1
|
Jagielska A, Sałaciak K, Pytka K. Beyond the blur: Scopolamine's utility and limits in modeling cognitive disorders across sexes - Narrative review. Ageing Res Rev 2024; 104:102635. [PMID: 39653154 DOI: 10.1016/j.arr.2024.102635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024]
Abstract
Scopolamine, widely regarded as the gold standard in preclinical studies of memory impairments, acts as a non-selective antagonist of central and peripheral muscarinic receptors. While its application in modeling dementia primarily involves antagonism at the M1 receptor, its non-selective peripheral actions may introduce adverse effects that influence behavioral test outcomes. This review analyzes preclinical findings to consolidate knowledge on scopolamine's use and elucidate potential mechanisms responsible for its amnestic effects. We focused on recognition, spatial, and emotional memory processes, alongside executive functions such as attention, cognitive flexibility, and working memory. The cognitive effects of scopolamine are highly dose-dependent, influenced by factors such as species, age, and sex of subjects. Notably, scopolamine rapidly induces observable memory impairments across species, from fish to rodents and primates, often with deficits that can persist for days. However, the compound's broad action on muscarinic receptors and its peripheral side effects, including pupil dilation and reduced salivation, complicates result interpretation, particularly in tasks requiring visual discrimination or food intake. The review also highlights scopolamine's translational value in modeling dementia and Alzheimer's disease, emphasizing the importance of considering individual factors and task-specific designs. Despite its widespread use, scopolamine's limited specificity for cholinergic dysfunction and inability to fully mimic the complex pathophysiology of cognitive disorders like Alzheimer's and Parkinson's disease point to the need for complementary models. This review aims to guide researchers in using scopolamine for modeling cognitive impairments, ensuring attention to factors impacting experimental outcomes.
Collapse
Affiliation(s)
- Angelika Jagielska
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland; Jagiellonian University Medical College, Doctoral School of Medical and Health Sciences, Krakow, Poland
| | - Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
2
|
Kessler K, Giannisis A, Bial G, Foquet L, Nielsen HM, Raber J. Behavioral and cognitive performance of humanized APOEε3/ε3 liver mice in relation to plasma apolipoprotein E levels. Sci Rep 2023; 13:1728. [PMID: 36720957 PMCID: PMC9889814 DOI: 10.1038/s41598-023-28165-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/13/2023] [Indexed: 02/01/2023] Open
Abstract
Plasma apolipoprotein E levels were previously associated with the risk of developing Alzheimer's disease (AD), levels of cerebrospinal fluid AD biomarkers, cognition and imaging brain measures. Outside the brain, the liver is the primary source of apoE and liver transplantation studies have demonstrated that liver-derived apoE does not cross the blood-brain-barrier. How hepatic apoE may be implicated in behavioral and cognitive performance is not clear. In the current study, we behaviorally tested FRGN mice with humanized liver harboring the ε3/ε3 genotype (E3-human liver (HL)) and compared their behavioral and cognitive performance with that of age-matched ε3/ε3 targeted replacement (E3-TR) mice, the latter produces human apoE3 throughout the body whereas the E3-HL mice endogenously produce human apoE3 only in the liver. We also compared the liver weights and plasma apoE levels, and assessed whether plasma apoE levels were correlated with behavioral or cognitive measures in both models. E3-HL were more active but performed cognitively worse than E3-TR mice. E3-HL mice moved more in the open field containing objects, showed higher activity levels in the Y maze, showed higher activity levels during the baseline period in the fear conditioning test than E3-TR mice, and swam faster than E3-TR mice during training to locate the visible platform in the water maze. However, E3-HL mice showed reduced spatial memory retention in the water maze and reduced fear learning and contextual and cued fear memory than E3-TR mice. Liver weights were greater in E3-HL than E3-TR mice and sex-dependent only in the latter model. Plasma apoE3 levels were similar to those found in humans and comparable in female and male E3-TR mice but higher in female E3-HL mice. Finally, we found correlations between plasma apoE levels and behavioral and cognitive measures which were predominantly model-dependent. Our study demonstrates mouse-model dependent associations between plasma apoE levels, behavior and cognition in an 'AD-neutral' setting and suggests that a humanized liver might be sufficient to induce mouse behavioral and cognitive phenotypes.
