchuk VI, Miwa S, Carroll B, von Zglinicki T. Mitochondria in Cell Senescence: Is Mitophagy the Weakest Link? EBioMedicine 2017; 21:7-13. [PMID: 28330601 PMCID: PMC5514379 DOI: 10.1016/j.ebiom.2017.03.020] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 01/30/2023] Open
Abstract
Cell senescence is increasingly recognized as a major contributor to the loss of health and fitness associated with aging. Senescent cells accumulate dysfunctional mitochondria; oxidative phosphorylation efficiency is decreased and reactive oxygen species production is increased. In this review we will discuss how the turnover of mitochondria (a term referred to as mitophagy) is perturbed in senescence contributing to mitochondrial accumulation and Senescence-Associated Mitochondrial Dysfunction (SAMD). We will further explore the subsequent cellular consequences; in particular SAMD appears to be necessary for at least part of the specific Senescence-Associated Secretory Phenotype (SASP) and may be responsible for tissue-level metabolic dysfunction that is associated with aging and obesity. Understanding the complex interplay between these major senescence-associated phenotypes will help to select and improve interventions that prolong healthy life in humans. SEARCH STRATEGY AND SELECTION CRITERIA Data for this review were identified by searches of MEDLINE, PubMed, and references from relevant articles using the search terms "mitochondria AND senescence", "(autophagy OR mitophagy) AND senescence", "mitophagy AND aging" and related terms. Additionally, searches were performed based on investigator names. Abstracts and reports from meetings were excluded. Articles published in English between 1995 and 2017 were included. Articles were selected according to their relevance to the topic as perceived by the authors.
Collapse
Affiliation(s)
- Viktor I Korolchuk
- The ABC - Newcastle University Ageing Biology Centre, Newcastle University Institute for Ageing, UK
| | - Satomi Miwa
- The ABC - Newcastle University Ageing Biology Centre, Newcastle University Institute for Ageing, UK
| | - Bernadette Carroll
- The ABC - Newcastle University Ageing Biology Centre, Newcastle University Institute for Ageing, UK
| | - Thomas von Zglinicki
- The ABC - Newcastle University Ageing Biology Centre, Newcastle University Institute for Ageing, UK.
| |
Collapse
|
17
|
Besson MT, Alegría K, Garrido-Gerter P, Barros LF, Liévens JC. Enhanced neuronal glucose transporter expression reveals metabolic choice in a HD Drosophila model. PLoS One 2015; 10:e0118765. [PMID: 25761110 PMCID: PMC4356621 DOI: 10.1371/journal.pone.0118765] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 01/06/2015] [Indexed: 11/30/2022] Open
Abstract
Huntington’s disease is a neurodegenerative disorder caused by toxic insertions of polyglutamine residues in the Huntingtin protein and characterized by progressive deterioration of cognitive and motor functions. Altered brain glucose metabolism has long been suggested and a possible link has been proposed in HD. However, the precise function of glucose transporters was not yet determined. Here, we report the effects of the specifically-neuronal human glucose transporter expression in neurons of a Drosophila model carrying the exon 1 of the human huntingtin gene with 93 glutamine repeats (HQ93). We demonstrated that overexpression of the human glucose transporter in neurons ameliorated significantly the status of HD flies by increasing their lifespan, reducing their locomotor deficits and rescuing eye neurodegeneration. Then, we investigated whether increasing the major pathways of glucose catabolism, glycolysis and pentose-phosphate pathway (PPP) impacts HD. To mimic increased glycolytic flux, we overexpressed phosphofructokinase (PFK) which catalyzes an irreversible step in glycolysis. Overexpression of PFK did not affect HQ93 fly survival, but protected from photoreceptor loss. Overexpression of glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of the PPP, extended significantly the lifespan of HD flies and rescued eye neurodegeneration. Since G6PD is able to synthesize NADPH involved in cell survival by maintenance of the redox state, we showed that tolerance to experimental oxidative stress was enhanced in flies co-expressing HQ93 and G6PD. Additionally overexpressions of hGluT3, G6PD or PFK were able to circumvent mitochondrial deficits induced by specific silencing of genes necessary for mitochondrial homeostasis. Our study confirms the involvement of bioenergetic deficits in HD course; they can be rescued by specific expression of a glucose transporter in neurons. Finally, the PPP and, to a lesser extent, the glycolysis seem to mediate the hGluT3 protective effects, whereas, in addition, the PPP provides increased protection to oxidative stress.
