1
|
Vermeiren MR, Somsen J, Luurtsema G, Reesink FE, Verwey NA, Hempenius L, Tolboom N, Biessels GJ, Biesbroek JM, Vernooij MW, Veldhuijzen van Zanten SEM, Seelaar H, Coomans EM, Teunissen CE, Lemstra AW, van Harten AC, Visser LNC, van der Flier WM, van de Giessen E, Ossenkoppele R. The impact of tau-PET in a selected memory clinic cohort: rationale and design of the TAP-TAU study. Alzheimers Res Ther 2024; 16:230. [PMID: 39427210 PMCID: PMC11490118 DOI: 10.1186/s13195-024-01588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/29/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Tau-PET is a diagnostic tool with high sensitivity and specificity for discriminating Alzheimer's disease (AD) dementia from other neurodegenerative disorders in well-controlled research environments. The role of tau-PET in real-world clinical practice, however, remains to be established. The aim of the TAP-TAU study is therefore to investigate the impact of tau-PET in clinical practice. METHODS TAP-TAU is a prospective, longitudinal multi-center study in 300 patients (≥ 50 years old) with mild cognitive impairment or mild dementia across five Dutch memory clinics. Patients are eligible if diagnostic certainty is < 85% after routine dementia screening and if the differential diagnosis includes AD. More specifically, we will include patients who (i) are suspected of having mixed pathology (e.g., AD and vascular pathology), (ii) have an atypical clinical presentation, and/or (iii) show conflicting or inconclusive outcomes on other tests (e.g., magnetic resonance imaging or cerebrospinal fluid). Participants will undergo a [18F]flortaucipir tau-PET scan, blood-based biomarker sampling, and fill out questionnaires on patient reported outcomes and experiences. The primary outcomes are change (pre- versus post- tau-PET) in diagnosis, diagnostic certainty, patient management and patient anxiety and uncertainty. Secondary outcome measures are head-to-head comparisons between tau-PET and less invasive and lower cost diagnostic tools such as novel blood-based biomarkers and artificial intelligence-based classifiers. RESULTS TAP-TAU has been approved by the Medical Ethics Committee of the Amsterdam UMC. The first participant is expected to be included in October 2024. CONCLUSIONS In TAP-TAU, we will investigate the added clinical value of tau-PET in a real-world clinical setting, including memory clinic patients with diagnostic uncertainty after routine work-up. Findings of our study may contribute to recommendations regarding which patients would benefit most from assessment with tau-PET. This study is timely in the dawning era of disease modifying treatments as an accurate etiological diagnosis becomes increasingly important. TRIAL REGISTRATION This trial is registered and authorized on December 21st, 2023 in EU Clinical Trials with registration number 2023-505430-10-00.
Collapse
Affiliation(s)
- Marie R Vermeiren
- Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands.
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands.
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands.
| | - Joost Somsen
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Fransje E Reesink
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nicolaas A Verwey
- Department of Neurology, Medical Center Leeuwarden, Leeuwarden, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | | | - Nelleke Tolboom
- Department of Radiology and Nuclear Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Geert Jan Biessels
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - J Matthijs Biesbroek
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Neurology, Diakonessenhuis Hospital, Utrecht, Netherlands
| | - Meike W Vernooij
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Harro Seelaar
- Department of Neurology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Emma M Coomans
- Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
| | | | - Afina W Lemstra
- Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Argonde C van Harten
- Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Leonie N C Visser
- Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Psychology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
- Epidemiology and Data Science, Amsterdam UMC, Amsterdam, Netherlands
| | - Elsmarieke van de Giessen
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands.
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands.
- Clinical Memory Research Unit, Lund University, Lund, Sweden.
| |
Collapse
|
2
|
Hajjar I, Neal R, Yang Z, Lah JJ. Alzheimer's disease cerebrospinal fluid biomarkers and kidney function in normal and cognitively impaired older adults. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12581. [PMID: 38617186 PMCID: PMC11010257 DOI: 10.1002/dad2.12581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION Recent Alzheimer's disease (AD) clinical trials have used cerebrospinal fluid (CSF) biomarker levels for screening and enrollment. Preliminary evidence suggests that AD risk is related to impaired renal function. The impact of kidney function on commonly used AD biomarkers remains unknown. METHODS Participants in studies conducted at the Goizueta Alzheimer's Disease Research Center (N = 973) had measurements of serum creatinine and CSF AD biomarkers. General linear models and individual data were used to assess the relationships between biomarkers and eGFR. RESULTS Lower estimated glomerular filtration rate (eGFR) was associated with lower amyloid beta (Aβ)42/tau ratio (p < 0.0001) and Aβ42 (p = 0.002) and higher tau (p < 0.0001) and p-tau (p = 0.0002). The impact of eGFR on AD biomarker levels was more robust in individuals with cognitive impairment (all p-values were < 0.005). DISCUSSION The association between eGFR and CSF AD biomarkers has a significant impact that varies by cognitive status. Future studies exploring this impact on the pathogenesis of AD and related biomarkers are needed. Highlights There is a significant association between Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers and both estimated glomerular filtration rate (eGFR) and mild cognitive impairment (MCI).Kidney function influences CSF biomarker levels in individuals with normal cognitive function and those with MCI.The impact of kidney function on AD biomarker levels is more pronounced in individuals with cognitive impairment.The variation in CSF tau levels is independent of cardiovascular factors and is likely directly related to kidney function.Tau may have a possible role in both kidney and cognitive function.
Collapse
Affiliation(s)
- Ihab Hajjar
- Department of NeurologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
- Department of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
| | - Reem Neal
- Department of NeurologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Zhiyi Yang
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - James J. Lah
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| |
Collapse
|
3
|
Kepp KP, Robakis NK, Høilund-Carlsen PF, Sensi SL, Vissel B. The amyloid cascade hypothesis: an updated critical review. Brain 2023; 146:3969-3990. [PMID: 37183523 DOI: 10.1093/brain/awad159] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/16/2023] Open
Abstract
Results from recent clinical trials of antibodies that target amyloid-β (Aβ) for Alzheimer's disease have created excitement and have been heralded as corroboration of the amyloid cascade hypothesis. However, while Aβ may contribute to disease, genetic, clinical, imaging and biochemical data suggest a more complex aetiology. Here we review the history and weaknesses of the amyloid cascade hypothesis in view of the new evidence obtained from clinical trials of anti-amyloid antibodies. These trials indicate that the treatments have either no or uncertain clinical effect on cognition. Despite the importance of amyloid in the definition of Alzheimer's disease, we argue that the data point to Aβ playing a minor aetiological role. We also discuss data suggesting that the concerted activity of many pathogenic factors contribute to Alzheimer's disease and propose that evolving multi-factor disease models will better underpin the search for more effective strategies to treat the disease.
Collapse
Affiliation(s)
- Kasper P Kepp
- Section of Biophysical and Biomedicinal chemistry, DTU Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Nikolaos K Robakis
- Icahn School of Medicine at Mount Sinai Medical Center, New York, NY 10029, USA
| | - Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Stefano L Sensi
- Center for Advanced Studies and Technology-CAST, and Institute for Advanced Biotechnology (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, 66013, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, 66013, Italy
| | - Bryce Vissel
- St Vincent's Hospital Centre for Applied Medical Research, St Vincent's Hospital, Sydney, 2010, Australia
- School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Papaliagkas V, Kalinderi K, Vareltzis P, Moraitou D, Papamitsou T, Chatzidimitriou M. CSF Biomarkers in the Early Diagnosis of Mild Cognitive Impairment and Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24108976. [PMID: 37240322 DOI: 10.3390/ijms24108976] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is a rapidly growing disease that affects millions of people worldwide, therefore there is an urgent need for its early diagnosis and treatment. A huge amount of research studies are performed on possible accurate and reliable diagnostic biomarkers of AD. Due to its direct contact with extracellular space of the brain, cerebrospinal fluid (CSF) is the most useful biological fluid reflecting molecular events in the brain. Proteins and molecules that reflect the pathogenesis of the disease, e.g., neurodegeneration, accumulation of Abeta, hyperphosphorylation of tau protein and apoptosis may be used as biomarkers. The aim of the current manuscript is to present the most commonly used CSF biomarkers for AD as well as novel biomarkers. Three CSF biomarkers, namely total tau, phospho-tau and Abeta42, are believed to have the highest diagnostic accuracy for early AD diagnosis and the ability to predict AD development in mild cognitive impairment (MCI) patients. Moreover, other biomarkers such as soluble amyloid precursor protein (APP), apoptotic proteins, secretases and inflammatory and oxidation markers are believed to have increased future prospects.
Collapse
Affiliation(s)
- Vasileios Papaliagkas
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, Alexandrion University Campus, 57400 Sindos, Greece
| | - Kallirhoe Kalinderi
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Patroklos Vareltzis
- Department of Chemical Engineering, School of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Despoina Moraitou
- Laboratory of Psychology, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Theodora Papamitsou
- Histology and Embryology Department, Faculty of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Chatzidimitriou
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, Alexandrion University Campus, 57400 Sindos, Greece
| |
Collapse
|
5
|
Cost-effectiveness of Alzheimer's disease CSF biomarkers and amyloid-PET in early-onset cognitive impairment diagnosis. Eur Arch Psychiatry Clin Neurosci 2023; 273:243-252. [PMID: 35710952 DOI: 10.1007/s00406-022-01439-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
Abstract
This study aimed at determining the cost-effectiveness of amyloid-positron emission tomography (PET) compared to Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers (amyloid-β42, total-Tau and phosphorylated-Tau) for the diagnosis of AD in patients with early-onset cognitive impairment. A decision tree model using a national health care perspective was developed to compare the costs and effectiveness associated with Amyloid-PET and AD CSF biomarkers. Available evidence from the literature and primary data from Hospital Clínic de Barcelona were used to inform the model and calculate the efficiency of these diagnostic alternatives. Medical visits and diagnostic procedures were considered and reported in €2020. We calculated the incremental cost-effectiveness ratio to measure the cost per % of correct diagnoses detected and we perform one-way deterministic and probabilistic sensitivity analyses to assess the uncertainty of these results. Compared with AD CSF biomarkers, Amyloid-PET resulted in 7.40% more correctly diagnosed cases of AD, with an incremental total mean cost of €146,854.80 per 100 cases. We found a 50% of probability that Amyloid-PET was cost-effective for a willingness to pay (WTP) of €19,840.39 per correct case detected. Using a WTP of €75,000, the probability that it is cost-effective reached a maximum of 76.9%, thus leading to a conclusion that Amyloid-PET is not a cost-effective technique compared to AD CSF biomarkers, unless the funder is willing to pay a minimum of €19,840.39 to detect one more correct case. Furthermore, obtaining CSF provides simultaneous information on amyloid β and tau biomarkers and allows other biomarkers to be analyzed at a relatively low cost.
Collapse
|
6
|
Kepp KP, Sensi SL, Johnsen KB, Barrio JR, Høilund-Carlsen PF, Neve RL, Alavi A, Herrup K, Perry G, Robakis NK, Vissel B, Espay AJ. The Anti-Amyloid Monoclonal Antibody Lecanemab: 16 Cautionary Notes. J Alzheimers Dis 2023; 94:497-507. [PMID: 37334596 DOI: 10.3233/jad-230099] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
After the CLARITY-AD clinical trial results of lecanemab were interpreted as positive, and supporting the amyloid hypothesis, the drug received accelerated Food and Drug Administration approval. However, we argue that benefits of lecanemab treatment are uncertain and may yield net harm for some patients, and that the data do not support the amyloid hypothesis. We note potential biases from inclusion, unblinding, dropouts, and other issues. Given substantial adverse effects and subgroup heterogeneity, we conclude that lecanemab's efficacy is not clinically meaningful, consistent with numerous analyses suggesting that amyloid-β and its derivatives are not the main causative agents of Alzheimer's disease dementia.