Collapse
Affiliation(s)
- Kat Kessler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Andreas Giannisis
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Greg Bial
- Yecuris Corporation, Tualatin, OR, 97062, USA
| | | | - Henrietta M Nielsen
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden.
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA. .,Departments of Neurology and Radiation Medicine, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
3
|
Buchanan H, Hull C, Cacho Barraza M, Delibegovic M, Platt B. Apolipoprotein E loss of function: Influence on murine brain markers of physiology and pathology. AGING BRAIN 2022; 2:100055. [PMID: 36908879 PMCID: PMC9997145 DOI: 10.1016/j.nbas.2022.100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022] Open
Abstract
The canonical role of Apolipoprotein E (ApoE) is related to lipid and cholesterol metabolism, however, additional functions of this protein have not been fully described. Given the association of ApoE with diseases such as Alzheimer's Disease (AD), it is clear that further characterisation of its roles, especially within the brain, is needed. Therefore, using protein and gene expression analyses of neonatal and 6-month old brain tissues from an ApoE knockout mouse model, we examined ApoE's contribution to several CNS pathways, with an emphasis on those linked to AD. Early neonatal changes associated with ApoE-/- were observed, with decreased soluble phosphorylated tau (p-tau, -40 %), increased synaptophysin (+36 %) and microglial Iba1 protein levels (+25 %) vs controls. Progression of the phenotype was evident upon analysis of 6-month-old tissue, where decreased p-tau was also confirmed in the insoluble fraction, alongside reduced synaptic and increased amyloid precursor protein (APP) protein levels. An age comparison further underlined deviations from WT animals and thus the impact of ApoE loss on neuronal maturation. Taken together, our data implicate ApoE modulation of multiple CNS roles. Loss of function is associated with alterations from birth, and include synaptic deficits, neuroinflammation, and changes to key AD pathologies, amyloid-β and tau.
Collapse
Affiliation(s)
| | | | | | | | - Bettina Platt
- Corresponding author at: Chair in Translational Neuroscience, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| |
Collapse
|
4
|
Rao W, Zhang Y, Li K, Zhang XY. Association between cognitive impairment and apolipoprotein A1 or apolipoprotein B levels is regulated by apolipoprotein E variant rs429358 in patients with chronic schizophrenia. Aging (Albany NY) 2021; 13:16353-16366. [PMID: 34135129 PMCID: PMC8266354 DOI: 10.18632/aging.203161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022]
Abstract
ApoE gene polymorphism may be involved in the change in blood lipid profile and cognitive impairment of the general population. However, few studies explored the effects of ApoE gene polymorphism on blood lipid levels and cognition in schizophrenia. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) was employed to evaluate the cognition and the SNPStats was used to investigate the association of ApoE rs429358 with schizophrenia. The models of analysis of covariance and multivariate analysis were conducted to investigate the effect of ApoE rs429358 on cognition in schizophrenia. Altogether, 637 patients with schizophrenia and 467 healthy controls were recruited in this study. The findings in the case group found that both the ApoA1 and ApoB levels were predictors for RBANS total score (p < 0.001 vs. p = 0.011), immediate memory (p < 0.001 vs. p = 0.019), language (p < 0.001 vs. p = 0.013), attention (p < 0.001 vs. p < 0.001), except ApoA1 level only was a predictor for visuospatial/constructional (p = 0.014) and delayed memory (p < 0.001). When the association was examined in different ApoE rs429358 genotype subgroups, the association between ApoA1 level and RBANS scores (except for the language score) or between ApoB level and RBANS scores (except for the attention score) was regulated by ApoE rs429358. Our results suggest that patients with schizophrenia have broad cognitive impairment compared with healthy controls. For patients with schizophrenia, both ApoA1 and ApoB levels were positively associated with cognition. There was a significant association between ApoA1 or ApoB levels and cognition in schizophrenia, which was regulated by the ApoE rs429358.