Collapse
Affiliation(s)
- Marie Thérèse Besson
- Aix-Marseille Université, CNRS, CRN2M-UMR7286, 13344 Marseille cedex 15, Marseille, France
| | - Karin Alegría
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, Chile
| | - Pamela Garrido-Gerter
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | | | - Jean-Charles Liévens
- Aix-Marseille Université, CNRS, CRN2M-UMR7286, 13344 Marseille cedex 15, Marseille, France
| |
Collapse
|
18
|
Valenti D, de Bari L, De Filippis B, Henrion-Caude A, Vacca RA. Mitochondrial dysfunction as a central actor in intellectual disability-related diseases: An overview of Down syndrome, autism, Fragile X and Rett syndrome. Neurosci Biobehav Rev 2014; 46 Pt 2:202-17. [DOI: 10.1016/j.neubiorev.2014.01.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/05/2013] [Accepted: 01/13/2014] [Indexed: 12/26/2022]
|
19
|
Hroudová J, Fišar Z. Control mechanisms in mitochondrial oxidative phosphorylation. Neural Regen Res 2014; 8:363-75. [PMID: 25206677 PMCID: PMC4107533 DOI: 10.3969/j.issn.1673-5374.2013.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/20/2013] [Indexed: 01/30/2023] Open
Abstract
Distribution and activity of mitochondria are key factors in neuronal development, synaptic plasticity and axogenesis. The majority of energy sources, necessary for cellular functions, originate from oxidative phosphorylation located in the inner mitochondrial membrane. The adenosine-5’- triphosphate production is regulated by many control mechanism–firstly by oxygen, substrate level, adenosine-5’-diphosphate level, mitochondrial membrane potential, and rate of coupling and proton leak. Recently, these mechanisms have been implemented by “second control mechanisms,” such as reversible phosphorylation of the tricarboxylic acid cycle enzymes and electron transport chain complexes, allosteric inhibition of cytochrome c oxidase, thyroid hormones, effects of fatty acids and uncoupling proteins. Impaired function of mitochondria is implicated in many diseases ranging from mitochondrial myopathies to bipolar disorder and schizophrenia. Mitochondrial dysfunctions are usually related to the ability of mitochondria to generate adenosine-5’-triphosphate in response to energy demands. Large amounts of reactive oxygen species are released by defective mitochondria, similarly, decline of antioxidative enzyme activities (e.g. in the elderly) enhances reactive oxygen species production. We reviewed data concerning neuroplasticity, physiology, and control of mitochondrial oxidative phosphorylation and reactive oxygen species production.
Collapse
Affiliation(s)
- Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
20
|
Mortensen OH, Larsen LH, Ørstrup LKH, Hansen LHL, Grunnet N, Quistorff B. Developmental programming by high fructose decreases phosphorylation efficiency in aging offspring brain mitochondria, correlating with enhanced UCP5 expression. J Cereb Blood Flow Metab 2014; 34:1205-11. [PMID: 24756078 PMCID: PMC4083386 DOI: 10.1038/jcbfm.2014.72] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 11/09/2022]
Abstract
Fructose has recently been observed to affect brain metabolism and cognitive function in adults. Yet, possible late-onset effects by gestational fructose exposure have not been examined. We evaluated mitochondrial function in the brain of aging (15 months) male offspring of Fischer F344 rat dams fed a high-fructose diet (50% energy from fructose) during gestation and lactation. Maternal fructose exposure caused a significantly lower body weight of the offspring throughout life after weaning, while birth weight, litter size, and body fat percentage were unaffected. Isolated brain mitochondria displayed a significantly increased state 3 respiration of 8%, with the substrate combinations malate/pyruvate, malate/pyruvate/succinate, and malate/pyruvate/succinate/rotenone, as well as a significant decrease in the P/O₂ ratio, compared with the control. Uncoupling protein 5 (UCP5) protein levels increased in the fructose group compared with the control (P=0.03) and both UCP5 mRNA and protein levels were inversely correlated with the P/O₂ ratio (P=0.008 and 0.03, respectively), suggesting that UCP5 may have a role in the observed decreased phosphorylation efficiency. In conclusion, maternal high-fructose diet during gestation and lactation has long-term effects (fetal programming) on brain mitochondrial function in aging rats, which appears to be linked to an increase in UCP5 protein levels.