Collapse
Affiliation(s)
- Kasper P Kepp
- Department of Chemistry, Section of Biophysical and Biomedicinal Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stefano L Sensi
- Center for Advanced Studies and Technology - CAST, and Institute for Advanced Biotechnology (ITAB), University G. d'Annunzio of Chieti-Pescara, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Kasper B Johnsen
- Department of Health Science and Technology, Neurobiology Research and Drug Delivery Group, Aalborg University, Aalborg, Denmark
| | - Jorge R Barrio
- Department of Molecular and Medical Pharmacology, UCLA School of Medicine, Los Angeles, CA, USA
| | - Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Rachael L Neve
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA USA
| | - Karl Herrup
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Nikolaos K Robakis
- Icahn School of Medicine at Mount Sinai Medical Center, New York, NY, USA
| | - Bryce Vissel
- St Vincent's Hospital Centre for Applied Medical Research, St Vincent's Hospital, Darlinghurst, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Alberto J Espay
- Department of Neurology, James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
7
|
Wu X, Xiao Z, Yi J, Ding S, Gu H, Wu W, Luo J, Liang X, Zheng L, Xu H, Zhao Q, Ding D. Development of a Plasma Biomarker Diagnostic Model Incorporating Ultrasensitive Digital Immunoassay as a Screening Strategy for Alzheimer Disease in a Chinese Population. Clin Chem 2021; 67:1628-1639. [PMID: 34662373 DOI: 10.1093/clinchem/hvab192] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/17/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND The ultrasensitive detection of blood-based biomarkers such as amyloid β (Aβ), tau, and neurofilament light (NFL) has drawn much attention in Alzheimer disease (AD) diagnosis. However, few studies have been conducted in the Chinese population. This study aimed to evaluate the ability of plasma biomarker diagnostic models for AD in the Chinese population based on a novel digital immunoassay technology. METHODS 159 patients with AD, 148 patients with amnestic mild cognitive impairment (aMCI), and 121 cognitively normal control participants were recruited from 2 cohorts. The concentrations of plasma Aβ42, Aβ40, Aβ42/Aβ40, total tau (t-tau), phosphorylated tau 181 (p-tau 181), and NFL were quantified using an ultrasensitive single molecule array (Simoa) platform. Comprehensive and simplified diagnostic models were established based on the plasma biomarker profile and clinical characteristics. RESULTS Among all blood biomarkers, p-tau181 had the greatest potential for identifying patients with cognitive impairment. The simplified diagnostic model, which combined plasma p-tau181, Aβ42, and clinical features, achieved 93.3% area under the curve (AUC), 78.6% sensitivity, and 94.2% specificity for distinguishing AD from control participants, indicating a diagnostic ability approaching that of the comprehensive diagnostic model including 5 plasma biomarkers and clinical characteristics (95.1% AUC, 85.5% sensitivity, 94.2% specificity). Moreover, the simplified model reached 95.9% AUC and 94.0% AUC for early- and late-onset AD/control participants, respectively. CONCLUSIONS We established AD diagnostic models using plasma biomarkers for Chinese participants. These findings suggest the simplified diagnostic model provides an accessible and practical way for large-scale screening in the clinic and community, especially in developing countries.
Collapse
Affiliation(s)
- Xue Wu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenxu Xiao
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingwei Yi
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Saineng Ding
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongchen Gu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wanqing Wu
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianfeng Luo
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China.,Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | - Xiaoniu Liang
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Zheng
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Hong Xu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Qianhua Zhao
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Ding Ding
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Tofiq A, Zetterberg H, Blennow K, Basun H, Cederholm T, Eriksdotter M, Faxén-Irving G, Hjorth E, Jernerén F, Schultzberg M, Wahlund LO, Palmblad J, Freund-Levi Y. Effects of Peroral Omega-3 Fatty Acid Supplementation on Cerebrospinal Fluid Biomarkers in Patients with Alzheimer's Disease: A Randomized Controlled Trial-The OmegAD Study. J Alzheimers Dis 2021; 83:1291-1301. [PMID: 34420949 DOI: 10.3233/jad-210007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Studies have suggested a connection between a decrease in the levels of polyunsaturated fatty acids (PUFAs) and Alzheimer's disease (AD). We aimed to assess the effect of supplementation with omega-3 fatty acids (n-3 FAs) on biomarkers analyzed in the cerebrospinal fluid (CSF) of patients diagnosed with AD. OBJECTIVE To investigate the effects of daily supplementation with 2.3 g of PUFAs in AD patients on the biomarkers in CSF described below. We also explored the possible correlation between these biomarkers and the performance in the cognitive test Mini-Mental State Examination (MMSE). METHODS Thirty-three patients diagnosed with AD were randomized to either treatment with a daily intake of 2.3 g of n-3 FAs (n = 18) or placebo (n = 15). CSF samples were collected at baseline and after six months of treatment, and the following biomarkers were analyzed: Aβ 38, Aβ 40, Aβ 42, t-tau, p-tau, neurofilament light (NfL), chitinase-3-like protein 1 (YKL-40), acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), soluble IL-1 receptor type II (sIL-1RII), and IL-6. RESULTS There were no significant differences between the groups concerning the level of the different biomarkers in the CSF at baseline. Within the treatment group, there was a small but significant increase in both YKL-40 (p = 0.04) and NfL (p = 0.03), while the other CSF biomarkers remained stable. CONCLUSION Supplementation with n-3 FAs had a statistically significant effect on NfL and YKL-40, resulting in an increase of both biomarkers, indicating a possible increase of inflammatory response and axonal damage. This increase in biomarkers did not correlate with MMSE score.
Collapse
Affiliation(s)
- Avin Tofiq
- School of Medicine, Örebro University, Örebro, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, United Kingdom.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Hans Basun
- BioArctic AB, Stockholm, Sweden.,Spinemedical AB, Stockholm, Sweden.,Uppsala University Hospital, Uppsala, Sweden
| | - Tommy Cederholm
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden.,Theme Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Eriksdotter
- Theme Ageing, Karolinska University Hospital, Stockholm, Sweden.,Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Gerd Faxén-Irving
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Erik Hjorth
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Jernerén
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Marianne Schultzberg
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Lars-Olof Wahlund
- Theme Ageing, Karolinska University Hospital, Stockholm, Sweden.,Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Jan Palmblad
- Department of Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Yvonne Freund-Levi
- School of Medicine, Örebro University, Örebro, Sweden.,Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden.,Department of Psychiatry, University Hospital Örebro, Örebro, Sweden.,Department of Old Age Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
9
|
Villalva MD, Agarwal V, Ulanova M, Sachdev PS, Braidy N. Quantum dots as a theranostic approach in Alzheimer's disease: a systematic review. Nanomedicine (Lond) 2021; 16:1595-1611. [PMID: 34180261 DOI: 10.2217/nnm-2021-0104] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: Quantum dots (QDs) are nanoparticles that have an emerging application as theranostic agents in several neurodegenerative diseases. The advantage of QDs as nanomedicine is due to their unique optical properties that provide high sensitivity, stability and selectivity at a nanoscale range. Objective: To offer renewed insight into current QD research and elucidate its promising application in Alzheimer's disease (AD) diagnosis and therapy. Methods: A comprehensive literature search was conducted in PubMed and Google Scholar databases that included the following search terms: 'quantum dots', 'blood-brain barrier', 'cytotoxicity', 'toxicity' and 'Alzheimer's disease'; PRISMA guidelines were adhered to. Results: Thirty-four publications were selected to evaluate the ability of QDs to cross the blood-brain barrier, potential toxicity and current AD diagnostic and therapeutic applications. Conclusion: QD's unique optical properties and versatility to conjugate to various biomolecules, while maintaining a nanoscale size, render them a promising theranostic tool in AD.
Collapse
Affiliation(s)
- Maria D Villalva
- Centre for Healthy Brain Aging, School of Psychiatry, University of New South Wales (UNSW), Sydney, Australia
| | - Vipul Agarwal
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, Australia
| | - Marina Ulanova
- Centre for Healthy Brain Aging, School of Psychiatry, University of New South Wales (UNSW), Sydney, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Aging, School of Psychiatry, University of New South Wales (UNSW), Sydney, Australia.,Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| | - Nady Braidy
- Centre for Healthy Brain Aging, School of Psychiatry, University of New South Wales (UNSW), Sydney, Australia
| |
Collapse
|
10
|
Brisson M, Brodeur C, Létourneau‐Guillon L, Masellis M, Stoessl J, Tamm A, Zukotynski K, Ismail Z, Gauthier S, Rosa‐Neto P, Soucy J. CCCDTD5: Clinical role of neuroimaging and liquid biomarkers in patients with cognitive impairment. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 6:e12098. [PMID: 33532543 PMCID: PMC7821956 DOI: 10.1002/trc2.12098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 04/21/2023]
Abstract
Since 1989, four Canadian Consensus Conferences on the Diagnosis and Treatment of Dementia (CCCDTDs) have provided evidence-based dementia diagnostic and treatment guidelines for Canadian clinicians and researchers. We present the results from the Neuroimaging and Fluid Biomarkers Group of the 5th CCCDTD (CCCDTD5), which addressed topics chosen by the steering committee to reflect advances in the field and build on our previous guidelines. Recommendations on Imaging and Fluid Biomarker Use from this Conference cover a series of different fields. Prior structural imaging recommendations for both computerized tomography (CT) and magnetic resonance imaging (MRI) remain largely unchanged, but MRI is now more central to the evaluation than before, with suggested sequences described here. The use of visual rating scales for both atrophy and white matter anomalies is now included in our recommendations. Molecular imaging with [18F]-fluorodeoxyglucose ([18F]-FDG) Positron Emisson Tomography (PET) or [99mTc]-hexamethylpropyleneamine oxime/ethylene cysteinate dimer ([99mTc]-HMPAO/ECD) Single Photon Emission Tomography (SPECT), should now decidedly favor PET. The value of [18F]-FDG PET in the assessment of neurodegenerative conditions has been established with greater certainty since the previous conference, and it has now been recognized as a useful biomarker to establish the presence of neurodegeneration by a number of professional organizations around the world. Furthermore, the role of amyloid PET has been clarified and our recommendations follow those from other groups in multiple countries. SPECT with [123I]-ioflupane (DaTscanTM) is now included as a useful study in differentiating Alzheimer's disease (AD) from Lewy body disease. Finally, liquid biomarkers are in a rapid phase of development and, could lead to a revolution in the assessment AD and other neurodegenerative conditions at a reasonable cost. We hope these guidelines will be useful for clinicians, researchers, policy makers, and the lay public, to inform a current and evidence-based approach to the use of neuroimaging and liquid biomarkers in clinical dementia evaluation and management.
Collapse
Affiliation(s)
- Mélanie Brisson
- Centre hospitalier de l'université de QuébecQuebec CityCanada
| | | | | | | | - Jon Stoessl
- Vancouver Coastal Health, University of British‐ColumbiaVancouverCanada
| | | | | | - Zahinoor Ismail
- Department of Psychiatry, Hotchkiss Brain Institute and O'Brien Institute for Public HealthUniversity of CalgaryCalgaryCanada
| | | | - Pedro Rosa‐Neto
- McGill Center for Studies in AgingCanada
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMontrealCanada
| | - Jean‐Paul Soucy
- Centre hospitalier de l'université de MontréalMontrealCanada
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMontrealCanada
- PERFORM Center, Concordia UniversityMontrealCanada
| |
Collapse
|
11
|
Fluid Biomarkers of Frontotemporal Lobar Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:123-139. [PMID: 33433873 DOI: 10.1007/978-3-030-51140-1_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A timely diagnosis of frontotemporal degeneration (FTD) is frequently challenging due to the heterogeneous symptomatology and poor phenotype-pathological correlation. Fluid biomarkers that reflect FTD pathophysiology could be instrumental in both clinical practice and pharmaceutical trials. In recent years, significant progress has been made in developing biomarkers of neurodegenerative diseases: amyloid-β and tau in cerebrospinal fluid (CSF) can be used to exclude Alzheimer's disease, while neurofilament light chain (NfL) is emerging as a promising, albeit nonspecific, marker of neurodegeneration in both CSF and blood. Gene-specific biomarkers such as PGRN in GRN mutation carriers and dipeptide repeat proteins in C9orf72 mutation carriers are potential target engagement markers in genetic FTD trials. Novel techniques capable of measuring very low concentrations of brain-derived proteins in peripheral fluids are facilitating studies of blood biomarkers as a minimally invasive alternative to CSF. A major remaining challenge is the identification of a biomarker that can be used to predict the neuropathological substrate in sporadic FTD patients.
Collapse
|
12
|
Abstract
AIM To investigate the relationships between amyloid burden in brain and the age of onset of Alzheimer's disease. MATERIALS AND METHODS We examined 60 patients with clinical diagnosis of Alzheimer's disease. Of them, 22 were early-onset of Alzheimer's disease and 38 were late-onset of Alzheimer's disease. All of them underwent a brain PET scan 90 minutes after the injection of 4-[(E)-2-[4-[2-[2-(2-fluoranylethoxy)ethoxy]ethoxy]phenyl]ethenyl]-N-methylaniline ([F] FBB); 300 ± 10 MBq). Relationships between amyloid burden in brain and age of onset of Alzheimer's disease were assessed by means of statistical parametric mapping version 12. RESULTS There were no significant differences [F] FBB uptake between early-onset of Alzheimer's disease and late-onset of Alzheimer's disease patients. CONCLUSION In our study group, the age of onset is not related to brain amyloid burden in Alzheimer's disease patients.