Collapse
Affiliation(s)
- Wenwang Rao
- Institute of Mental Health, Hebei Mental Health Centre, Hebei Province, China.,Unit of Psychiatry, Department of Public Health and Medicinal Administration & Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Yunshu Zhang
- Institute of Mental Health, Hebei Mental Health Centre, Hebei Province, China.,Department of Sleep Medicine, Hebei Psychiatric Hospital, Hebei Province, China
| | - Keqing Li
- Institute of Mental Health, Hebei Mental Health Centre, Hebei Province, China.,Department of Sleep Medicine, Hebei Psychiatric Hospital, Hebei Province, China
| | - Xiang Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Blockade of the M1 muscarinic acetylcholine receptors impairs eyeblink serial feature-positive discrimination learning in mice. PLoS One 2020; 15:e0237451. [PMID: 32790748 PMCID: PMC7425847 DOI: 10.1371/journal.pone.0237451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/27/2020] [Indexed: 11/19/2022] Open
Abstract
The serial feature-positive discrimination task requires the subjects to respond differentially to the identical stimulus depending on the temporal context given by a preceding cue stimulus. In the present study, we examined the involvement of the M1 muscarinic acetylcholine receptors using a selective M1 antagonist VU0255035 in the serial feature-positive discrimination task of eyeblink conditioning in mice. In this task, mice received a 2-s light stimulus as the conditional cue 5 or 6 s before the presentation of a 350-ms tone conditioned stimulus (CS) paired with a 100-ms peri-orbital electrical shock (cued trials), while they did not receive the cue before the presentation of the CS alone (non-cued trials). Each day mice randomly received 30 cued and 30 non-cued trials. We found that VU0255035 impaired acquisition of the conditional discrimination as well as the overall acquisition of the conditioned response (CR) and diminished the difference in onset latency of the CR between the cued and non-cued trials. VU0255035 administration to the control mice after sufficient learning did not impair the pre-acquired conditional discrimination or the CR expression itself. These effects of VU0255035 were almost similar to those with the scopolamine in our previous study, suggesting that among the several types of muscarinic acetylcholine receptors, the M1 receptors may play an important role in the acquisition of the conditional discrimination memory but not in mediating the discrimination itself after the memory had formed in the eyeblink serial feature-positive discrimination learning.
Collapse
|
6
|
Forero DA, López-León S, González-Giraldo Y, Dries DR, Pereira-Morales AJ, Jiménez KM, Franco-Restrepo JE. APOE gene and neuropsychiatric disorders and endophenotypes: A comprehensive review. Am J Med Genet B Neuropsychiatr Genet 2018; 177:126-142. [PMID: 27943569 DOI: 10.1002/ajmg.b.32516] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022]
Abstract
The Apolipoprotein E (APOE) gene is one of the main candidates in neuropsychiatric genetics, with hundreds of studies carried out in order to explore the possible role of polymorphisms in the APOE gene in a large number of neurological diseases, psychiatric disorders, and related endophenotypes. In the current article, we provide a comprehensive review of the structural and functional aspects of the APOE gene and its relationship with brain disorders. Evidence from genome-wide association studies and meta-analyses shows that the APOE gene has been significantly associated with several neurodegenerative disorders. Cellular and animal models show growing evidence of the key role of APOE in mechanisms of brain plasticity and behavior. Future analyses of the APOE gene might find a possible role in other neurological diseases and psychiatric disorders and related endophenotypes. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Diego A Forero
- Laboratory of Neuropsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia.,PhD Program in Health Sciences, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | | | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Daniel R Dries
- Chemistry Department, Juniata College, Huntingdon, Pennsylvania
| | - Angela J Pereira-Morales
- Laboratory of Neuropsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Karen M Jiménez
