1
|
Paniri A, Hosseini MM, Akhavan-Niaki H. Alzheimer's Disease-Related Epigenetic Changes: Novel Therapeutic Targets. Mol Neurobiol 2024; 61:1282-1317. [PMID: 37700216 DOI: 10.1007/s12035-023-03626-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Aging is a significant risk factor for Alzheimer's disease (AD), although the precise mechanism and molecular basis of AD are not yet fully understood. Epigenetic mechanisms, such as DNA methylation and hydroxymethylation, mitochondrial DNA methylation, histone modifications, and non-coding RNAs (ncRNAs), play a role in regulating gene expression related to neuron plasticity and integrity, which are closely associated with learning and memory development. This review describes the impact of dynamic and reversible epigenetic modifications and factors on memory and plasticity throughout life, emphasizing their potential as target for therapeutic intervention in AD. Additionally, we present insight from postmortem and animal studies on abnormal epigenetics regulation in AD, as well as current strategies aiming at targeting these factors in the context of AD therapy.
Collapse
Affiliation(s)
- Alireza Paniri
- Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
- Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran
| | | | - Haleh Akhavan-Niaki
- Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
- Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran.
| |
Collapse
|
2
|
Sun X, He C, Yang S, Li W, Qu H. Mendelian randomization to evaluate the effect of folic acid supplement on the risk of Alzheimer disease. Medicine (Baltimore) 2024; 103:e37021. [PMID: 38335403 PMCID: PMC10860992 DOI: 10.1097/md.0000000000037021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024] Open
Abstract
We conducted a study to evaluate the impact of folic acid supplementation on the risk of Alzheimer disease (AD). A Mendelian randomization (MR) analysis model assessed the causal effects of folic acid supplementation on AD, utilizing data from recent genome-wide association studies. Effect estimates were scrutinized using various methods: inverse-variance weighted (IVW), simple mode, weighted mode, simple median, weighted median, penalized weighted median, and the MR-Egger method. The sensitivity analysis assessed heterogeneity and pleiotropy of individual single nucleotide polymorphisms (SNPs) using the IVW method with Cochran Q statistics and MR Egger intercept, respectively. Additionally, a leave-one-out sensitivity analysis determined potential SNP-driven associations. Both fixed-effect and random-effect IVW models in the MR analysis revealed a reduced risk of AD associated with folic acid supplementation (odds ratio, 0.930; 95% CI, 0.903-0.958, P < .001; odds ratio, 0.930; 95% CI, 0.910-0.950, P < .001) based on 7 SNPs as instrumental variables. The reverse MR analysis indicated no causal association between AD and folic acid supplementation. This study, utilizing genetic data, suggests that folic acid supplementation may potentially reduce the risk of AD and provides novel insights into its etiology and preventive measures.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chao He
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| | - Shida Yang
- Department of Laboratory Medicine, The people’s Hospital of Liaoning Province, Shenyang, China
| | - Weizhuo Li
- Department of Laboratory Medicine, The people’s Hospital of Liaoning Province, Shenyang, China
| | - Huiling Qu
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
3
|
Huang M, Wang J, Liu W, Zhou H. Advances in the role of the GADD45 family in neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. Front Neurosci 2024; 18:1349409. [PMID: 38332860 PMCID: PMC10850240 DOI: 10.3389/fnins.2024.1349409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
The growth arrest and DNA damage inducible protein 45 (GADD45) family comprises stress-induced nuclear proteins that interact with DNA demethylases to facilitate DNA demethylation, thereby regulating diverse cellular processes including oxidative stress, DNA damage repair, apoptosis, proliferation, differentiation, inflammation, and neuroplasticity by modulating the expression patterns of specific genes. Widely expressed in the central nervous system, the GADD45 family plays a pivotal role in various neurological disorders, rendering it a potential therapeutic target for central nervous system diseases. This review presented a comprehensive overview of the expression patterns and potential mechanisms of action associated with each member of GADD45 family (GADD45α, GADD45β, and GADD45γ) in neurodevelopmental, neurodegenerative, and neuropsychiatric disorders, while also explored strategies to harness these mechanisms for intervention and treatment. Future research should prioritize the development of effective modulators targeting the GADD45 family for clinical trials aimed at treating central nervous system diseases.