Collapse
|
13
|
Cai N, Chen J, Bi D, Gu L, Yao L, Li X, Li H, Xu H, Hu Z, Liu Q, Xu X. Specific Degradation of Endogenous Tau Protein and Inhibition of Tau Fibrillation by Tanshinone IIA through the Ubiquitin-Proteasome Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2054-2062. [PMID: 31995984 DOI: 10.1021/acs.jafc.9b07022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease which is partly characterized by the aggregation of hyperphosphorylated Tau proteins forming neurofibrillary tangles that promote AD pathogenesis. In this study, we investigated the effects of tanshinone IIA (Tan IIA) isolated from Salvia miltiorrhiza on Tau degradation in the treatment of AD. The results showed that Tan IIA reduced the Tau expression and attenuated Tau phosphorylation in N2a cells, Tau-overexpressing cells, and 3×Tg-AD mouse primary neuron cells. Moreover, Tan IIA increased polyubiquitinated Tau accumulation and induced proteasomal degradation of the Tau protein. Additionally, Tan IIA became bound to the Tau protein and inhibited the formation of heparin-induced Tau fibrils. In summary, Tan IIA can increase polyubiquitinated Tau accumulation and induce the proteasomal degradation of the Tau protein and the binding of Tan IIA to the Tau protein, inhibiting the formation of Tau fibrils. Tan IIA may be further explored as a potential candidate for AD treatment.
Collapse
Affiliation(s)
- Nan Cai
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen 518060 , PR China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , PR China
| | - Jiajie Chen
- Department of Biochemistry and Molecular Biology, School of Medicine , Shenzhen University , Shenzhen 518055 , PR China
| | - Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen 518060 , PR China
| | - Liang Gu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen 518060 , PR China
| | - Lijun Yao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen 518060 , PR China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology and Business University , Beijing 100000 , PR China
| | - Hui Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen 518060 , PR China
| | - Hong Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen 518060 , PR China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen 518060 , PR China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen 518060 , PR China
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen 518060 , PR China
| |
Collapse
|
14
|
Sánchez D, Castilla-Marti M, Marquié M, Valero S, Moreno-Grau S, Rodríguez-Gómez O, Piferrer A, Martínez G, Martínez J, Rojas ID, Hernández I, Abdelnour C, Rosende-Roca M, Vargas L, Mauleón A, Gil S, Alegret M, Ortega G, Espinosa A, Pérez-Cordón A, Sanabria Á, Roberto N, Ciudin A, Simó R, Hernández C, Tárraga L, Boada M, Ruiz A. Evaluation of macular thickness and volume tested by optical coherence tomography as biomarkers for Alzheimer's disease in a memory clinic. Sci Rep 2020; 10:1580. [PMID: 32005868 PMCID: PMC6994670 DOI: 10.1038/s41598-020-58399-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/10/2020] [Indexed: 01/22/2023] Open
Abstract
Building on previous studies that report thinning of the macula in Alzheimer’s disease (AD) and mild cognitive impairment (MCI) patients, the use of optical coherence tomography (OCT) has been proposed as a potential biomarker for AD. However, other studies contradict these results. A total of 930 participants (414 cognitively healthy people, 192 with probable amnestic MCI, and 324 probable AD patients) from a memory clinic were consecutively included in this study and underwent a spectral domain OCT scan (Maestro, Topcon) to assess total macular volume and thickness. Macular width measurements were also taken in several subregions (central, inner, and outer rings) and in layers such as the retinal nerve fiber (RNFL) and ganglion cell (CGL). The study employed a design of high ecological validity, with adjustment by age, education, sex, and OCT image quality. AD, MCI, and control groups did not significantly vary with regard to volume and retinal thickness in different layers. When these groups were compared, multivariate-adjusted analysis disclosed no significant differences in total (p = 0.564), CGL (p = 0.267), RNFL (p = 0.574), and macular thickness and volume (p = 0.380). The only macular regions showing significant differences were the superior (p = 0.040) and nasal (p = 0.040) sectors of the inner macular ring. However, adjustment for multiple comparisons nullified this significance. These results are not supporting existing claims for the usefulness of macular thickness as a biomarker of cognitive impairment in a memory unit. OCT biomarkers for AD should be subject to further longitudinal testing.
Collapse
Affiliation(s)
- Domingo Sánchez
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.
| | - Miguel Castilla-Marti
- Clínica Oftalmológica Dr. Castilla, Barcelona, Spain.,Department of Ophthalmology, Hospital de l'Esperança, Parc de Salut Mar, Barcelona, Spain
| | - Marta Marquié
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Sergi Valero
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia Moreno-Grau
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Octavio Rodríguez-Gómez
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Gabriel Martínez
- Faculty of Medicine and Dentistry, Universidad de Antofagasta, Antofagasta, Chile.,Iberoamerican Cochrane Centre, Barcelona, Spain
| | - Joan Martínez
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Itziar De Rojas
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Isabel Hernández
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Carla Abdelnour
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Maitée Rosende-Roca
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Liliana Vargas
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Ana Mauleón
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Silvia Gil
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Montserrat Alegret
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Ortega
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Espinosa
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Alba Pérez-Cordón
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Ángela Sanabria
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Natalia Roberto
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Andreea Ciudin
- Diabetes and Metabolism Research Unit and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólica Asociada (CIBERDEM), Vall d'Hebron Research Institute, Barcelona, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólica Asociada (CIBERDEM), Vall d'Hebron Research Institute, Barcelona, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólica Asociada (CIBERDEM), Vall d'Hebron Research Institute, Barcelona, Spain
| | - Lluís Tárraga
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Agustín Ruiz
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Mrdjen D, Fox EJ, Bukhari SA, Montine KS, Bendall SC, Montine TJ. The basis of cellular and regional vulnerability in Alzheimer's disease. Acta Neuropathol 2019; 138:729-749. [PMID: 31392412 PMCID: PMC6802290 DOI: 10.1007/s00401-019-02054-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) differentially and specifically affects brain regions and neuronal cell types in a predictable pattern. Damage to the brain appears to spread and worsens with time, taking over more regions and activating multiple stressors that can converge to promote vulnerability of certain cell types. At the same time, other cell types and brain regions remain intact in the face of this onslaught of neuropathology. Although neuropathologic descriptions of AD have been extensively expanded and mapped over the last several decades, our understanding of the mechanisms underlying how certain regions and cell populations are specifically vulnerable or resistant has lagged behind. In this review, we detail what is known about the selectivity of local initiation of AD pathology in the hippocampus, its proposed spread via synaptic connections, and the diversity of clinical phenotypes and brain atrophy patterns that may arise from different fibrillar strains of pathologic proteins or genetic predispositions. We summarize accumulated and emerging knowledge of the cellular and molecular basis for neuroanatomic selectivity, consider potential disease-relevant differences between vulnerable and resistant neuronal cell types and isolate molecular markers to identify them.
Collapse
Affiliation(s)
- Dunja Mrdjen
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Edward J Fox
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Syed A Bukhari
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Kathleen S Montine
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Sean C Bendall
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Thomas J Montine
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
16
|
Kepp KP, Squitti R. Copper imbalance in Alzheimer’s disease: Convergence of the chemistry and the clinic. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
17
|
Hu H, Chen KL, Ou YN, Cao XP, Chen SD, Cui M, Dong Q, Tan L, Yu JT. Neurofilament light chain plasma concentration predicts neurodegeneration and clinical progression in nondemented elderly adults. Aging (Albany NY) 2019; 11:6904-6914. [PMID: 31514172 PMCID: PMC6756875 DOI: 10.18632/aging.102220] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/13/2019] [Indexed: 01/31/2023]
Abstract
Previous studies demonstrated that plasma neurofilament light chain (NFL) played important predictive roles in disease progression and neurodegeneration in the preclinical phase of familial Alzheimer’s disease (AD). However, whether plasma NFL has the same predictive roles in sporadic AD is still unclear. In this study, 243 cognitively normal (CN) participants from the ADNI database were divided into two subgroups (CN- and CN+) according to CSF Aβ or AV45-PET. Associations of baseline plasma NFL concentrations or rate of change in plasma NFL with longitudinal data on other biomarkers were tested by multivariate linear mixed effects models (LMEMs). Results showed that plasma NFL concentration and its rate of change were already abnormally high in the preclinical phase of AD. Plasma NFL was associated with three core AD-related biomarkers in preclinical phase. Baseline plasma NFL, but not its rate of change, played predictive roles in both cognitive decline (β = -0.0349, p = 0.0274) and hippocampal atrophy (β = -0.0351, p = 0.0088), especially for preclinical AD participants. In summary, these results indicated that baseline plasma NFL, but not its rate of change, may be a valuable noninvasive tool to assess neurodegeneration and predict longitudinal disease progression in preclinical AD individuals.
Collapse
Affiliation(s)
- Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ke-Liang Chen
- Department of Neurology and Institute of Neurology, WHO Collaborating Center for Research and Training in Neurosciences, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xi-Peng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Shi-Dong Chen
- Department of Neurology and Institute of Neurology, WHO Collaborating Center for Research and Training in Neurosciences, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology and Institute of Neurology, WHO Collaborating Center for Research and Training in Neurosciences, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, WHO Collaborating Center for Research and Training in Neurosciences, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, WHO Collaborating Center for Research and Training in Neurosciences, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | | |
Collapse
|
18
|
Ye C, Albert M, Brown T, Bilgel M, Hsu J, Ma T, Caffo B, Miller MI, Mori S, Oishi K. Extended multimodal whole-brain anatomical covariance analysis: detection of disrupted correlation networks related to amyloid deposition. Heliyon 2019; 5:e02074. [PMID: 31372540 PMCID: PMC6656959 DOI: 10.1016/j.heliyon.2019.e02074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/22/2019] [Accepted: 07/08/2019] [Indexed: 01/27/2023] Open
Abstract
Background An anatomical covariance analysis (ACA) enables to elucidate inter-regional connections on a group basis, but little is known about the connections among white matter structures or among gray and white matter structures. Effect of including multiple magnetic resonance imaging (MRI) modalities into ACA framework in detecting white-to-white or gray-to-white connections is yet to be investigated. New method Proposed extended anatomical covariance analysis (eACA), analyzes correlations among gray and white matter structures (multi-structural) in various types of imaging modalities (T1-weighted images, T2 maps obtained from dual-echo sequences, and diffusion tensor images (DTI)). To demonstrate the capability to detect a disruption of the correlation network affected by pathology, we applied the eACA to two groups of cognitively-normal elderly individuals, one with (PiB+) and one without (PiB-) amyloid deposition in their brains. Results The volume of each anatomical structure was symmetric and functionally related structures formed a cluster. The pseudo-T2 value was highly homogeneous across the entire cortex in the PiB- group, while a number of physiological correlations were altered in the PiB + group. The DTI demonstrated unique correlation network among structures within the same phylogenetic portions of the brain that were altered in the PiB + group. Comparison with Existing Method The proposed eACA expands the concept of existing ACA to the connections among the white matter structures. The extension to other image modalities expands the way in which connectivity may be detected. Conclusion The eACA has potential to evaluate alterations of the anatomical network related to pathological processes.
Collapse
Affiliation(s)
- Chenfei Ye
- Department of Electronics and Information, Harbin Institute of Technology at Shenzhen, Shenzhen, Guangdong Province, China.,The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Peng Cheng Laboratory, Shenzhen, Guangdong, China
| | - Marilyn Albert
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Johns Hopkins Alzheimer's Disease Research Center, Baltimore, MD, USA
| | - Timothy Brown
- Center for Imaging Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Johnny Hsu
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
| | - Ting Ma
- Department of Electronics and Information, Harbin Institute of Technology at Shenzhen, Shenzhen, Guangdong Province, China.,Peng Cheng Laboratory, Shenzhen, Guangdong, China
| | - Brian Caffo
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Michael I Miller
- Center for Imaging Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susumu Mori
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Altomare D, Ferrari C, Caroli A, Galluzzi S, Prestia A, van der Flier WM, Ossenkoppele R, Van Berckel B, Barkhof F, Teunissen CE, Wall A, Carter SF, Schöll M, Choo ILH, Grimmer T, Redolfi A, Nordberg A, Scheltens P, Drzezga A, Frisoni GB. Prognostic value of Alzheimer's biomarkers in mild cognitive impairment: the effect of age at onset. J Neurol 2019; 266:2535-2545. [PMID: 31267207 DOI: 10.1007/s00415-019-09441-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/16/2019] [Accepted: 06/21/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The aim of this study is to assess the impact of age at onset on the prognostic value of Alzheimer's biomarkers in a large sample of patients with mild cognitive impairment (MCI). METHODS We measured Aβ42, t-tau, hippocampal volume on magnetic resonance imaging (MRI) and cortical metabolism on fluorodeoxyglucose-positron emission tomography (FDG-PET) in 188 MCI patients followed for at least 1 year. We categorised patients into earlier and later onset (EO/LO). Receiver operating characteristic curves and corresponding areas under the curve (AUCs) were performed to assess and compar the biomarker prognostic performances in EO and LO groups. Linear Model was adopted for estimating the time-to-progression in relation with earlier/later onset MCI groups and biomarkers. RESULTS In earlier onset patients, all the assessed biomarkers were able to predict cognitive decline (p < 0.05), with FDG-PET showing the best performance. In later onset patients, all biomarkers but t-tau predicted cognitive decline (p < 0.05). Moreover, FDG-PET alone in earlier onset patients showed a higher prognostic value than the one resulting from the combination of all the biomarkers in later onset patients (earlier onset AUC 0.935 vs later onset AUC 0.753, p < 0.001). Finally, FDG-PET showed a different prognostic value between earlier and later onset patients (p = 0.040) in time-to-progression allowing an estimate of the time free from disease. DISCUSSION FDG-PET may represent the most universal tool for the establishment of a prognosis in MCI patients and may be used for obtaining an onset-related estimate of the time free from disease.