- Laboratory of Neuropsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Juan E Franco-Restrepo
- PhD Program in Health Sciences, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| |
Collapse
|
7
|
Kempf SJ, Janik D, Barjaktarovic Z, Braga-Tanaka I, Tanaka S, Neff F, Saran A, Larsen MR, Tapio S. Chronic low-dose-rate ionising radiation affects the hippocampal phosphoproteome in the ApoE-/- Alzheimer's mouse model. Oncotarget 2018; 7:71817-71832. [PMID: 27708245 PMCID: PMC5342125 DOI: 10.18632/oncotarget.12376] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/20/2016] [Indexed: 12/22/2022] Open
Abstract
Accruing data indicate that radiation-induced consequences resemble pathologies of neurodegenerative diseases such as Alzheimer´s. The aim of this study was to elucidate the effect on hippocampus of chronic low-dose-rate radiation exposure (1 mGy/day or 20 mGy/day) given over 300 days with cumulative doses of 0.3 Gy and 6.0 Gy, respectively. ApoE deficient mutant C57Bl/6 mouse was used as an Alzheimer´s model. Using mass spectrometry, a marked alteration in the phosphoproteome was found at both dose rates. The radiation-induced changes in the phosphoproteome were associated with the control of synaptic plasticity, calcium-dependent signalling and brain metabolism. An inhibition of CREB signalling was found at both dose rates whereas Rac1-Cofilin signalling was found activated only at the lower dose rate. Similarly, the reduction in the number of activated microglia in the molecular layer of hippocampus that paralleled with reduced levels of TNFα expression and lipid peroxidation was significant only at the lower dose rate. Adult neurogenesis, investigated by Ki67, GFAP and NeuN staining, and cell death (activated caspase-3) were not influenced at any dose or dose rate. This study shows that several molecular targets induced by chronic low-dose-rate radiation overlap with those of Alzheimer´s pathology. It may suggest that ionising radiation functions as a contributing risk factor to this neurodegenerative disease.
Collapse
Affiliation(s)
- Stefan J Kempf
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Dirk Janik
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Zarko Barjaktarovic
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | | | | | - Frauke Neff
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Anna Saran
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l´Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| |
Collapse
|
8
|
Remmelink E, Chau U, Smit AB, Verhage M, Loos M. A one-week 5-choice serial reaction time task to measure impulsivity and attention in adult and adolescent mice. Sci Rep 2017; 7:42519. [PMID: 28198416 PMCID: PMC5309744 DOI: 10.1038/srep42519] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/11/2017] [Indexed: 11/19/2022] Open
Abstract
Many psychiatric disorders emerge during adolescence. The study of executive functions in animal models of these disorders critically requires short-duration tasks measuring these functions before the animal ages. Here, a novel 5-choice serial reaction time task (5-CSRTT) protocol is presented, to measure attention and impulsivity within one week, without scheduled food deprivation and with little animal handling. Mice were allowed 24-h/day task access from their home-cage, during which they could self-pace task progression and earn unlimited food rewards depending on task performance. Manipulation of task parameters in this self-paced 5-CSRTT protocol (SP-5C) affected attentional performance and impulsivity to a similar extent as previously observed in the 5-CSRTT. Task activity followed intrinsic circadian rhythm, distinctive for the SP-5C protocol, with task performance stable over the day. The sensitivity of the SP-5C protocol to detect strain differences between C57BL/6J, DBA/2 J, BXD16 and BXD62 mice was demonstrated as well as its suitability for testing adolescent mice. Acute administration of the muscarinic acetylcholine receptor antagonist scopolamine impaired attentional performance, providing initial pharmacological validation of the task. The SP-5C substantially shortens the assessment of impulsivity and attention, increases test efficiency and enables the assessment of adolescent mouse models of psychiatric disorders.