Collapse
Affiliation(s)
| | | | | | - Hongyan Zhou
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
4
|
Raia T, Armeli F, Cavallaro RA, Ferraguti G, Businaro R, Lucarelli M, Fuso A. Perinatal S-Adenosylmethionine Supplementation Represses PSEN1 Expression by the Cellular Epigenetic Memory of CpG and Non-CpG Methylation in Adult TgCRD8 Mice. Int J Mol Sci 2023; 24:11675. [PMID: 37511434 PMCID: PMC10380323 DOI: 10.3390/ijms241411675] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
DNA methylation, the main epigenetic modification regulating gene expression, plays a role in the pathophysiology of neurodegeneration. Previous evidence indicates that 5'-flanking hypomethylation of PSEN1, a gene involved in the amyloidogenic pathway in Alzheimer's disease (AD), boosts the AD-like phenotype in transgenic TgCRND8 mice. Supplementation with S-adenosylmethionine (SAM), the methyl donor in the DNA methylation reactions, reverts the pathological phenotype. Several studies indicate that epigenetic signatures, driving the shift between normal and diseased aging, can be acquired during the first stages of life, even in utero, and manifest phenotypically later on in life. Therefore, we decided to test whether SAM supplementation during the perinatal period (i.e., supplementing the mothers from mating to weaning) could exert a protective role towards AD-like symptom manifestation. We therefore compared the effect of post-weaning vs. perinatal SAM treatment in TgCRND8 mice by assessing PSEN1 methylation and expression and the development of amyloid plaques. We found that short-term perinatal supplementation was as effective as the longer post-weaning supplementation in repressing PSEN1 expression and amyloid deposition in adult mice. These results highlight the importance of epigenetic memory and methyl donor availability during early life to promote healthy aging and stress the functional role of non-CpG methylation.
Collapse
Affiliation(s)
- Tiziana Raia
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | | | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00161 Rome, Italy
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
5
|
Wang H, Zhang F, Xu TW, Xu Y, Tian Y, Wu Y, Xu J, Hu S, Xu G. DNMT1 involved in the analgesic effect of folic acid on gastric hypersensitivity through downregulating ASIC1 in adult offspring rats with prenatal maternal stress. CNS Neurosci Ther 2023; 29:1678-1689. [PMID: 36852448 PMCID: PMC10173708 DOI: 10.1111/cns.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 03/01/2023] Open
Abstract
AIMS Gastric hypersensitivity (GHS) is a characteristic pathogenesis of functional dyspepsia (FD). DNA methyltransferase 1 (DNMT1) and acid-sensing ion channel 1 (ASIC1) are associated with GHS induced by prenatal maternal stress (PMS). The aim of this study was to investigate the mechanism of DNMT1 mediating the analgesic effect of folic acid (FA) on PMS-induced GHS. METHODS GHS was quantified by electromyogram recordings. The expression of DNMT1, DNMT3a, DNMT3b, and ASIC1 were detected by western blot, RT-PCR, and double-immunofluorescence. Neuronal excitability and proton-elicited currents of dorsal root ganglion (DRG) neurons were determined by whole-cell patch clamp recordings. RESULTS The expression of DNMT1, but not DNMT3a or DNMT3b, was decreased in DRGs of PMS rats. FA alleviated PMS-induced GHS and hyperexcitability of DRG neurons. FA also increased DNMT1 and decreased ASIC1 expression and sensitivity. Intrathecal injection of DNMT1 inhibitor DC-517 attenuated the effect of FA on GHS alleviation and ASIC1 downregulation. Overexpression of DNMT1 with lentivirus not only rescued ASIC1 upregulation and hypersensitivity, but also alleviated GHS and hyperexcitability of DRG neurons induced by PMS. CONCLUSIONS These results indicate that increased DNMT1 contributes to the analgesic effect of FA on PMS-induced GHS by reducing ASIC1 expression and sensitivity.