Collapse
Affiliation(s)
- Daniele Altomare
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland.,Memory Clinic, University Hospital of Geneva, Geneva, Switzerland
| | - Clarissa Ferrari
- Service of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, via Pilastroni 4, 25125, Brescia, Italy.
| | - Anna Caroli
- Medical Imaging Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Samantha Galluzzi
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Annapaola Prestia
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Epidemiology and Biostatistics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Bart Van Berckel
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Institute of Neurology, UCL, London, UK.,Institute of Healthcare Engineering, UCL, London, UK
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Anders Wall
- Section of Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Stephen F Carter
- Alzheimer Neurobiology Center, Karolinska Institutet, Stockholm, Sweden.,Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Michael Schöll
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden.,Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| | - I L Han Choo
- Alzheimer Neurobiology Center, Karolinska Institutet, Stockholm, Sweden.,Department of Neuropsychiatry, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Alberto Redolfi
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Agneta Nordberg
- Center for Alzheimer Research, Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Aging Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Alexander Drzezga
- Department of Nuclear Medicine, University of Cologne, Cologne, Germany
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland.,Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Memory Clinic, University Hospital of Geneva, Geneva, Switzerland
| | | |
Collapse
|
20
|
Sánchez D, Castilla-Marti M, Rodríguez-Gómez O, Valero S, Piferrer A, Martínez G, Martínez J, Serra J, Moreno-Grau S, Hernández-Olasagarre B, De Rojas I, Hernández I, Abdelnour C, Rosende-Roca M, Vargas L, Mauleón A, Santos-Santos MA, Alegret M, Ortega G, Espinosa A, Pérez-Cordón A, Sanabria Á, Ciudin A, Simó R, Hernández C, Villoslada P, Ruiz A, Tàrraga L, Boada M. Usefulness of peripapillary nerve fiber layer thickness assessed by optical coherence tomography as a biomarker for Alzheimer's disease. Sci Rep 2018; 8:16345. [PMID: 30397251 PMCID: PMC6218495 DOI: 10.1038/s41598-018-34577-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/17/2018] [Indexed: 12/14/2022] Open
Abstract
The use of optical coherence tomography (OCT) has been suggested as a potential biomarker for Alzheimer’s Disease based on previously reported thinning of the retinal nerve fiber layer (RNFL) in Alzheimer’s disease’s (AD) and Mild Cognitive Impairment (MCI). However, other studies have not shown such results. 930 individuals (414 cognitively healthy individuals, 192 probable amnestic MCI and 324 probable AD) attending a memory clinic were consecutively included and underwent spectral domain OCT (Maestro, Topcon) examinations to assess differences in peripapillary RNFL thickness, using a design of high ecological validity. Adjustment by age, education, sex and OCT image quality was performed. We found a non-significant decrease in mean RNFL thickness as follows: control group: 100,20 ± 14,60 µm, MCI group: 98,54 ± 14,43 µm and AD group: 96,61 ± 15,27 µm. The multivariate adjusted analysis revealed no significant differences in mean overall (p = 0.352), temporal (p = 0,119), nasal (p = 0,151), superior (p = 0,435) or inferior (p = 0,825) quadrants between AD, MCI and control groups. These results do not support the usefulness of peripapillary RNFL analysis as a marker of cognitive impairment or in discriminating between cognitive groups. The analysis of other OCT measurements in other retinal areas and layers as biomarkers for AD should be tested further.
Collapse
Affiliation(s)
- Domingo Sánchez
- Alzheimer Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain.
| | - Miguel Castilla-Marti
- Clínica Oftalmológica Dr. Castilla, Barcelona, Spain.,Valles Ophthalmology Research, Hospital General de Catalunya, Sant Cugat del Vallès, Spain
| | - Octavio Rodríguez-Gómez
- Alzheimer Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Sergi Valero
- Alzheimer Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain.,Psychiatry Department, Hospital Universitari Vall d'Hebron, CIBERSAM, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Gabriel Martínez
- Faculty of Medicine and Dentistry. Faculty of Medicine and Dentistry, Universidad de Antofagasta, Antofagasta, Chile.,Iberoamerican Cochrane Centre, Barcelona, Spain
| | - Joan Martínez
- Alzheimer Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Judit Serra
- Alzheimer Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Sonia Moreno-Grau
- Alzheimer Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Begoña Hernández-Olasagarre
- Alzheimer Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Itziar De Rojas
- Alzheimer Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Isabel Hernández
- Alzheimer Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Carla Abdelnour
- Alzheimer Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Maitée Rosende-Roca
- Alzheimer Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Liliana Vargas
- Alzheimer Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Ana Mauleón
- Alzheimer Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Miguel A Santos-Santos
- Alzheimer Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Montserrat Alegret
- Alzheimer Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Gemma Ortega
- Alzheimer Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Ana Espinosa
- Alzheimer Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Alba Pérez-Cordón
- Alzheimer Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Ángela Sanabria
- Alzheimer Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Andrea Ciudin
- Diabetes and Metabolism Research Unit and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólica Asociada (CIBERDEM), Vall d'Hebron Research Institute, Barcelona, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólica Asociada (CIBERDEM), Vall d'Hebron Research Institute, Barcelona, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólica Asociada (CIBERDEM), Vall d'Hebron Research Institute, Barcelona, Spain
| | - Pablo Villoslada
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Agustín Ruiz
- Alzheimer Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Lluís Tàrraga
- Alzheimer Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Mercè Boada
- Alzheimer Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| |
Collapse
|
21
|
Contactin-2, a synaptic and axonal protein, is reduced in cerebrospinal fluid and brain tissue in Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2018; 10:52. [PMID: 29859129 PMCID: PMC5984818 DOI: 10.1186/s13195-018-0383-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/09/2018] [Indexed: 11/23/2022]
Abstract
Background Synaptic and axonal loss are two major mechanisms underlying Alzheimer’s disease (AD) pathogenesis, and biomarkers reflecting changes in these cellular processes are needed for early diagnosis and monitoring the progression of AD. Contactin-2 is a synaptic and axonal membrane protein that interacts with proteins involved in the pathology of AD such as amyloid precursor protein (APP) and beta-secretase 1 (BACE1). We hypothesized that AD might be characterized by changes in contactin-2 levels in the cerebrospinal fluid (CSF) and brain tissue. Therefore, we aimed to investigate the levels of contactin-2 in the CSF and evaluate its relationship with disease pathology. Methods Contactin-2 was measured in CSF from two cohorts (selected from the Amsterdam Dementia Cohort), comprising samples from controls (cohort 1, n = 28; cohort 2, n = 20) and AD (cohort 1, n = 36; cohort 2, n = 70) using an analytically validated commercial enzyme-linked immunosorbent assay (ELISA). The relationship of contactin-2 with cognitive decline (Mini-Mental State Examination (MMSE)) and other CSF biomarkers reflecting AD pathology were analyzed. We further characterized the expression of contactin-2 in postmortem AD human brain (n = 14) versus nondemented controls (n = 9). Results CSF contactin-2 was approximately 1.3-fold reduced in AD patients compared with controls (p < 0.0001). Overall, contactin-2 levels correlated with MMSE scores (r = 0.35, p = 0.004). We observed that CSF contactin-2 correlated with the levels of phosphorylated tau within the control (r = 0.46, p < 0.05) and AD groups (r = 0.31, p < 0.05). Contactin-2 also correlated strongly with another synaptic biomarker, neurogranin (control: r = 0.62, p < 0.05; AD: r = 0.60, p < 0.01), and BACE1, a contactin-2 processing enzyme (control: r = 0.64, p < 0.01; AD: r = 0.46, p < 0.05). Results were further validated in a second cohort (p < 0.01). Immunohistochemical analysis revealed that contactin-2 is expressed in the extracellular matrix. Lower levels of contactin-2 were specifically found in and around amyloid plaques in AD hippocampus and temporal cortex. Conclusions Taken together, these data reveal that the contactin-2 changes observed in tissues are reflected in CSF, suggesting that decreased contactin-2 CSF levels might be a biomarker reflecting synaptic or axonal loss. Electronic supplementary material The online version of this article (10.1186/s13195-018-0383-x) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Sasmita AO, Kuruvilla J, Ling APK. Harnessing neuroplasticity: modern approaches and clinical future. Int J Neurosci 2018; 128:1061-1077. [DOI: 10.1080/00207454.2018.1466781] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Andrew Octavian Sasmita
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Joshua Kuruvilla
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
|
24
|
MicroRNA Expression Levels Are Altered in the Cerebrospinal Fluid of Patients with Young-Onset Alzheimer's Disease. Mol Neurobiol 2018; 55:8826-8841. [PMID: 29603092 PMCID: PMC6208843 DOI: 10.1007/s12035-018-1032-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/12/2018] [Indexed: 12/19/2022]
Abstract
Clinical diagnosis of Alzheimer’s disease (AD) prior to the age of 65 years is classified as young-onset (YOAD), whereas diagnosis after the age of 65 years is considered late-onset (LOAD). Although rare autosomal mutations more commonly associate with YOAD, most YOAD and LOAD cases are sporadic. YOAD and LOAD share amyloid and tau pathology, but many YOAD patients show increased disease severity and rate of progression. The current study examined the microRNA (miRNA) expression profile from exosomes isolated from the cerebrospinal fluid (CSF) of YOAD patients with biomarker-confirmed AD. Results uncovered miR-16-5p, miR-125b-5p, miR-451a, and miR-605-5p as differentially expressed in the CSF-derived exosomes of YOAD patients when compared with healthy controls (HC). In a cohort of LOAD patients, miR-125b-5p, miR-451a, and miR-605-5p were similarly altered in expression, but miR-16-5p showed similar expression to control. Analysis of the mRNA targets of these miRNAs revealed transcripts enriched in biological processes relevant to the post-mortem posterior cingulate cortex transcriptome in YOAD from a previously published microarray study, including those related to neuron projections, synaptic signaling, metabolism, apoptosis, and the immune system. Hence, these miRNAs represent novel targets for uncovering disease mechanisms and for biomarker development in both YOAD and LOAD.
Collapse
|
25
|
Mullins R, Reiter D, Kapogiannis D. Magnetic resonance spectroscopy reveals abnormalities of glucose metabolism in the Alzheimer's brain. Ann Clin Transl Neurol 2018; 5:262-272. [PMID: 29560372 PMCID: PMC5846391 DOI: 10.1002/acn3.530] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/07/2017] [Accepted: 12/13/2017] [Indexed: 01/28/2023] Open
Abstract
Objective Brain glucose hypometabolism is a prominent feature of Alzheimer's disease (AD), and in this case-control study we used Magnetic Resonance Spectroscopy (MRS) to assess AD-related differences in the posterior cingulate/precuneal ratio of glucose, lactate, and other metabolites. Methods J-modulated Point-Resolved Spectroscopy (J-PRESS) and Prior-Knowledge Fitting (ProFit) software was used to measure glucose and other metabolites in the posterior cingulate/precuneus of 25 AD, 27 older controls, and 27 younger control participants. Clinical assessments for AD participants included cognitive performance measures, insulin resistance metrics and CSF biomarkers. Results AD participants showed substantially elevated glucose, lactate, and ascorbate levels compared to older (and younger) controls. In addition, the precuneal glucose elevation discriminated well between AD participants and older controls. Myo-inositol correlated with CSF p-Tau181P, total Tau, and the Clinical Dementia Rating (CDR) sum-of-boxes score within the AD group. Interpretation Higher glucose to creatine ratios in the AD brain likely reflect lower glucose utilization. Our findings reveal pronounced metabolic abnormalities in the AD brain and strongly suggest that brain glucose merits further investigation as a candidate AD biomarker.