Collapse
Affiliation(s)
- Esther Remmelink
- Sylics (Synaptologics B.V.), 1008 BA Amsterdam, The Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands
| | - Uyen Chau
- Sylics (Synaptologics B.V.), 1008 BA Amsterdam, The Netherlands
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands
| | - Maarten Loos
- Sylics (Synaptologics B.V.), 1008 BA Amsterdam, The Netherlands
| |
Collapse
|
9
|
Suski M, Olszanecki R, Chmura Ł, Stachowicz A, Madej J, Okoń K, Adamek D, Korbut R. Influence of metformin on mitochondrial subproteome in the brain of apoE knockout mice. Eur J Pharmacol 2016; 772:99-107. [DOI: 10.1016/j.ejphar.2015.12.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 01/08/2023]
|
10
|
Hvoslef-Eide M, Mar AC, Nilsson SRO, Alsiö J, Heath CJ, Saksida LM, Robbins TW, Bussey TJ. The NEWMEDS rodent touchscreen test battery for cognition relevant to schizophrenia. Psychopharmacology (Berl) 2015. [PMID: 26202612 DOI: 10.1007/s00213-015-4007-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
RATIONALE The NEWMEDS initiative (Novel Methods leading to New Medications in Depression and Schizophrenia, http://www.newmeds-europe.com ) is a large industrial-academic collaborative project aimed at developing new methods for drug discovery for schizophrenia. As part of this project, Work package 2 (WP02) has developed and validated a comprehensive battery of novel touchscreen tasks for rats and mice for assessing cognitive domains relevant to schizophrenia. OBJECTIVES This article provides a review of the touchscreen battery of tasks for rats and mice for assessing cognitive domains relevant to schizophrenia and highlights validation data presented in several primary articles in this issue and elsewhere. METHODS The battery consists of the five-choice serial reaction time task and a novel rodent continuous performance task for measuring attention, a three-stimulus visual reversal and the serial visual reversal task for measuring cognitive flexibility, novel non-matching to sample-based tasks for measuring spatial working memory and paired-associates learning for measuring long-term memory. RESULTS The rodent (i.e. both rats and mice) touchscreen operant chamber and battery has high translational value across species due to its emphasis on construct as well as face validity. In addition, it offers cognitive profiling of models of diseases with cognitive symptoms (not limited to schizophrenia) through a battery approach, whereby multiple cognitive constructs can be measured using the same apparatus, enabling comparisons of performance across tasks. CONCLUSION This battery of tests constitutes an extensive tool package for both model characterisation and pre-clinical drug discovery.
Collapse
Affiliation(s)
- M Hvoslef-Eide
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK. .,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
| | - A C Mar
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.,Department of Neuroscience and Physiology, New York University Medical Center, New York, NY, 10016, USA
| | - S R O Nilsson
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - J Alsiö
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.,Department of Neuroscience, Unit of Functional Neurobiology, University of Uppsala, 75124, Uppsala, Sweden
| | - C J Heath
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - L M Saksida
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - T W Robbins
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - T J Bussey
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| |
Collapse
|
11
|
Yang Y, Lei C, Feng H, Sui JF. The neural circuitry and molecular mechanisms underlying delay and trace eyeblink conditioning in mice. Behav Brain Res 2014; 278:307-14. [PMID: 25448430 DOI: 10.1016/j.bbr.2014.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/28/2014] [Accepted: 10/02/2014] [Indexed: 11/30/2022]
Abstract
Classical eyeblink conditioning (EBC), a simple form of associative learning, has long been served as a model for motor learning and modulation. The neural circuitry of EBC has been studied in detail in rabbits. However, its underlying molecular mechanisms remain unclear. The advent of mouse transgenics has generated new perspectives on the studies of the neural substrates and molecular mechanisms essential for EBC. Results about EBC in mice differ in some aspects from those obtained in other mammals. Here, we review the current studies about the neural circuitry and molecular mechanisms underlying delay and trace EBC in mice. We conclude that brainstem-cerebellar circuit plays an essential role in DEC while the amygdala modulates this process, and that the medial prefrontal cortex (mPFC) as a candidate is involved in the extra-cerebellar mechanism underlying delay eyeblink conditioning (DEC) in mice. We propose the Amygdala-Cerebellum-Prefrontal Cortex-Dynamic-Conditioning Model (ACPDC model) for DEC in mice. As to trace eyeblink conditioning (TEC), the forebrain regions may play an essential role in it, whereas cerebellar cortex seems to be out of the neural circuitry in mice. Moreover, the molecular mechanisms underlying DEC and TEC in mice differ from each other. This review provides some new information and perspectives for further research on EBC.