Collapse
Affiliation(s)
- Hong‐Jun Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhouJiangsuChina
- Jiangsu Key Laboratory of Anesthesiology & Jiangsu Key Laboratory of Anesthesia and Analgesia Application TechnologyXuzhou Medical UniversityXuzhouChina
| | - Fu‐Chao Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhouJiangsuChina
| | - Timothy W. Xu
- Suzhou Academy of Xi'an Jiaotong UniversitySuzhouChina
| | - Yu‐Cheng Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhouJiangsuChina
| | - Yuan‐Qing Tian
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhouJiangsuChina
| | - Yan‐Yan Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhouJiangsuChina
| | - Ji‐Tian Xu
- Department of Physiology and NeurobiologyCollege of Basic Medical Sciences, Zhengzhou UniversityZhengzhouChina
| | - Shufen Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhouJiangsuChina
| | - Guang‐Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhouJiangsuChina
| |
Collapse
|
6
|
Raval M, Mishra S, Tiwari AK. Epigenetic regulons in Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:185-247. [DOI: 10.1016/bs.pmbts.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
7
|
Cognitive impairment viz-a-viz genetic and biochemical variations in one carbon metabolic pathway: A population-based study from North India. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
8
|
Sultan FA, Sawaya BE. Gadd45 in Neuronal Development, Function, and Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:117-148. [PMID: 35505167 DOI: 10.1007/978-3-030-94804-7_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The growth arrest and DNA damage-inducible (Gadd) 45 proteins have been associated with numerous cellular mechanisms including cell cycle control, DNA damage sensation and repair, genotoxic stress, neoplasia, and molecular epigenetics. The genes were originally identified in in vitro screens of irradiation- and interleukin-induced transcription and have since been implicated in a host of normal and aberrant central nervous system processes. These include early and postnatal development, injury, cancer, memory, aging, and neurodegenerative and psychiatric disease states. The proteins act through a variety of molecular signaling cascades including the MAPK cascade, cell cycle control mechanisms, histone regulation, and epigenetic DNA demethylation. In this review, we provide a comprehensive discussion of the literature implicating each of the three members of the Gadd45 family in these processes.
Collapse
Affiliation(s)
- Faraz A Sultan
- Department of Psychiatry, Rush University, Chicago, IL, USA.
| | - Bassel E Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Departments of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Cancer and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
9
|
Hayden MR, Tyagi SC. Impaired Folate-Mediated One-Carbon Metabolism in Type 2 Diabetes, Late-Onset Alzheimer's Disease and Long COVID. MEDICINA (KAUNAS, LITHUANIA) 2021; 58:16. [PMID: 35056324 PMCID: PMC8779539 DOI: 10.3390/medicina58010016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022]
Abstract
Impaired folate-mediated one-carbon metabolism (FOCM) is associated with many pathologies and developmental abnormalities. FOCM is a metabolic network of interdependent biosynthetic pathways that is known to be compartmentalized in the cytoplasm, mitochondria and nucleus. Currently, the biochemical mechanisms and causal metabolic pathways responsible for the initiation and/or progression of folate-associated pathologies have yet to be fully established. This review specifically examines the role of impaired FOCM in type 2 diabetes mellitus, Alzheimer's disease and the emerging Long COVID/post-acute sequelae of SARS-CoV-2 (PASC). Importantly, elevated homocysteine may be considered a biomarker for impaired FOCM, which is known to result in increased oxidative-redox stress. Therefore, the incorporation of hyperhomocysteinemia will be discussed in relation to impaired FOCM in each of the previously listed clinical diseases. This review is intended to fill gaps in knowledge associated with these clinical diseases and impaired FOCM. Additionally, some of the therapeutics will be discussed at this early time point in studying impaired FOCM in each of the above clinical disease states. It is hoped that this review will allow the reader to better understand the role of FOCM in the development and treatment of clinical disease states that may be associated with impaired FOCM and how to restore a more normal functional role for FOCM through improved nutrition and/or restoring the essential water-soluble B vitamins through oral supplementation.
Collapse
Affiliation(s)
- Melvin R. Hayden
- Departments of Internal Medicine, Endocrinology Diabetes and Metabolism Diabetes and Cardiovascular Disease Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Suresh C. Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
| |
Collapse
|
10
|
Polverino A, Sorrentino P, Pesoli M, Mandolesi L. Nutrition and cognition across the lifetime: an overview on epigenetic mechanisms. AIMS Neurosci 2021; 8:448-476. [PMID: 34877399 PMCID: PMC8611190 DOI: 10.3934/neuroscience.2021024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/12/2021] [Indexed: 12/28/2022] Open
Abstract
The functioning of our brain depends on both genes and their interactions with environmental factors. The close link between genetics and environmental factors produces structural and functional cerebral changes early on in life. Understanding the weight of environmental factors in modulating neuroplasticity phenomena and cognitive functioning is relevant for potential interventions. Among these, nutrition plays a key role. In fact, the link between gut and brain (the gut-brain axis) is very close and begins in utero, since the Central Nervous System (CNS) and the Enteric Nervous System (ENS) originate from the same germ layer during the embryogenesis. Here, we investigate the epigenetic mechanisms induced by some nutrients on the cognitive functioning, which affect the cellular and molecular processes governing our cognitive functions. Furthermore, epigenetic phenomena can be positively affected by specific healthy nutrients from diet, with the possibility of preventing or modulating cognitive impairments. Specifically, we described the effects of several nutrients on diet-dependent epigenetic processes, in particular DNA methylation and histones post-translational modifications, and their potential role as therapeutic target, to describe how some forms of cognitive decline could be prevented or modulated from the early stages of life.