Collapse
Affiliation(s)
- Roger Mullins
- Laboratory of NeurosciencesIntramural Research ProgramNational Institute on Aging/National Institutes of Health (NIA/NIH)BaltimoreMaryland
| | - David Reiter
- Laboratory of Clinical InvestigationNational Institute on Aging Intramural Research Program (NIA‐IRP)BaltimoreMaryland
| | - Dimitrios Kapogiannis
- Laboratory of NeurosciencesIntramural Research ProgramNational Institute on Aging/National Institutes of Health (NIA/NIH)BaltimoreMaryland
| |
Collapse
|
26
|
Timmers M, Barão S, Van Broeck B, Tesseur I, Slemmon J, De Waepenaert K, Bogert J, Shaw LM, Engelborghs S, Moechars D, Mercken M, Van Nueten L, Tritsmans L, de Strooper B, Streffer JR. BACE1 Dynamics Upon Inhibition with a BACE Inhibitor and Correlation to Downstream Alzheimer's Disease Markers in Elderly Healthy Participants. J Alzheimers Dis 2018; 56:1437-1449. [PMID: 28157093 PMCID: PMC5325057 DOI: 10.3233/jad-160829] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The β-site amyloid-β protein precursor (AβPP) cleaving enzyme-1 (BACE1) is the rate limiting enzyme in the generation of amyloid-β peptide (Aβ) from AβPP, one of the major pathways in Alzheimer's disease (AD) pathology. Increased BACE1 levels and activity have been reported in the brain of patients with sporadic AD. Therefore, changes of BACE1 levels in the cerebrospinal fluid (CSF) have also been investigated as a possible biomarker of the disease. We analyzed BACE1 levels in CSF of elderly healthy participants before and after chronic treatment with a BACE inhibitor (BACEi) and evaluated the correlation between BACE1 levels and downstream AD markers. Overall, BACE1 CSF levels showed strong correlations to all downstream AD markers investigated. This is the first reported finding that shows BACE1 levels in CSF were well correlated to its end product Aβ1 - 42. As previously described, BACE1 levels were strongly correlated to total-tau and phosphorylated tau levels in CSF. Generally, chronic BACE inhibition did not influence BACE1 CSF protein levels. Follow-up studies including early-stage AD pathophysiology and prodromal AD patients will help to understand the importance of measuring BACE1 routinely in daily clinical practice and AD clinical trials.
Collapse
Affiliation(s)
- Maarten Timmers
- Janssen Research and Development, A Division of Janssen Pharmaceutica N.V., Beerse, Belgium.,Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Soraia Barão
- VIB Center for the Biology of Disease, VIB-Leuven, Belgium.,Center for Human Genetics, Universitaire ziekenhuizen and LIND, KU Leuven, Belgium
| | - Bianca Van Broeck
- Janssen Research and Development, A Division of Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Ina Tesseur
- Janssen Research and Development, A Division of Janssen Pharmaceutica N.V., Beerse, Belgium
| | - John Slemmon
- Janssen Research and Development LLC, La Jolla, CA, USA
| | - Katja De Waepenaert
- Janssen Research and Development, A Division of Janssen Pharmaceutica N.V., Beerse, Belgium
| | | | - Leslie M Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Dieder Moechars
- Janssen Research and Development, A Division of Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Marc Mercken
- Janssen Research and Development, A Division of Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Luc Van Nueten
- Janssen Research and Development, A Division of Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Luc Tritsmans
- Janssen Research and Development, A Division of Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Bart de Strooper
- VIB Center for the Biology of Disease, VIB-Leuven, Belgium.,Center for Human Genetics, Universitaire ziekenhuizen and LIND, KU Leuven, Belgium.,Institute of Neurology, University College London, UK
| | - Johannes Rolf Streffer
- Janssen Research and Development, A Division of Janssen Pharmaceutica N.V., Beerse, Belgium.,Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
27
|
Rivero-Santana A, Ferreira D, Perestelo-Pérez L, Westman E, Wahlund LO, Sarría A, Serrano-Aguilar P. Cerebrospinal Fluid Biomarkers for the Differential Diagnosis between Alzheimer's Disease and Frontotemporal Lobar Degeneration: Systematic Review, HSROC Analysis, and Confounding Factors. J Alzheimers Dis 2018; 55:625-644. [PMID: 27716663 DOI: 10.3233/jad-160366] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Differential diagnosis in dementia is at present one of the main challenges both in clinical practice and research. Cerebrospinal fluid (CSF) biomarkers are included in the current diagnostic criteria of Alzheimer's disease (AD) but their clinical utility is still unclear. OBJECTIVE We performed a systematic review of studies analyzing the diagnostic performance of CSF Aβ42, total tau (t-tau), and phosphorylated tau (p-tau) in the discrimination between AD and frontotemporal lobar degeneration (FTLD) dementias. METHODS The following electronic databases were consulted until May 2016: Medline and PreMedline, EMBASE, PsycInfo, CINAHL, Cochrane Library, and CRD. For the first-time in the field, a Hierarchical Summary Receiver Operating Characteristic (HRSOC) model was applied, which avoids methodological problems of meta-analyses based on summary points of sensitivity and specificity values. We also investigated relevant confounders of CSF biomarkers' diagnostic performance such as age, disease duration, and global cognitive impairment. RESULTS The p-tau/Aβ42 ratio showed the best diagnostic performance. No statistically significant effects of the confounders were observed. Nonetheless, the p-tau/Aβ42 ratio may be especially indicated for younger patients. P-tau may be preferable for less cognitively impaired patients (high MMSE scores) and the t-tau/Aβ42 ratio for more cognitively impaired patients (low MMSE scores). CONCLUSION The p-tau/Aβ42 ratio has potential for being implemented in the clinical routine for the differential diagnosis between AD and FTLD. It is of utmost importance that future studies report information on confounders such as age, disease duration, and cognitive impairment, which should also stimulate understanding of the role of these factors in disease mechanisms and pathophysiology.
Collapse
Affiliation(s)
- Amado Rivero-Santana
- Canarian Foundation for Health Research (FUNCANIS), Tenerife, Spain.,Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Tenerife, Spain.,Center for Biomedical Research of the Canary Islands (CIBICAN), Tenerife, Spain
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Lilisbeth Perestelo-Pérez
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Tenerife, Spain.,Center for Biomedical Research of the Canary Islands (CIBICAN), Tenerife, Spain.,Evaluation Unit of the Canary Islands Health Service (SESCS), Tenerife, Spain
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Lars-Olof Wahlund
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Antonio Sarría
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Tenerife, Spain.,Agency for Health Technology Assessment (AETS), Institute of Health Carlos III, Madrid, Spain
| | - Pedro Serrano-Aguilar
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Tenerife, Spain.,Center for Biomedical Research of the Canary Islands (CIBICAN), Tenerife, Spain.,Evaluation Unit of the Canary Islands Health Service (SESCS), Tenerife, Spain
| |
Collapse
|
28
|
Patra K, Soosaipillai A, Sando SB, Lauridsen C, Berge G, Møller I, Grøntvedt GR, Bråthen G, Begcevic I, Moussaud S, Minthon L, Hansson O, Diamandis EP, White LR, Nielsen HM. Assessment of kallikrein 6 as a cross-sectional and longitudinal biomarker for Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2018; 10:9. [PMID: 29378650 PMCID: PMC5789599 DOI: 10.1186/s13195-018-0336-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/04/2018] [Indexed: 11/15/2022]
Abstract
Background Kallikrein 6 (KLK6) is known to be an age-related protease expressed at high levels in the central nervous system. It was previously shown to be involved in proteolysis of extracellular proteins implicated in neurodegenerative diseases such as Alzheimer’s disease (AD), prompting validation of KLK6 as a potential biomarker of disease. However, analyses of both plasma and cerebrospinal fluid (CSF) levels of KLK6 in patients with AD have been inconclusive. We present a detailed analysis of KLK6 in plasma and CSF in two separate cohorts in a cross-sectional and a longitudinal clinical setting. Methods The cross-sectional cohort included control subjects without dementia and patients with AD, and the longitudinal cohort included patients with MCI and patients with AD followed over a 2-year period. Plasma and CSF levels of KLK6 were quantified by use of a previously developed and validated enzyme-linked immunosorbent assay. Statistical analyses were performed to compare KLK6 levels between diagnostic groups and to identify potential associations between KLK6 level, age, apolipoprotein E (APOE) genotype, total apoE level and the classical CSF AD biomarkers. Results In the cross-sectional setting, KLK6 levels in plasma but not in CSF were significantly higher in the AD group than in control subjects. CSF but not plasma KLK6 levels were positively correlated with age in both the cross-sectional and longitudinal settings. In both cohorts, the CSF KLK6 levels were significantly and positively correlated with the CSF levels of core AD biomarkers. Total plasma and CSF apoE levels were positively associated with KLK6 in the cross-sectional study. Finally, during the 2-year monitoring period of the longitudinal cohort, CSF KLK6 levels increased with disease progression over time in the investigated patient groups. Conclusions In two separate cohorts we have confirmed the previously reported correlation between age and CSF levels of KLK6. Increased plasma KLK6 levels in patients with AD with a more advanced disease stage suggest KLK6 as a potential biomarker in patients with AD with more severe dementia. Significant correlations between KLK6 levels and core CSF AD biomarkers suggest molecular links between KLK6 and AD-related pathological processes.
Collapse
Affiliation(s)
- Kalicharan Patra
- Department of Neurochemistry, Stockholm University, Svante Arrhenius väg 16B, 106 91, Stockholm, Sweden
| | - Antoninus Soosaipillai
- Department of Pathology and Laboratory Medicine, Lunenfeld-Tanenbaum Research Institute-Mount Sinai Hospital, Toronto, ON, Canada
| | - Sigrid Botne Sando
- Department of Neurology, University Hospital of Trondheim, Trondheim, Norway.,Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Camilla Lauridsen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Guro Berge
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ina Møller
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gøril Rolfseng Grøntvedt
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Geir Bråthen
- Department of Neurology, University Hospital of Trondheim, Trondheim, Norway.,Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ilijana Begcevic
- Department of Pathology and Laboratory Medicine, Lunenfeld-Tanenbaum Research Institute-Mount Sinai Hospital, Toronto, ON, Canada
| | - Simon Moussaud
- Department of Neurochemistry, Stockholm University, Svante Arrhenius väg 16B, 106 91, Stockholm, Sweden
| | - Lennart Minthon
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Oskar Hansson
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Eleftherios P Diamandis
- Department of Pathology and Laboratory Medicine, Lunenfeld-Tanenbaum Research Institute-Mount Sinai Hospital, Toronto, ON, Canada
| | - Linda R White
- Department of Neurology, University Hospital of Trondheim, Trondheim, Norway.,Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Henrietta M Nielsen
- Department of Neurochemistry, Stockholm University, Svante Arrhenius väg 16B, 106 91, Stockholm, Sweden.
| |
Collapse
|
29
|
Pérez-Grijalba V, Fandos N, Canudas J, Insua D, Casabona D, Lacosta AM, Montañés M, Pesini P, Sarasa M. Validation of Immunoassay-Based Tools for the Comprehensive Quantification of Aβ40 and Aβ42 Peptides in Plasma. J Alzheimers Dis 2018; 54:751-62. [PMID: 27567833 PMCID: PMC5044780 DOI: 10.3233/jad-160325] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent advances in neuroimaging and cerebrospinal fluid (CSF) biomarker assays have provided evidence of a long preclinical stage of Alzheimer's disease (AD). This period is being increasingly targeted for secondary prevention trials of new therapies. In this context, the interest of a noninvasive, cost-effective amyloid-β (Aβ) blood-based test does not need to be overstated. Nevertheless, a thorough validation of these bioanalytical methods should be performed as a prerequisite for confident interpretation of clinical results. The aim of this study was to validate ELISA sandwich colorimetric ABtest40 and ABtest42 for the quantification of Aβ40 and Aβ42 in human plasma. The validation parameters assessed included precision, accuracy, sensitivity, specificity, recovery, and dilution linearity. ABtest40 and ABtest42 proved to be specific for their target peptide using Aβ peptides with sequence similar to the target. Mean relative error in the quantification was found to be below 7.5% for both assays, with high intra-assay, inter-assay, and inter-batch precision (CV <9.0% on average). Sensitivity was assessed by determination of the limit of quantification fulfilling precision and accuracy criteria; it was established at 7.60 pg/ml and 3.60 pg/ml for ABtest40 and ABtest42, respectively. Plasma dilution linearity was demonstrated in PBS; however, dilution in a proprietary formulated buffer significantly increased the recovery of both Aβ40 and Aβ42 masked by matrix interactions, allowing a more comprehensive assessment of the free and total peptide levels in the plasma. In conclusion, both assays were successfully validated as tools for the quantification Aβ40 and Aβ42 in plasma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pedro Pesini
- Correspondence to: Pedro Pesini, Araclon Biotech, Via Hispanidad 21, 50009 Zaragoza, Spain. Tel.: +34 976 796 562; E-mail:
| | | |
Collapse
|
30
|
Taipa R, Sousa AL, Melo Pires M, Sousa N. Does the Interplay Between Aging and Neuroinflammation Modulate Alzheimer's Disease Clinical Phenotypes? A Clinico-Pathological Perspective. J Alzheimers Dis 2018; 53:403-17. [PMID: 27176075 DOI: 10.3233/jad-160121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder and is the most common cause of dementia worldwide. Cumulative data suggests that neuroinflammation plays a prominent and early role in AD, and there is compelling data from different research groups of age-associated dysregulation of the neuroimmune system. From the clinical point of view, despite clinical resemblance and neuropathological findings, there are important differences between the group of patients with sporadic early-onset (<65 years old) and late-onset AD (>65 years old). Thus, it seems important to understand the age-dependent relationship between neuroinflammation and the underlying biology of AD in order to identify potential explanations for clinical heterogeneity, interpret biomarkers, and promote the best treatment to different clinical AD phenotypes. The study of the delicate balance between pro-inflammatory or anti-inflammatory sides of immune players in the different ages of onset of AD would be important to understand treatment efficacy in clinical trials and eventually, not only direct treatment to early disease stages, but also the possibility of establishing different treatment approaches depending on the age of the patient. In this review, we would like to summarize what is currently known about the interplay between "normal" age associated inflammatory changes and AD pathological mechanisms, and also the potential differences between early-onset and late-onset AD taking into account the age-related neuroimmune background at disease onset.