Collapse
Affiliation(s)
- Yi Yang
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China; Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China
| | - Chen Lei
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Jian-feng Sui
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China; Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|
12
|
Mar AC, Horner AE, Nilsson SRO, Alsiö J, Kent BA, Kim CH, Holmes A, Saksida LM, Bussey TJ. The touchscreen operant platform for assessing executive function in rats and mice. Nat Protoc 2013; 8:1985-2005. [PMID: 24051960 PMCID: PMC4131754 DOI: 10.1038/nprot.2013.123] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This protocol details a subset of assays developed within the touchscreen platform to measure various aspects of executive function in rodents. Three main procedures are included: extinction, measuring the rate and extent of curtailing a response that was previously, but is no longer, associated with reward; reversal learning, measuring the rate and extent of switching a response toward a visual stimulus that was previously not, but has become, associated with reward (and away from a visual stimulus that was previously, but is no longer, rewarded); and the 5-choice serial reaction time (5-CSRT) task, gauging the ability to selectively detect and appropriately respond to briefly presented, spatially unpredictable visual stimuli. These protocols were designed to assess both complementary and overlapping constructs including selective and divided visual attention, inhibitory control, flexibility, impulsivity and compulsivity. The procedures comprise part of a wider touchscreen test battery assessing cognition in rodents with high potential for translation to human studies.
Collapse
Affiliation(s)
- Adam C Mar
- Department of Psychology, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Reinvang I, Espeseth T, Westlye LT. APOE-related biomarker profiles in non-pathological aging and early phases of Alzheimer's disease. Neurosci Biobehav Rev 2013; 37:1322-35. [DOI: 10.1016/j.neubiorev.2013.05.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/10/2013] [Accepted: 05/10/2013] [Indexed: 02/01/2023]
|
14
|
Abad-Rodríguez J. ApoE isoform-related behavioral defects. Is chronic cholesterol loss-driven membrane disorganization behind? Exp Neurol 2013; 241:1-4. [DOI: 10.1016/j.expneurol.2012.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/30/2012] [Accepted: 12/07/2012] [Indexed: 10/27/2022]
|
15
|
Shanmugan S, Epperson CN. Estrogen and the prefrontal cortex: towards a new understanding of estrogen's effects on executive functions in the menopause transition. Hum Brain Mapp 2012; 35:847-65. [PMID: 23238908 DOI: 10.1002/hbm.22218] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/25/2012] [Accepted: 10/03/2012] [Indexed: 01/03/2023] Open
Abstract
Midlife decline in cognition, specifically in areas of executive functioning, is a frequent concern for which menopausal women seek clinical intervention. The dependence of executive processes on prefrontal cortex function suggests estrogen effects on this brain region may be key in identifying the sources of this decline. Recent evidence from rodent, nonhuman primate, and human subject studies indicates the importance of considering interactions of estrogen with neurotransmitter systems, stress, genotype, and individual life events when determining the cognitive effects of menopause and estrogen therapy.
Collapse
Affiliation(s)
- Sheila Shanmugan
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Penn Center for Women's Behavioral Wellness, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | |
Collapse
|
16
|
Reverte I, Klein AB, Ratner C, Domingo JL, Colomina MT. Behavioral phenotype and BDNF differences related to apoE isoforms and sex in young transgenic mice. Exp Neurol 2012; 237:116-25. [DOI: 10.1016/j.expneurol.2012.06.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/14/2012] [Accepted: 06/16/2012] [Indexed: 02/07/2023]
|
17
|
Jamal M, Ameno K, Miki T, Tanaka N, Ono J, Shirakami G, Sultana R, Yu N, Kinoshita H. High ethanol and acetaldehyde impair spatial memory in mouse models: Opposite effects of aldehyde dehydrogenase 2 and apolipoprotein E on memory. Pharmacol Biochem Behav 2012; 101:443-9. [DOI: 10.1016/j.pbb.2012.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 11/29/2022]
|
18
|
Sanchez-Roige S, Peña-Oliver Y, Stephens DN. Measuring impulsivity in mice: the five-choice serial reaction time task. Psychopharmacology (Berl) 2012; 219:253-70. [PMID: 22089700 DOI: 10.1007/s00213-011-2560-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/24/2011] [Indexed: 02/05/2023]
Abstract
RATIONALE Mice are useful tools for dissecting genetic and environmental factors in relation to the study of attention and impulsivity. The five-choice serial reaction time task (5CSRTT) paradigm has been well established in rats, but its transferability to mice is less well documented. OBJECTIVES This study aims to summarise the main results of the 5CSRTT in mice, with special focus on impulsivity. METHODS The 5CSRTT can be used to explore aspects of both attentional and inhibitory control mechanisms. RESULTS Different manipulations of the task parameters can lead to different results; adjusting the protocol as a function of the main variable of interest or the standardisation of the protocol to be applied to a large set of strains will be desirable. CONCLUSIONS The 5CSRTT has proven to be a useful tool to investigate impulsivity in mice.