Collapse
Affiliation(s)
- Arianna Polverino
- Institute of Diagnosis and Treatment Hermitage Capodimonte, Naples, Italy.,Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy
| | - Pierpaolo Sorrentino
- Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France.,Institute of Applied Sciences and Intelligent Systems, National Research Council, Pozzuoli, Italy
| | - Matteo Pesoli
- Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy
| | - Laura Mandolesi
- Department of Humanities Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
11
|
Zimmer-Bensch G, Zempel H. DNA Methylation in Genetic and Sporadic Forms of Neurodegeneration: Lessons from Alzheimer's, Related Tauopathies and Genetic Tauopathies. Cells 2021; 10:3064. [PMID: 34831288 PMCID: PMC8624300 DOI: 10.3390/cells10113064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022] Open
Abstract
Genetic and sporadic forms of tauopathies, the most prevalent of which is Alzheimer's Disease, are a scourge of the aging society, and in the case of genetic forms, can also affect children and young adults. All tauopathies share ectopic expression, mislocalization, or aggregation of the microtubule associated protein TAU, encoded by the MAPT gene. As TAU is a neuronal protein widely expressed in the CNS, the overwhelming majority of tauopathies are neurological disorders. They are characterized by cognitive dysfunction often leading to dementia, and are frequently accompanied by movement abnormalities such as parkinsonism. Tauopathies can lead to severe neurological deficits and premature death. For some tauopathies there is a clear genetic cause and/or an epigenetic contribution. However, for several others the disease etiology is unclear, with few tauopathies being environmentally triggered. Here, we review current knowledge of tauopathies listing known genetic and important sporadic forms of these disease. Further, we discuss how DNA methylation as a major epigenetic mechanism emerges to be involved in the disease pathophysiology of Alzheimer's, and related genetic and non-genetic tauopathies. Finally, we debate the application of epigenetic signatures in peripheral blood samples as diagnostic tools and usages of epigenetic therapy strategies for these diseases.
Collapse
Affiliation(s)
- Geraldine Zimmer-Bensch
- Functional Epigenetics in the Animal Model, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany
| | - Hans Zempel
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
12
|
Shea TB. Improvement of cognitive performance by a nutraceutical formulation: Underlying mechanisms revealed by laboratory studies. Free Radic Biol Med 2021; 174:281-304. [PMID: 34352370 DOI: 10.1016/j.freeradbiomed.2021.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/28/2022]
Abstract
Cognitive decline, decrease in neuronal function and neuronal loss that accompany normal aging and dementia are the result of multiple mechanisms, many of which involve oxidative stress. Herein, we review these various mechanisms and identify pharmacological and non-pharmacological approaches, including modification of diet, that may reduce the risk and progression of cognitive decline. The optimal degree of neuronal protection is derived by combinations of, rather than individual, compounds. Compounds that provide antioxidant protection are particularly effective at delaying or improving cognitive performance in the early stages of Mild Cognitive Impairment and Alzheimer's disease. Laboratory studies confirm alleviation of oxidative damage in brain tissue. Lifestyle modifications show a degree of efficacy and may augment pharmacological approaches. Unfortunately, oxidative damage and resultant accumulation of biomarkers of neuronal damage can precede cognitive decline by years to decades. This underscores the importance of optimization of dietary enrichment, antioxidant supplementation and other lifestyle modifications during aging even for individuals who are cognitively intact.