Collapse
Affiliation(s)
- Ole H Mortensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Lea H Larsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Laura K H Ørstrup
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Lillian H L Hansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Niels Grunnet
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Bjørn Quistorff
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
21
|
Mitochondrial complex I dysfunction induced by cocaine and cocaine plus morphine in brain and liver mitochondria. Toxicol Lett 2013; 219:298-306. [PMID: 23542814 DOI: 10.1016/j.toxlet.2013.03.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/18/2013] [Accepted: 03/21/2013] [Indexed: 12/27/2022]
Abstract
Mitochondrial function and energy metabolism are affected in brains of human cocaine abusers. Cocaine is known to induce mitochondrial dysfunction in cardiac and hepatic tissues, but its effects on brain bioenergetics are less documented. Furthermore, the combination of cocaine and opioids (speedball) was also shown to induce mitochondrial dysfunction. In this work, we compared the effects of cocaine and/or morphine on the bioenergetics of isolated brain and liver mitochondria, to understand their specific effects in each tissue. Upon energization with complex I substrates, cocaine decreased state-3 respiration in brain (but not in liver) mitochondria and decreased uncoupled respiration and mitochondrial potential in both tissues, through a direct effect on complex I. Morphine presented only slight effects on brain and liver mitochondria, and the combination cocaine+morphine had similar effects to cocaine alone, except for a greater decrease in state-3 respiration. Brain and liver mitochondrial respirations were differentially affected, and liver mitochondria were more prone to proton leak caused by the drugs or their combination. This was possibly related with a different dependence on complex I in mitochondrial populations from these tissues. In summary, cocaine and cocaine+morphine induce mitochondrial complex I dysfunction in isolated brain and liver mitochondria, with specific effects in each tissue.
Collapse
|
22
|
Leuner K, Müller WE, Reichert AS. From mitochondrial dysfunction to amyloid beta formation: novel insights into the pathogenesis of Alzheimer's disease. Mol Neurobiol 2012; 46:186-93. [PMID: 22833458 DOI: 10.1007/s12035-012-8307-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/12/2012] [Indexed: 12/26/2022]
Abstract
The non-Mendelian sporadic Alzheimer's disease (AD) is the most frequent form of dementia diagnosed worldwide. The most important risk factor to develop sporadic AD is aging itself. Next to hyperphosphorylated Tau, intracellular amyloid beta (Aß) oligomers are known to initiate a cascade of pathological events ranging from mitochondrial dysfunction, synaptic dysfunction, oxidative stress, and loss of calcium regulation, to inflammation. All these events are considered to play an important role in the progressive loss of neurons. The molecular mechanisms determining the balance between Aß production and clearance during the progression of the disease are not well understood. Furthermore, there is cumulating evidence that Aß formation impairs mitochondrial function and that mitochondrial dysfunction is an early event in the pathogenesis of AD. On the other hand, mitochondrial dysfunction, in particular increased formation of mitochondrially derived reactive oxygen species, promote Aß formation. Here, we review these latest findings linking mitochondrial dysfunction and Aß formation. We propose that mitochondrial dysfunction, which is well-known to increase with age, is an initial trigger for Aß production. As Aß itself further accelerates mitochondrial dysfunction and oxidative stress, its formation is self-stimulated. Taken together, a vicious cycle is initiated that originates from mitochondrial dysfunction, implying that AD can be viewed as an age-associated mitochondrial disorder. The proposed mechanism sheds new light on the pathophysiological changes taking place during the progression of AD as well as in the aging process.
Collapse
Affiliation(s)
- Kristina Leuner
- Molecular and Clinical Pharmacy, FAU Erlangen/Nürnberg, 91058 Erlangen, Germany.
| | | | | |
Collapse
|
23
|
Papa S, Martino PL, Capitanio G, Gaballo A, De Rasmo D, Signorile A, Petruzzella V. The oxidative phosphorylation system in mammalian mitochondria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:3-37. [PMID: 22399416 DOI: 10.1007/978-94-007-2869-1_1] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The chapter provides a review of the state of art of the oxidative phosphorylation system in mammalian mitochondria. The sections of the paper deal with: (i) the respiratory chain as a whole: redox centers of the chain and protonic coupling in oxidative phosphorylation (ii) atomic structure and functional mechanism of protonmotive complexes I, III, IV and V of the oxidative phosphorylation system (iii) biogenesis of oxidative phosphorylation complexes: mitochondrial import of nuclear encoded subunits, assembly of oxidative phosphorylation complexes, transcriptional factors controlling biogenesis of the complexes. This advanced knowledge of the structure, functional mechanism and biogenesis of the oxidative phosphorylation system provides a background to understand the pathological impact of genetic and acquired dysfunctions of mitochondrial oxidative phosphorylation.