Collapse
Affiliation(s)
- Ricardo Taipa
- Neuropathology Unit, Department of Neuroscience, Hospital Santo António - Centro Hospitalar do Porto, Porto, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - Ana Luísa Sousa
- Department of Neurology, Hospital Santo António - Centro Hospitalar do Porto, Porto, Portugal
| | - Manuel Melo Pires
- Neuropathology Unit, Department of Neuroscience, Hospital Santo António - Centro Hospitalar do Porto, Porto, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| |
Collapse
|
31
|
Detection of contactin-2 in cerebrospinal fluid (CSF) of patients with Alzheimer's disease using Fluorescence Correlation Spectroscopy (FCS). Clin Biochem 2017; 50:1061-1066. [DOI: 10.1016/j.clinbiochem.2017.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/16/2017] [Accepted: 08/27/2017] [Indexed: 11/19/2022]
|
32
|
|
33
|
Lauridsen C, Sando SB, Møller I, Berge G, Pomary PK, Grøntvedt GR, Salvesen Ø, Bråthen G, White LR. Cerebrospinal Fluid Aβ43 Is Reduced in Early-Onset Compared to Late-Onset Alzheimer's Disease, But Has Similar Diagnostic Accuracy to Aβ42. Front Aging Neurosci 2017; 9:210. [PMID: 28701950 PMCID: PMC5487529 DOI: 10.3389/fnagi.2017.00210] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/14/2017] [Indexed: 01/25/2023] Open
Abstract
Background: Amyloid beta 1-43 (Aβ43) may be a useful additional biomarker for diagnosing Alzheimer's disease (AD). We have investigated cerebrospinal fluid (CSF) levels of Aβ43 in patients with early-onset AD in contrast to levels in late-onset AD. For comparison, in addition to the 'core' biomarkers, several other analytes were also determined [YKL-40, neurofilament light (NF-L), glial fibrillary acidic protein (GFAP), and progranulin]. Material and Methods: Cerebrospinal fluid samples were obtained from patients with early-onset AD (age ≤ 62, n = 66), late-onset AD (age ≥ 68, n = 25), and groups of cognitively intact individuals (age ≤ 62, n = 41, age ≥ 68, n = 39). Core CSF AD biomarkers [amyloid beta 1-42 (Aβ42), total tau, phosphorylated tau] were analyzed, as well as levels of Aβ43 and other analytes, using commercially available enzyme-linked immunosorbent assays. Results: Cerebrospinal fluid Aβ43 was significantly reduced in early-onset AD compared to late-onset AD (14.8 ± 7.3 vs. 21.8 ± 9.4 pg/ml, respectively), whereas the levels of Aβ42 in the two AD groups were not significantly different (474.9 ± 142.0 vs. 539.6 ± 159.9 pg/ml, respectively). Aβ43 and all core biomarkers were significantly altered in patients with AD compared to corresponding controls. NF-L was significantly increased in early-onset AD compared to younger controls, an effect not found between the older groups. Relationships between the Aβ peptides and tau proteins, YKL-40, NF-L, GFAP and progranulin were also investigated without finding marked associations. However, age-associated increases in levels of tau proteins, YKL-40, NF-L and GFAP were found with respect to age in healthy controls. Results for these other analytes were similar to previously published data. Aβ43 did not improve diagnostic accuracy in either AD group compared to Aβ42. DISCUSSION Cerebrospinal fluid Aβ43, but not Aβ42 levels, varied significantly with age in patients with AD. If CSF levels of Aβ peptides reflect amyloid deposition in brain, the possibility arises that there is a difference between Aβ43 and Aβ42 deposition in younger compared to older brain. However, the level of Aβ43 in CSF shows no improvement over Aβ42 regarding diagnostic accuracy.
Collapse
Affiliation(s)
- Camilla Lauridsen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Sigrid B Sando
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheim, Norway.,Department of Neurology, Trondheim University HospitalTrondheim, Norway
| | - Ina Møller
- Department of Neurology, Trondheim University HospitalTrondheim, Norway
| | - Guro Berge
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Precious K Pomary
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Gøril R Grøntvedt
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheim, Norway.,Department of Neurology, Trondheim University HospitalTrondheim, Norway
| | - Øyvind Salvesen
- Unit for Applied Clinical Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Geir Bråthen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheim, Norway.,Department of Neurology, Trondheim University HospitalTrondheim, Norway
| | - Linda R White
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheim, Norway.,Department of Neurology, Trondheim University HospitalTrondheim, Norway
| |
Collapse
|
34
|
Frisoni GB, Perani D, Bastianello S, Bernardi G, Porteri C, Boccardi M, Cappa SF, Trabucchi M, Padovani A. Biomarkers for the diagnosis of Alzheimer's disease in clinical practice: an Italian intersocietal roadmap. Neurobiol Aging 2017; 52:119-131. [DOI: 10.1016/j.neurobiolaging.2016.02.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 01/15/2023]
|
35
|
den Haan J, Verbraak FD, Visser PJ, Bouwman FH. Retinal thickness in Alzheimer's disease: A systematic review and meta-analysis. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2017; 6:162-170. [PMID: 28275698 PMCID: PMC5328759 DOI: 10.1016/j.dadm.2016.12.014] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction Retinal characteristics are increasingly recognized as biomarkers for neurodegenerative diseases. Retinal thickness measured by optical coherence tomography may reflect the presence of Alzheimer's disease (AD). We performed a meta-analysis on retinal thickness in AD and mild cognitive impairment (MCI) patients and healthy controls (HCs). Methods We selected 25 studies with measurements of retinal thickness including 887 AD patients, 216 MCI patients, and 864 HCs that measured retinal thickness. Outcomes were peripapillary retinal nerve fiber layer (RNFL) and macular thickness. The main outcome was the standardized mean differences (SMDs). We used STATA to perform the meta-analysis (StataCorp, Texas; version 14.0). Results Relative to HCs, AD and MCI patients had lower peripapillary RNFL (SMD 0.98 [CI −1.30, −0.66, P < .0001] and SMD 0.71 [CI −1.24, −0.19, P = .008]). Total macular thickness was decreased in AD patients (SMD 0.88 [CI −1.12, −0.65, P = .000]). Discussion Retinal thickness is decreased in AD and MCI patients compared to HC. This confirms that neurodegenerative diseases may be reflected by retinal changes.
Collapse
Affiliation(s)
- Jurre den Haan
- Neurology, VU University Medical Center Alzheimer Center, Amsterdam, The Netherlands
| | - Frank D Verbraak
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Ophthalmology Department, VU University Medical Center, Amsterdam, The Netherlands
| | - Pieter Jelle Visser
- Neurology, VU University Medical Center Alzheimer Center, Amsterdam, The Netherlands; Alzheimer Centre, School for Mental Health and Neuroscience (MHeNS), University Medical Centre, Maastricht, The Netherlands
| | - Femke H Bouwman
- Neurology, VU University Medical Center Alzheimer Center, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Gao N, Chu TT, Li QQ, Lim YJ, Qiu T, Ma MR, Hu ZW, Yang XF, Chen YX, Zhao YF, Li YM. Hydrophobic tagging-mediated degradation of Alzheimer's disease related Tau. RSC Adv 2017. [DOI: 10.1039/c7ra05347a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
HyT-Tau-CPP reduced Tau levels in Alzheimer's disease (AD) mouse model, and appeared to be a promising candidate for AD treatment.
Collapse
|
37
|
Kepp KP. Ten Challenges of the Amyloid Hypothesis of Alzheimer’s Disease. J Alzheimers Dis 2016; 55:447-457. [DOI: 10.3233/jad-160550] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Khan TK, Alkon DL. Alzheimer's Disease Cerebrospinal Fluid and Neuroimaging Biomarkers: Diagnostic Accuracy and Relationship to Drug Efficacy. J Alzheimers Dis 2016; 46:817-36. [PMID: 26402622 DOI: 10.3233/jad-150238] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Widely researched Alzheimer's disease (AD) biomarkers include in vivo brain imaging with PET and MRI, imaging of amyloid plaques, and biochemical assays of Aβ 1 - 42, total tau, and phosphorylated tau (p-tau-181) in cerebrospinal fluid (CSF). In this review, we critically evaluate these biomarkers and discuss their clinical utility for the differential diagnosis of AD. Current AD biomarker tests are either highly invasive (requiring CSF collection) or expensive and labor-intensive (neuroimaging), making them unsuitable for use in the primary care, clinical office-based setting, or to assess drug efficacy in clinical trials. In addition, CSF and neuroimaging biomarkers continue to face challenges in achieving required sensitivity and specificity and minimizing center-to-center variability (for CSF-Aβ 1 - 42 biomarkers CV = 26.5% ; http://www.alzforum.org/news/conference-coverage/paris-standardization-hurdle-spinal-fluid-imaging-markers). Although potentially useful for selecting patient populations for inclusion in AD clinical trials, the utility of CSF biomarkers and neuroimaging techniques as surrogate endpoints of drug efficacy needs to be validated. Recent trials of β- and γ-secretase inhibitors and Aβ immunization-based therapies in AD showed no significant cognitive improvements, despite changes in CSF and neuroimaging biomarkers. As we learn more about the dysfunctional cellular and molecular signaling processes that occur in AD, and how these processes are manifested in tissues outside of the brain, new peripheral biomarkers may also be validated as non-invasive tests to diagnose preclinical and clinical AD.
Collapse
|
39
|
Kepp KP. Alzheimer's disease due to loss of function: A new synthesis of the available data. Prog Neurobiol 2016; 143:36-60. [PMID: 27327400 DOI: 10.1016/j.pneurobio.2016.06.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/10/2016] [Accepted: 06/11/2016] [Indexed: 12/11/2022]
Abstract
Alzheimer's Disease (AD) is a highly complex disease involving a broad range of clinical, cellular, and biochemical manifestations that are currently not understood in combination. This has led to many views of AD, e.g. the amyloid, tau, presenilin, oxidative stress, and metal hypotheses. The amyloid hypothesis has dominated the field with its assumption that buildup of pathogenic β-amyloid (Aβ) peptide causes disease. This paradigm has been criticized, yet most data suggest that Aβ plays a key role in the disease. Here, a new loss-of-function hypothesis is synthesized that accounts for the anomalies of the amyloid hypothesis, e.g. the curious pathogenicity of the Aβ42/Aβ40 ratio, the loss of Aβ caused by presenilin mutation, the mixed phenotypes of APP mutations, the poor clinical-biochemical correlations for genetic variant carriers, and the failure of Aβ reducing drugs. The amyloid-loss view accounts for recent findings on the structure and chemical features of Aβ variants and their coupling to human patient data. The lost normal function of APP/Aβ is argued to be metal transport across neuronal membranes, a view with no apparent anomalies and substantially more explanatory power than the gain-of-function amyloid hypothesis. In the loss-of-function scenario, the central event of Aβ aggregation is interpreted as a loss of soluble, functional monomer Aβ rather than toxic overload of oligomers. Accordingly, new research models and treatment strategies should focus on remediation of the functional amyloid balance, rather than strict containment of Aβ, which, for reasons rationalized in this review, has failed clinically.