Collapse
Affiliation(s)
- Thomas B Shea
- Laboratory for Neuroscience, Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
13
|
Živančević K, Baralić K, Jorgovanović D, Buha Djordjević A, Ćurčić M, Antonijević Miljaković E, Antonijević B, Bulat Z, Đukić-Ćosić D. Elucidating the influence of environmentally relevant toxic metal mixture on molecular mechanisms involved in the development of neurodegenerative diseases: In silico toxicogenomic data-mining. ENVIRONMENTAL RESEARCH 2021; 194:110727. [PMID: 33465344 DOI: 10.1016/j.envres.2021.110727] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
This in silico toxicogenomic analysis aims to: (i) testify the hypothesis about the influence of the environmentally relevant toxic metals (lead, methylmercury (organic form of mercury), cadmium and arsenic) on molecular mechanisms involved in amyotrophic lateral sclerosis (ALS), Parkinson's Disease (PD) and Alzheimer's disease (AD) development; and (ii) demonstrate the capability of in silico toxicogenomic data-mining for distinguishing the probable mechanisms of mixture-induced toxic effects. The Comparative Toxicogenomics Database (CTD; http://ctd. mdibl.org) and Cytoscape software were used as the main data-mining tools in this analysis. The results have shown that there were 7, 13 and 14 common genes for all the metals present in the mixture for each of the selected neurodegenerative disease (ND), respectively: ALS, PD and AD. Physical interactions (68.18%) were the most prominent interactions between the genes extracted for ALS, co-expression (60.85%) for PD and interactions predicted by the server (44.30%) for AD. SOD2 gene was noted as the mutual gene for all the selected ND. Oxidative stress, folate metabolism, vitamin B12, AGE-RAGE, apoptosis were noted as the key disrupted molecular pathways that contribute to the neurodegenerative disease's development. Gene ontology analysis revealed biological processes affected by the investigated mixture (glutathione metabolic process was listed as the most important for ALS, cellular response to toxic substance for PD, and neuron death for AD). Our results emphasize the role of oxidative stress, particularly SOD2, in neurodegeneration triggered by environmental toxic metal mixture and give a new insight into common molecular mechanisms involved in ALS, PD and AD pathology.
Collapse
Affiliation(s)
- Katarina Živančević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Dragica Jorgovanović
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Aleksandra Buha Djordjević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia.
| |
Collapse
|
14
|
Kurakin A, Bredesen DE. Alzheimer's disease as a systems network disorder: chronic stress/dyshomeostasis, innate immunity, and genetics. Aging (Albany NY) 2020; 12:17815-17844. [PMID: 32957083 PMCID: PMC7585078 DOI: 10.18632/aging.103883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/25/2020] [Indexed: 01/24/2023]
Abstract
Ineffective results of clinical trials of over 200 anti-Alzheimer's drug candidates, with a 99.6% attrition rate, suggest that the current paradigm of Alzheimer's disease (AD) may be incomplete, necessitating exploration of alternative and complementary frameworks.Using algorithms for hypothesis independent search and expert-assisted synthesis of heterogeneous data, we attempted to reconcile multimodal clinical profiles of early-stage AD patients and accumulated research data within a parsimonious framework. Results of our analysis suggest that Alzheimer's may not be a brain disease but a progressive system-level network disorder, which is driven by chronic network stress and dyshomeostasis. The latter can be caused by various endogenous and exogenous factors, such as chronic inflammatory conditions, infections, vascular dysfunction, head trauma, environmental toxicity, and immune disorders. Whether originating in the brain or on the periphery, chronic stress, toxicity, and inflammation are communicated to the central nervous system (CNS) via humoral and neural routes, preferentially targeting high-centrality regulatory nodes and circuits of the nervous system, and eventually manifesting as a neurodegenerative CNS disease.In this report, we outline an alternative perspective on AD as a systems network disorder and discuss biochemical and genetic evidence suggesting the central role of chronic tissue injury/dyshomeostasis, innate immune reactivity, and inflammation in the etiopathobiology of Alzheimer's disease.