Collapse
Affiliation(s)
- Sergio Papa
- Department of Basic Medical Sciences, University of Bari, Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|
24
|
Deficit of complex I activity in human skin fibroblasts with chromosome 21 trisomy and overproduction of reactive oxygen species by mitochondria: involvement of the cAMP/PKA signalling pathway. Biochem J 2011; 435:679-88. [PMID: 21338338 DOI: 10.1042/bj20101908] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
DS (Down's syndrome) is the most common human aneuploidy associated with mental retardation and early neurodegeneration. Mitochondrial dysfunction has emerged as a crucial factor in the pathogenesis of numerous neurological disorders including DS, but the cause of mitochondrial damage remains elusive. In the present study, we identified new molecular events involved in mitochondrial dysfunction which could play a role in DS pathogenesis. We analysed mitochondrial respiratory chain function in DS-HSFs (Down's syndrome human foetal skin fibroblasts; human foetal skin fibroblasts with chromosome 21 trisomy) and found a selective deficit in the catalytic efficiency of mitochondrial complex I. The complex I deficit was associated with a decrease in cAMP-dependent phosphorylation of the 18 kDa subunit of the complex, due to a decrease in PKA (protein kinase A) activity related to reduced basal levels of cAMP. Consistently, exposure of DS-HSFs to db-cAMP (dibutyryl-cAMP), a membrane-permeable cAMP analogue, stimulated PKA activity and consequently rescued the deficit of both the cAMP-dependent phosphorylation and the catalytic activity of complex I; conversely H89, a specific PKA inhibitor, suppressed these cAMP-dependent activations. Furthermore, in the present paper we report a 3-fold increase in cellular levels of ROS (reactive oxygen species), in particular superoxide anion, mainly produced by DS-HSF mitochondria. ROS accumulation was prevented by db-cAMP-dependent activation of complex I, suggesting its involvement in ROS production. Taken together, the results of the present study suggest that the drastic decrease in basal cAMP levels observed in DS-HSFs participates in the complex I deficit and overproduction of ROS by DS-HSF mitochondria.
Collapse
|
25
|
Abstract
Mitochondria provide most of the energy production in cells. They are involved in the regulation of free radicals, calcium buffering, and redox signaling and take part in the intrinsic pathway of apoptosis. Mutations or polymorphisms of mitochondrial DNA, mitochondria-mediated oxidative stress, decrease of adenosine triphosphate production, changes of intracellular calcium and oxidative stress are concerned in various diseases. There is increasing evidence that impaired functions of mitochondria are associated with mood disorders. It is suggested that disturbed energetic metabolism and/or reactive oxygen species production take part in the pathophysiology of mood disorders and could participate in the therapeutic effects or side-effects of antidepressants and mood stabilizers.
Collapse
Affiliation(s)
- Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic.
| | | |
Collapse
|
26
|
The β-adrenoceptor agonist isoproterenol promotes the activity of respiratory chain complex I and lowers cellular reactive oxygen species in fibroblasts and heart myoblasts. Eur J Pharmacol 2010; 652:15-22. [PMID: 21118678 DOI: 10.1016/j.ejphar.2010.11.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 10/20/2010] [Accepted: 11/03/2010] [Indexed: 11/21/2022]
Abstract
A study is presented on the effect of the β-adrenoceptor agonist isoproterenol on mitochondrial oxygen metabolism in fibroblast and heart myoblast cultures. Isoproterenol treatment of serum-limited fibroblasts and proliferating myoblasts results in the promotion of mitochondrial complex I activity and decrease of the cellular level of reactive oxygen species. These effects of isoproterenol are associated with cAMP-dependent phosphorylation of complex I subunit(s). Addition of okadaic acid, inhibitor of protein phosphatase(s), reverses the decline of complex I activity in serum-limited fibroblast cultures and activates the complex in proliferating myoblast cultures. The effects of isoproterenol on complex I activity and reactive oxygen species balance can contribute to the therapeutic effect of the drug.
Collapse
|
27
|
Koopman WJH, Nijtmans LGJ, Dieteren CEJ, Roestenberg P, Valsecchi F, Smeitink JAM, Willems PHGM. Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. Antioxid Redox Signal 2010; 12:1431-70. [PMID: 19803744 DOI: 10.1089/ars.2009.2743] [Citation(s) in RCA: 308] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Virtually every mammalian cell contains mitochondria. These double-membrane organelles continuously change shape and position and contain the complete metabolic machinery for the oxidative conversion of pyruvate, fatty acids, and amino acids into ATP. Mitochondria are crucially involved in cellular Ca2+ and redox homeostasis and apoptosis induction. Maintenance of mitochondrial function and integrity requires an inside-negative potential difference across the mitochondrial inner membrane. This potential is sustained by the electron-transport chain (ETC). NADH:ubiquinone oxidoreductase or complex I (CI), the first and largest protein complex of the ETC, couples the oxidation of NADH to the reduction of ubiquinone. During this process, electrons can escape from CI and react with ambient oxygen to produce superoxide and derived reactive oxygen species (ROS). Depending on the balance between their production and removal by antioxidant systems, ROS may function as signaling molecules or induce damage to a variety of biomolecules or both. The latter ultimately leads to a loss of mitochondrial and cellular function and integrity. In this review, we discuss (a) the role of CI in mitochondrial functioning; (b) the composition, structure, and biogenesis of CI; (c) regulation of CI function; (d) the role of CI in ROS generation; and (e) adaptive responses to CI deficiency.