Collapse
Affiliation(s)
- Kasper P Kepp
- Technical University of Denmark, DTU Chemistry, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
40
|
Chiaravalloti A, Koch G, Toniolo S, Belli L, Lorenzo FD, Gaudenzi S, Schillaci O, Bozzali M, Sancesario G, Martorana A. Comparison between Early-Onset and Late-Onset Alzheimer's Disease Patients with Amnestic Presentation: CSF and (18)F-FDG PET Study. Dement Geriatr Cogn Dis Extra 2016; 6:108-19. [PMID: 27195000 PMCID: PMC4868930 DOI: 10.1159/000441776] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background/Aims To investigate the differences in brain glucose consumption between patients with early onset of Alzheimer's disease (EOAD, aged ≤65 years) and patients with late onset of Alzheimer's disease (LOAD, aged >65 years). Methods Differences in brain glucose consumption between the groups have been evaluated by means of Statistical Parametric Mapping version 8, with the use of age, sex, Mini-Mental State Examination and cerebrospinal fluid values of AΒ1-42, phosphorylated Tau and total Tau as covariates in the comparison between EOAD and LOAD. Results As compared to LOAD, EOAD patients showed a significant decrease in glucose consumption in a wide portion of the left parietal lobe (BA7, BA31 and BA40). No significant differences were obtained when subtracting the EOAD from the LOAD group. Conclusions The results of our study show that patients with EOAD show a different metabolic pattern as compared to those with LOAD that mainly involves the left parietal lobe.
Collapse
Affiliation(s)
| | - Giacomo Koch
- Department of Non-Invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Rome, Italy
| | - Sofia Toniolo
- Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Lorena Belli
- Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Sara Gaudenzi
- Department of Non-Invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Rome, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Department of IRCCS Neuromed, Pozzilli, Italy
| | - Marco Bozzali
- Department of Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | | |
Collapse
|
41
|
Specific Knockdown of Endogenous Tau Protein by Peptide-Directed Ubiquitin-Proteasome Degradation. Cell Chem Biol 2016; 23:453-61. [DOI: 10.1016/j.chembiol.2016.02.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 02/16/2016] [Accepted: 02/24/2016] [Indexed: 01/15/2023]
|
42
|
Kester MI, Teunissen CE, Crimmins DL, Herries EM, Ladenson JH, Scheltens P, van der Flier WM, Morris JC, Holtzman DM, Fagan AM. Neurogranin as a Cerebrospinal Fluid Biomarker for Synaptic Loss in Symptomatic Alzheimer Disease. JAMA Neurol 2016; 72:1275-80. [PMID: 26366630 DOI: 10.1001/jamaneurol.2015.1867] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
IMPORTANCE Neurogranin (NGRN) seems to be a promising novel cerebrospinal fluid (CSF) biomarker for synaptic loss; however, clinical, and especially longitudinal, data are sparse. OBJECTIVE To examine the utility of NGRN, with repeated CSF sampling, for diagnosis, prognosis, and monitoring of Alzheimer disease (AD). DESIGN, SETTING, AND PARTICIPANTS Longitudinal study of consecutive patients who underwent 2 lumbar punctures between the beginning of 1995 and the end of 2010 within the memory clinic-based Amsterdam Dementia Cohort. The study included 163 patients: 37 cognitively normal participants (mean [SE] age, 64 [2] years; 38% female; and mean [SE] Mini-Mental State Examination [MMSE] score, 28 [0.3]), 61 patients with mild cognitive impairment (MCI) (mean [SE] age, 68 [1] years; 38% female; and mean [SE] MMSE score, 27 [0.3]), and 65 patients with AD (mean [SE] age, 65 [1] years; 45% female; and mean [SE] MMSE score, 22 [0.7]). The mean (SE) interval between lumbar punctures was 2.0 (0.1) years, and the mean (SE) duration of cognitive follow-up was 3.8 (0.2) years. Measurements of CSF NGRN levels were obtained in January and February 2014. MAIN OUTCOME AND MEASURE Levels of NGRN in CSF samples. RESULTS Baseline CSF levels of NGRN in patients with AD (median level, 2381 pg/mL [interquartile range, 1651-3416 pg/mL]) were higher than in cognitively normal participants (median level, 1712 pg/mL [interquartile range, 1206-2724 pg/mL]) (P = .04). Baseline NGRN levels were highly correlated with total tau and tau phosphorylated at threonine 181 in all patient groups (all P < .001), but not with Aβ42. Baseline CSF levels of NGRN were also higher in patients with MCI who progressed to AD (median level, 2842 pg/mL [interquartile range, 1882-3950 pg/mL]) compared with those with stable MCI (median level, 1752 pg/mL [interquartile range, 1024-2438 pg/mL]) (P = .004), and they were predictive of progression from MCI to AD (hazard ratio, 1.8 [95% CI, 1.1-2.9]; stratified by tertiles). Linear mixed-model analyses demonstrated that within-person levels of NGRN increased over time in cognitively normal participants (mean [SE] level, 90 [45] pg/mL per year; P < .05) but not in patients with MCI or AD. CONCLUSIONS AND RELEVANCE Neurogranin is a promising biomarker for AD because levels were elevated in patients with AD compared with cognitively normal participants and predicted progression from MCI to AD. Within-person levels of NGRN increased in cognitively normal participants but not in patients with later stage MCI or AD, which suggests that NGRN may reflect presymptomatic synaptic dysfunction or loss.
Collapse
Affiliation(s)
- Maartje I Kester
- Alzheimer Center and Department of Neurology, VU University Medical Center, Amsterdam, the Netherlands
| | - Charlotte E Teunissen
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, the Netherlands
| | - Daniel L Crimmins
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Elizabeth M Herries
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Jack H Ladenson
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Philip Scheltens
- Alzheimer Center and Department of Neurology, VU University Medical Center, Amsterdam, the Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center and Department of Neurology, VU University Medical Center, Amsterdam, the Netherlands4Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, the Netherlands
| | - John C Morris
- The Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, Missouri6Department of Neurology, Washington University School of Medicine, St Louis, Missouri7Hope Center for Neurological Disorders, Washington Universit
| | - David M Holtzman
- The Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, Missouri6Department of Neurology, Washington University School of Medicine, St Louis, Missouri7Hope Center for Neurological Disorders, Washington Universit
| | - Anne M Fagan
- The Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, Missouri6Department of Neurology, Washington University School of Medicine, St Louis, Missouri7Hope Center for Neurological Disorders, Washington Universit
| |
Collapse
|
43
|
Tellechea P, Pujol N, Esteve-Belloch P, Echeveste B, García-Eulate MR, Arbizu J, Riverol M. Early- and late-onset Alzheimer disease: Are they the same entity? Neurologia 2015; 33:244-253. [PMID: 26546285 DOI: 10.1016/j.nrl.2015.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/06/2015] [Accepted: 08/14/2015] [Indexed: 11/29/2022] Open
Abstract
Early-onset Alzheimer disease (EOAD), which presents in patients younger than 65 years, has frequently been described as having different features from those of late-onset Alzheimer disease (LOAD). This review analyses the most recent studies comparing the clinical presentation and neuropsychological, neuropathological, genetic, and neuroimaging findings of both types in order to determine whether EOAD and LOAD are different entities or distinct forms of the same entity. We observed consistent differences between clinical findings in EOAD and in LOAD. Fundamentally, the onset of EOAD is more likely to be marked by atypical symptoms, and cognitive assessments point to poorer executive and visuospatial functioning and praxis with less marked memory impairment. Alzheimer-type features will be more dense and widespread in neuropathology studies, with structural and functional neuroimaging showing greater and more diffuse atrophy extending to neocortical areas (especially the precuneus). In conclusion, available evidence suggests that EOAD and LOAD are 2 different forms of a single entity. LOAD is likely to be influenced by ageing-related processes.
Collapse
Affiliation(s)
- P Tellechea
- Departamento de Neurología, Clínica Universidad de Navarra, Pamplona, Navarra, España
| | - N Pujol
- Departamento de Neurología, Clínica Universidad de Navarra, Pamplona, Navarra, España
| | - P Esteve-Belloch
- Departamento de Neurología, Clínica Universidad de Navarra, Pamplona, Navarra, España
| | - B Echeveste
- Departamento de Neurología, Clínica Universidad de Navarra, Pamplona, Navarra, España
| | - M R García-Eulate
- Departamento de Radiología, Clínica Universidad de Navarra, Pamplona, Navarra, España
| | - J Arbizu
- Departamento de Medicina Nuclear, Clínica Universidad de Navarra, Pamplona, Navarra, España
| | - M Riverol
- Departamento de Neurología, Clínica Universidad de Navarra, Pamplona, Navarra, España.
| |
Collapse
|
44
|
Kester MI, Teunissen CE, Sutphen C, Herries EM, Ladenson JH, Xiong C, Scheltens P, van der Flier WM, Morris JC, Holtzman DM, Fagan AM. Cerebrospinal fluid VILIP-1 and YKL-40, candidate biomarkers to diagnose, predict and monitor Alzheimer's disease in a memory clinic cohort. ALZHEIMERS RESEARCH & THERAPY 2015; 7:59. [PMID: 26383836 PMCID: PMC4574487 DOI: 10.1186/s13195-015-0142-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 08/14/2015] [Indexed: 01/11/2023]
Abstract
Introduction We examined the utility of cerebrospinal fluid (CSF) proteins, Chitinase-3-like protein 1 (CHI3L1 or YKL-40), a putative marker of inflammation, and Visinin-like protein-1 (VILIP-1), a marker for neuronal injury, for diagnostic classification and monitoring of disease progression in a memory clinic cohort. Methods CSF levels of YKL-40 and VILIP-1 were measured in 37 cognitively normal, 61 Mild Cognitive Impairment (MCI) and 65 Alzheimer’s disease (AD) patients from the memory clinic-based Amsterdam Dementia Cohort who underwent two lumbar punctures, with minimum interval of 6 months and a mean(SE) interval of 2.0(0.1) years. Mean(SE) cognitive follow-up was 3.8 (0.2) years. ANOVA was used to compare baseline differences of log-transformed CSF measures. Cox proportional hazard models were used to evaluate disease progression as a function of CSF tertiles. Linear mixed models were used to evaluate longitudinal change over time. All analyses were sex and age adjusted. Results Baseline levels of YKL-40, but not VILIP-1, were higher in MCI and AD patients compared to cognitively normal individuals (mean (SE) pg/mL, 304 (16) and 288 (12) vs. 231 (16), p = 0.03 and p = 0.006). Baseline levels of both YKL-40 and VILIP-1 in MCI predicted progression to AD (HR 95 % CI = 3.0 (1.1–7.9) and 4.4 (1.5–13.0), respectively, for highest vs. lowest tertile). YKL-40 increased longitudinally in patients with MCI and AD (mean (SE) pg/mL per year, 8.9 (3.0) and 7.1 (3.1), respectively), but not in cognitively normal individuals, whereas levels of VILIP-1 increased only in MCI (mean (SE), 10.7 (2.6) pg/mL per year). Conclusions CSF levels of YKL-40 may have utility for discriminating between cognitively normal individuals and patients with MCI or AD. Increased levels of both YKL-40 and VILIP-1 may be associated with disease progression. These CSF biomarkers should be considered for future evaluation in the characterization of the natural history of AD.