Collapse
|
19
|
Siegel JA, Park BS, Raber J. Methamphetamine exposure during brain development alters the brain acetylcholine system in adolescent mice. J Neurochem 2011; 119:89-99. [PMID: 21824143 DOI: 10.1111/j.1471-4159.2011.07418.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Children exposed to methamphetamine during brain development as a result of maternal drug use have long-term hippocampus-dependent cognitive impairments, but the mechanisms underlying these impairments are not understood. The acetylcholine system plays an important role in cognitive function and potential methamphetamine-induced acetylcholine alterations may be related to methamphetamine-induced cognitive impairments. In this study, we investigated the potential long-term effects of methamphetamine exposure during hippocampal development on the acetylcholine system in adolescence mice on postnatal day 30 and in adult mice on postnatal day 90. Methamphetamine exposure increased the density of acetylcholine neurons in regions of the basal forebrain and the area occupied by acetylcholine axons in the hippocampus in adolescent female mice. In contrast, methamphetamine exposure did not affect the density of GABA cells or total neurons in the basal forebrain. Methamphetamine exposure also increased the number of muscarinic acetylcholine receptors in the hippocampus of adolescent male and female mice. Our results demonstrate for the first time that methamphetamine exposure during hippocampal development affects the acetylcholine system in adolescent mice and that these changes are more profound in females than males.
Collapse
Affiliation(s)
- Jessica A Siegel
- Department of Behavioral Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
20
|
Siegel JA, Craytor MJ, Raber J. Long-term effects of methamphetamine exposure on cognitive function and muscarinic acetylcholine receptor levels in mice. Behav Pharmacol 2010; 21:602-14. [PMID: 20729719 PMCID: PMC2990349 DOI: 10.1097/fbp.0b013e32833e7e44] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Exposure to methamphetamine during brain development impairs cognition in humans and rodents. In mice, these impairments are more severe in females than males. Genetic factors, such as apolipoprotein E genotype, may modulate the cognitive effects of methamphetamine. Methamphetamine-induced alterations in the brain acetylcholine system may contribute to the cognitive effects of methamphetamine and may also be modulated by apolipoprotein E isoform. We assessed the long-term effects of methamphetamine exposure during brain development on cognitive function and muscarinic acetylcholine receptors in mice, and whether apolipoprotein E isoform modulates these effects. Mice expressing human apolipoprotein E3 or E4 were exposed to methamphetamine (5 mg/kg) or saline once a day from postnatal days 11-20 and behaviorally tested in adulthood. Muscarinic acetylcholine receptor binding was measured in the hippocampus and cortex. Methamphetamine exposure impaired novel location recognition in female, but not male, mice. Methamphetamine-exposed male and female mice showed impaired novel object recognition and increased number of muscarinic acetylcholine receptors in the hippocampus. The cognitive and cholinergic effects of methamphetamine were similar in apolipoprotein E3 and E4 mice. Thus, the cholinergic system, but not apolipoprotein E isoform, might play an important role in the long-term methamphetamine-induced cognitive deficits in adulthood.
Collapse
Affiliation(s)
- Jessica A. Siegel
- Department of Behavioral Neuroscience, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Michael J. Craytor
- Department of Behavioral Neuroscience, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Department of Neurology, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Division of Neuroscience ONPRC, Oregon Health & Science University, 8131 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|