Collapse
Affiliation(s)
- Werner J H Koopman
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
28
|
Pacelli C, Coluccia A, Grattagliano I, Cocco T, Petrosillo G, Paradies G, De Nitto E, Massaro A, Persichella M, Borracci P, Portincasa P, Carratù MR. Dietary choline deprivation impairs rat brain mitochondrial function and behavioral phenotype. J Nutr 2010; 140:1072-9. [PMID: 20357080 DOI: 10.3945/jn.109.116673] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dietary choline deprivation (CD) is associated with behavioral changes, but mechanisms underlying these detrimental effects are not well characterized. For instance, no literature data are available concerning the CD effects on brain mitochondrial function related to impairment in cognition. Therefore, we investigated brain mitochondrial function and redox status in male Wistar rats fed a CD diet for 28 d. Moreover, the CD behavioral phenotype was characterized. Compared with rats fed a control diet (CTRL), CD rats showed lower NAD-dependent mitochondrial state III and state IV respiration, 40% lower complex I activity, and significantly higher reactive oxygen species production. Total glutathione was oxidatively consumed more in CD than in CTRL rats and the rate of protein oxidation was 40% higher in CD than in CTRL rats, reflecting an oxidative stress condition. The mitochondrial concentrations of cardiolipin, a phospholipid required for optimal activity of complex I, was 20% lower in CD rats than in CTRL rats. Compared with CTRL rats, the behavioral phenotype of CD rats was characterized by impairment in motor coordination and motor learning assessed with the rotarod/accelerod test. Furthermore, compared with CTRL rats, CD rats were less capable of learning the active avoidance task and the number of attempts they made to avoid foot shock was fewer. The results suggest that CD-induced dysfunction in brain mitochondria may be responsible for impairment in cognition and underline that, similar to the liver, the brain also needs an adequate choline supply for its normal functioning.
Collapse
Affiliation(s)
- Consiglia Pacelli
- Department of Medical Biochemistry, Biology and Physics, University of Bari, Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Increased substrate oxidation and mitochondrial uncoupling in skeletal muscle of endurance-trained individuals. Proc Natl Acad Sci U S A 2008; 105:16701-6. [PMID: 18936488 DOI: 10.1073/pnas.0808889105] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Endurance exercise training is accompanied by physiological changes that improve muscle function and performance. Several studies have demonstrated that markers of mitochondrial capacity are elevated, however, these studies tend to be performed ex vivo under conditions that yield maximal enzyme activities or in vivo but monitoring the response to exercise. Therefore, it is unclear whether basal mitochondrial metabolism is affected by exercise training. To explore whether resting muscle metabolism was altered in trained individuals in vivo, two independent parameters of metabolic function-tricarboxylic acid (TCA) cycle flux (V(TCA)), and ATP synthesis (V(ATP))-were assessed noninvasively by using magnetic resonance spectroscopy in a cohort of young endurance trained subjects (n = 7) and a group of matched sedentary subjects (n = 8). V(TCA) was 54% higher in the muscle of endurance trained compared with sedentary subjects (91.7 +/- 7.6 vs. 59.6 +/- 4.9 nmol/g/min, P < 0.01); however, V(ATP) was not different between the trained and sedentary subjects (5.98 +/- 0.43 vs. 6.35 +/- 0.70 mumol/g/min, P = 0.67). The ratio V(ATP)/V(TCA) (an estimate of mitochondrial coupling) was also significantly reduced in trained subjects (P < 0.04). These data demonstrate that basal mitochondrial substrate oxidation is increased in the muscle of endurance trained individuals yet energy production is unaltered, leading to an uncoupling of oxidative phosphorylation at rest. Increased mitochondrial uncoupling may represent another mechanism by which exercise training enhances muscle insulin sensitivity via increased fatty acid oxidation in the resting state.
Collapse
|
30
|
Regulation of mitochondrial oxidative phosphorylation through cell signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1701-20. [DOI: 10.1016/j.bbamcr.2007.10.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|