Collapse
Affiliation(s)
- Maartje I Kester
- Alzheimer Center and Department of Neurology, VU University Medical Center, PO box 7057, 1007 MB, Amsterdam, The Netherlands.
| | - Charlotte E Teunissen
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands.
| | - Courtney Sutphen
- The Knight Alzheimer's Disease Research Center, Washington University School of Medicine, 660 South Euclid, Campus Box 8111, St Louis, 63110, MO, USA. .,Department of Neurology, Washington University School of Medicine, 660 South Euclid, Campus Box 8111, St Louis, 63110, MO, USA. .,Hope Center for Neurological Disorders, Washington University School of Medicine, 660 South Euclid, Campus Box 8111, St Louis, 63110, MO, USA.
| | - Elizabeth M Herries
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid, Campus Box 8111, St Louis, 63110, MO, USA.
| | - Jack H Ladenson
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid, Campus Box 8111, St Louis, 63110, MO, USA.
| | - Chengjie Xiong
- The Knight Alzheimer's Disease Research Center, Washington University School of Medicine, 660 South Euclid, Campus Box 8111, St Louis, 63110, MO, USA. .,Division of Biostatistics, Washington University School of Medicine, 660 South Euclid, Campus Box 8111, St Louis, 63110, MO, USA.
| | - Philip Scheltens
- Alzheimer Center and Department of Neurology, VU University Medical Center, PO box 7057, 1007 MB, Amsterdam, The Netherlands.
| | - Wiesje M van der Flier
- Alzheimer Center and Department of Neurology, VU University Medical Center, PO box 7057, 1007 MB, Amsterdam, The Netherlands. .,Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands.
| | - John C Morris
- The Knight Alzheimer's Disease Research Center, Washington University School of Medicine, 660 South Euclid, Campus Box 8111, St Louis, 63110, MO, USA. .,Department of Neurology, Washington University School of Medicine, 660 South Euclid, Campus Box 8111, St Louis, 63110, MO, USA. .,Hope Center for Neurological Disorders, Washington University School of Medicine, 660 South Euclid, Campus Box 8111, St Louis, 63110, MO, USA.
| | - David M Holtzman
- The Knight Alzheimer's Disease Research Center, Washington University School of Medicine, 660 South Euclid, Campus Box 8111, St Louis, 63110, MO, USA. .,Department of Neurology, Washington University School of Medicine, 660 South Euclid, Campus Box 8111, St Louis, 63110, MO, USA. .,Hope Center for Neurological Disorders, Washington University School of Medicine, 660 South Euclid, Campus Box 8111, St Louis, 63110, MO, USA.
| | - Anne M Fagan
- The Knight Alzheimer's Disease Research Center, Washington University School of Medicine, 660 South Euclid, Campus Box 8111, St Louis, 63110, MO, USA. .,Department of Neurology, Washington University School of Medicine, 660 South Euclid, Campus Box 8111, St Louis, 63110, MO, USA. .,Hope Center for Neurological Disorders, Washington University School of Medicine, 660 South Euclid, Campus Box 8111, St Louis, 63110, MO, USA.
| |
Collapse
|
45
|
Benchmarking biomarker-based criteria for Alzheimer's disease: Data from the Swedish Dementia Registry, SveDem. Alzheimers Dement 2015; 11:1470-1479. [PMID: 26079415 DOI: 10.1016/j.jalz.2015.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/27/2015] [Accepted: 04/16/2015] [Indexed: 11/22/2022]
Abstract
INTRODUCTION New research guidelines for the diagnosis of Alzheimer's disease (AD) include biomarker evidence of amyloid-β (Aβ) and tau pathology. The aim of this study was to investigate what proportion of AD patients diagnosed in clinical routine in Sweden that had an AD-indicative cerebrospinal fluid (CSF) biomarker profile. METHODS By cross-referencing a laboratory database with the Swedish Dementia Registry (SveDem), 2357 patients with data on CSF Aβ and tau biomarkers and a clinical diagnosis of AD with dementia were acquired. RESULTS Altogether, 77.2% had pathologic Aβ42 and total tau or phosphorylated tau in CSF. These results were stable across age groups. Female sex and low mini-mental state examination score increased the likelihood of pathologic biomarkers. DISCUSSION About a quarter of clinically diagnosed AD patients did not have an AD-indicative CSF biomarker profile. This discrepancy may partly reflect incorrect (false positive) clinical diagnosis or a lack in sensitivity of the biomarker assays.
Collapse
|
46
|
Ossenkoppele R, Mattsson N, Teunissen CE, Barkhof F, Pijnenburg Y, Scheltens P, van der Flier WM, Rabinovici GD. Cerebrospinal fluid biomarkers and cerebral atrophy in distinct clinical variants of probable Alzheimer's disease. Neurobiol Aging 2015; 36:2340-7. [PMID: 25990306 DOI: 10.1016/j.neurobiolaging.2015.04.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/27/2015] [Accepted: 04/18/2015] [Indexed: 11/17/2022]
Abstract
Different clinical variants of probable Alzheimer's disease (AD) share underlying plaques and tangles but show distinct atrophy patterns. We included 52 posterior cortical atrophy, 29 logopenic variant primary progressive aphasia, 53 early-onset and 42 late-onset AD patients, selected for abnormal cerebrospinal fluid (CSF)-amyloid-beta42, with CSF and magnetic resonance imaging data available. Bootstrapping revealed no differences in the prevalence of abnormal CSF total-tau and phosphorylated-tau between probable AD variants (range total-tau: 84.9%-92.3%, phosphorylated-tau: 79.2%-93.1%, p > 0.05). Voxelwise linear regressions showed various relationships between lower CSF-Aβ42 and syndrome-specific atrophy, involving precuneus, posterior cingulate, and medial temporal lobe in early-onset AD, occipital cortex and middle temporal gyrus in posterior cortical atrophy; anterior cingulate, insular cortex and precentral gyrus (left > right) in logopenic variant primary progressive aphasia; and medial temporal lobe, thalamus, and temporal pole in late-onset AD (all at p < 0.001 uncorrected). In contrast, CSF-tau was not related to gray matter atrophy in any group. Our findings suggest that lower CSF-amyloid-beta42 - and not increased total-tau and phosphorylated-tau - relates to reduced gray matter volumes, mostly in regions that are typically atrophied in distinct clinical variants of probable AD.
Collapse
Affiliation(s)
- Rik Ossenkoppele
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA; Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA; Department of Neurology & Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands; Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands.
| | - Niklas Mattsson
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative diseases, San Francisco, CA, USA; Institute of Neuroscience and Physiology, Laboratory of Clinical Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Charlotte E Teunissen
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Yolande Pijnenburg
- Department of Neurology & Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Philip Scheltens
- Department of Neurology & Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Department of Neurology & Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands; Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Gil D Rabinovici
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA; Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
47
|
Dehabadi MH, Davis BM, Wong TK, Cordeiro MF. Retinal manifestations of Alzheimer's disease. Neurodegener Dis Manag 2015; 4:241-52. [PMID: 25095818 DOI: 10.2217/nmt.14.19] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is neurodegenerative condition and most common cause of dementia worldwide. Current criteria for its diagnosis and monitoring rely on subjective, expensive or invasive methods that lack sufficient sensitivity, such that a concrete diagnosis of AD can only be made postmortem. Given the structural similarities of the neuro-retina and central nervous system, researchers have shown many manifestations of AD to be detectible in the retinae of humans and transgenic models of AD. Due to the eye's unique optical properties allowing noninvasive in vivo imaging, the retina could provide a window for the early diagnosis and monitoring of AD long before symptom manifestation.
Collapse
Affiliation(s)
- Mohammad H Dehabadi
- Glaucoma & Retinal Neurodegeneration Research Group, Visual Neuroscience, UCL Institute of Ophthalmology, London, UK
| | | | | | | |
Collapse
|
48
|
Del Campo Milan M, Zuroff L, Jimenez CR, Scheltens P, Teunissen CE. Can agrin cerebrospinal fluid concentration be used as an early biomarker for Alzheimer's disease? ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2015; 1:75-80. [PMID: 27239494 PMCID: PMC4876904 DOI: 10.1016/j.dadm.2014.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The need for effective treatments halting Alzheimer's disease (AD) urges the discovery of the earliest possible biomarkers. Agrin is increased in the early stages of AD and is involved in amyloid-β (Aβ) fibrillation and synaptogenesis. We investigated the potential of agrin as an early AD cerebrospinal fluid (CSF) biomarker. We analyzed the agrin CSF concentration in nondemented controls (n = 20) and those with mild (n = 20) and severe (n = 20) AD. The levels of agrin CSF were not significantly divergent among the different patient groups and did not correlate with the concentration of Aβ42, total tau, phosphorylated tau, or the Mini Mental State Examination scores. However, agrin strongly correlated with age in those with dementia. The results indicate that agrin cannot be used as an early AD CSF biomarker using the current immunoassay. However, our population was relatively young; thus, the correlation between agrin and age suggests that stronger differences in agrin concentrations might be found in older groups with more heterogeneous AD pathologic features.
Collapse
Affiliation(s)
- Marta Del Campo Milan
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
- Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Leah Zuroff
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
- Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Connie R. Jimenez
- OncoProteomics Laboratory, Department Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
49
|
Fagan AM, Xiong C, Jasielec MS, Bateman RJ, Goate AM, Benzinger TLS, Ghetti B, Martins RN, Masters CL, Mayeux R, Ringman JM, Rossor MN, Salloway S, Schofield PR, Sperling RA, Marcus D, Cairns NJ, Buckles VD, Ladenson JH, Morris JC, Holtzman DM. Longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer's disease. Sci Transl Med 2014; 6:226ra30. [PMID: 24598588 DOI: 10.1126/scitranslmed.3007901] [Citation(s) in RCA: 283] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Clinicopathological evidence suggests that the pathology of Alzheimer's disease (AD) begins many years before the appearance of cognitive symptoms. Biomarkers are required to identify affected individuals during this asymptomatic ("preclinical") stage to permit intervention with potential disease-modifying therapies designed to preserve normal brain function. Studies of families with autosomal-dominant AD (ADAD) mutations provide a unique and powerful means to investigate AD biomarker changes during the asymptomatic period. In this biomarker study, we collected cerebrospinal fluid (CSF), plasma, and in vivo amyloid imaging cross-sectional data at baseline in individuals from ADAD families enrolled in the Dominantly Inherited Alzheimer Network. Our study revealed reduced concentrations of CSF amyloid-β1-42 (Aβ1-42) associated with the presence of Aβ plaques, and elevated concentrations of CSF tau, ptau181 (phosphorylated tau181), and VILIP-1 (visinin-like protein-1), markers of neurofibrillary tangles and neuronal injury/death, in asymptomatic mutation carriers 10 to 20 years before their estimated age at symptom onset (EAO) and before the detection of cognitive deficits. When compared longitudinally, however, the concentrations of CSF biomarkers of neuronal injury/death within individuals decreased after their EAO, suggesting a slowing of acute neurodegenerative processes with symptomatic disease progression. These results emphasize the importance of longitudinal, within-person assessment when modeling biomarker trajectories across the course of the disease. If corroborated, this pattern may influence the definition of a positive neurodegenerative biomarker outcome in clinical trials.
Collapse
Affiliation(s)
- Anne M Fagan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ferreira D, Rivero-Santana A, Perestelo-Pérez L, Westman E, Wahlund LO, Sarría A, Serrano-Aguilar P. Improving CSF Biomarkers' Performance for Predicting Progression from Mild Cognitive Impairment to Alzheimer's Disease by Considering Different Confounding Factors: A Meta-Analysis. Front Aging Neurosci 2014; 6:287. [PMID: 25360114 PMCID: PMC4199277 DOI: 10.3389/fnagi.2014.00287] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/29/2014] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Cerebrospinal fluid (CSF) biomarkers' performance for predicting conversion from mild cognitive impairment (MCI) to Alzheimer's disease (AD) is still suboptimal. OBJECTIVE By considering several confounding factors we aimed to identify in which situations these CSF biomarkers can be useful. DATA SOURCES A systematic review was conducted on MEDLINE, PreMedline, EMBASE, PsycInfo, CINAHL, Cochrane, and CRD (1990-2013). ELIGIBILITY CRITERIA (1) Prospective studies of CSF biomarkers' performance for predicting conversion from MCI to AD/dementia; (2) inclusion of Aβ42 and T-tau and/or p-tau. Several meta-analyses were performed. RESULTS Aβ42/p-tau ratio had high capacity to predict conversion to AD in MCI patients younger than 70 years. The p-tau had high capacity to identify MCI cases converting to AD in ≤24 months. CONCLUSIONS Explaining how different confounding factors influence CSF biomarkers' predictive performance is mandatory to elaborate a definitive map of situations, where these CSF biomarkers are useful both in clinics and research.
Collapse
Affiliation(s)
- Daniel Ferreira
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet , Stockholm , Sweden
| | - Amado Rivero-Santana
- Canarian Foundation of Health and Research (FUNCIS) , Las Palmas de Gran Canaria , Spain ; Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) , Santa Cruz de Tenerife , Spain
| | - Lilisbeth Perestelo-Pérez
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) , Santa Cruz de Tenerife , Spain ; Evaluation Unit of the Canary Islands Health Service (SESCS) , Santa Cruz de Tenerife , Spain ; Center for Biomedical Research of the Canary Islands (CIBICAN), University of La Laguna , Tenerife , Spain
| | - Eric Westman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet , Stockholm , Sweden
| | - Lars-Olof Wahlund
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet , Stockholm , Sweden
| | - Antonio Sarría
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) , Santa Cruz de Tenerife , Spain ; Agency for Health Technology Assessment (AETS), Institute of Health Carlos III , Madrid , Spain
| | - Pedro Serrano-Aguilar
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) , Santa Cruz de Tenerife , Spain ; Evaluation Unit of the Canary Islands Health Service (SESCS) , Santa Cruz de Tenerife , Spain ; Center for Biomedical Research of the Canary Islands (CIBICAN), University of La Laguna , Tenerife , Spain
| |
Collapse
|