Collapse
Affiliation(s)
- Alexei Kurakin
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Dale E. Bredesen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA,Buck Institute for Research on Aging, Novato, CA 94945, USA
| |
Collapse
|
15
|
Altered Expression of Long Non-coding RNAs in Peripheral Blood Mononuclear Cells of Patients with Alzheimer’s Disease. Mol Neurobiol 2020; 57:5352-5361. [DOI: 10.1007/s12035-020-02106-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
|
16
|
Monti N, Cavallaro RA, Stoccoro A, Nicolia V, Scarpa S, Kovacs GG, Fiorenza MT, Lucarelli M, Aronica E, Ferrer I, Coppedè F, Troen AM, Fuso A. CpG and non-CpG Presenilin1 methylation pattern in course of neurodevelopment and neurodegeneration is associated with gene expression in human and murine brain. Epigenetics 2020; 15:781-799. [PMID: 32019393 PMCID: PMC7518704 DOI: 10.1080/15592294.2020.1722917] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/26/2022] Open
Abstract
The Presenilin1 (PSEN1) gene encodes the catalytic peptide of the γ-secretase complex, a key enzyme that cleaves the amyloid-β protein precursor (AβPP), to generate the amyloid-β (Aβ) peptides, involved in Alzheimer's Disease (AD). Other substrates of the γ-secretase, such as E-cadherin and Notch1, are involved in neurodevelopment and haematopoiesis. Gene-specific DNA methylation influences PSEN1 expression in AD animal models. Here we evaluated canonical and non-canonical cytosine methylation patterns of the PSEN1 5'-flanking during brain development and AD progression, in DNA extracted from the frontal cortex of AD transgenic mice (TgCRND8) and post-mortem human brain. Mapping CpG and non-CpG methylation revealed different methylation profiles in mice and humans. PSEN1 expression only correlated with DNA methylation in adult female mice. However, in post-mortem human brain, lower methylation, both at CpG and non-CpG sites, correlated closely with higher PSEN1 expression during brain development and in disease progression. PSEN1 methylation in blood DNA was significantly lower in AD patients than in controls. The present study is the first to demonstrate a temporal correlation between dynamic changes in PSEN1 CpG and non-CpG methylation patterns and mRNA expression during neurodevelopment and AD neurodegeneration. These observations were made possible by the use of an improved bisulphite methylation assay employing primers that are not biased towards non-CpG methylation. Our findings deepen the understanding of γ-secretase regulation and support the hypothesis that epigenetic changes can promote the pathophysiology of AD. Moreover, they suggest that PSEN1 DNA methylation in peripheral blood may provide a biomarker for AD.
Collapse
Affiliation(s)
- Noemi Monti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Department of Surgery “P. Valdoni”, Sapienza University of Rome, Rome, Italy
| | | | - Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Vincenzina Nicolia
- Department of Surgery “P. Valdoni”, Sapienza University of Rome, Rome, Italy
| | - Sigfrido Scarpa
- Department of Surgery “P. Valdoni”, Sapienza University of Rome, Rome, Italy
| | - Gabor G. Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Maria Teresa Fiorenza
- Department of Psychology, Division of Neuroscience, Sapienza University of Rome, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Pasteur Institute Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Isidre Ferrer
- Neuropathology, Service of Pathology, Bellvitge University Hospital, Barcelona, Spain
- CIBERNED, Hospitalet De Llobregat, University of Barcelona, Barcelona, Spain
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Aron M. Troen
- Nutrition and Brain Health Laboratory, the Institute of Biochemistry Food and Nutrition Science, the Robert H. Smith Faculty of Agriculture Food and the Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
17
|
Dysregulation of multiple metabolic networks related to brain transmethylation and polyamine pathways in Alzheimer disease: A targeted metabolomic and transcriptomic study. PLoS Med 2020; 17:e1003012. [PMID: 31978055 PMCID: PMC6980402 DOI: 10.1371/journal.pmed.1003012] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 12/20/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND There is growing evidence that Alzheimer disease (AD) is a pervasive metabolic disorder with dysregulation in multiple biochemical pathways underlying its pathogenesis. Understanding how perturbations in metabolism are related to AD is critical to identifying novel targets for disease-modifying therapies. In this study, we test whether AD pathogenesis is associated with dysregulation in brain transmethylation and polyamine pathways. METHODS AND FINDINGS We first performed targeted and quantitative metabolomics assays using capillary electrophoresis-mass spectrometry (CE-MS) on brain samples from three groups in the Baltimore Longitudinal Study of Aging (BLSA) (AD: n = 17; Asymptomatic AD [ASY]: n = 13; Control [CN]: n = 13) (overall 37.2% female; mean age at death 86.118 ± 9.842 years) in regions both vulnerable and resistant to AD pathology. Using linear mixed-effects models within two primary brain regions (inferior temporal gyrus [ITG] and middle frontal gyrus [MFG]), we tested associations between brain tissue concentrations of 26 metabolites and the following primary outcomes: group differences, Consortium to Establish a Registry for Alzheimer's Disease (CERAD) (neuritic plaque burden), and Braak (neurofibrillary pathology) scores. We found significant alterations in concentrations of metabolites in AD relative to CN samples, as well as associations with severity of both CERAD and Braak, mainly in the ITG. These metabolites represented biochemical reactions in the (1) methionine cycle (choline: lower in AD, p = 0.003; S-adenosyl methionine: higher in AD, p = 0.005); (2) transsulfuration and glutathione synthesis (cysteine: higher in AD, p < 0.001; reduced glutathione [GSH]: higher in AD, p < 0.001); (3) polyamine synthesis/catabolism (spermidine: higher in AD, p = 0.004); (4) urea cycle (N-acetyl glutamate: lower in AD, p < 0.001); (5) glutamate-aspartate metabolism (N-acetyl aspartate: lower in AD, p = 0.002); and (6) neurotransmitter metabolism (gamma-amino-butyric acid: lower in AD, p < 0.001). Utilizing three Gene Expression Omnibus (GEO) datasets, we then examined mRNA expression levels of 71 genes encoding enzymes regulating key reactions within these pathways in the entorhinal cortex (ERC; AD: n = 25; CN: n = 52) and hippocampus (AD: n = 29; CN: n = 56). Complementing our metabolomics results, our transcriptomics analyses also revealed significant alterations in gene expression levels of key enzymatic regulators of biochemical reactions linked to transmethylation and polyamine metabolism. Our study has limitations: our metabolomics assays measured only a small proportion of all metabolites participating in the pathways we examined. Our study is also cross-sectional, limiting our ability to directly test how AD progression may impact changes in metabolite concentrations or differential-gene expression. Additionally, the relatively small number of brain tissue samples may have limited our power to detect alterations in all pathway-specific metabolites and their genetic regulators. CONCLUSIONS In this study, we observed broad dysregulation of transmethylation and polyamine synthesis/catabolism, including abnormalities in neurotransmitter signaling, urea cycle, aspartate-glutamate metabolism, and glutathione synthesis. Our results implicate alterations in cellular methylation potential and increased flux in the transmethylation pathways, increased demand on antioxidant defense mechanisms, perturbations in intermediate metabolism in the urea cycle and aspartate-glutamate pathways disrupting mitochondrial bioenergetics, increased polyamine biosynthesis and breakdown, as well as abnormalities in neurotransmitter metabolism that are related to AD.
Collapse
|
18
|
Bihaqi SW. Early life exposure to lead (Pb) and changes in DNA methylation: relevance to Alzheimer’s disease. REVIEWS ON ENVIRONMENTAL HEALTH 2019; 34:187-195. [DOI: 10.1515/reveh-2018-0076] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/09/2019] [Indexed: 05/08/2023]
Abstract
Abstract
Recent advances in neuroepigenetics have revealed its essential role in governing body function and disease. Epigenetics regulates an array of mechanisms that are susceptible to undergoing alteration by intracellular or extracellular factors. DNA methylation, one of the most extensively studied epigenetic markers is involved in the regulation of gene expression and also plays a vital role in neuronal development. The epigenome is most vulnerable during early the embryonic stage and perturbation in DNA methylation during this period can result in a latent outcome which can persist during the entire lifespan. Accumulating evidence suggests that environmental insults during the developmental phase can impart changes in the DNA methylation landscape. Based on reports on human subjects and animal models this review will explore the evidence on how developmental exposure of the known environmental pollutant, lead (Pb), can induce changes in the DNA methylation of genes which later can induce development of neurodegenerative disorders like Alzheimer’s disease (AD).
Collapse
Affiliation(s)
- Syed Waseem Bihaqi
- George and Anne Ryan Institute for Neuroscience , University of Rhode Island , Avedisian Hall, Lab: 390, 7 Greenhouse Road , Kingston, RI 02881 , USA
| |
Collapse
|
19
|
Bossenmeyer‐Pourié C, Smith AD, Lehmann S, Deramecourt V, Sablonnière B, Camadro J, Pourié G, Kerek R, Helle D, Umoret R, Guéant‐Rodriguez R, Rigau V, Gabelle A, Sequeira JM, Quadros EV, Daval J, Guéant J. N‐homocysteinylation of tau and MAP1 is increased in autopsy specimens of Alzheimer's disease and vascular dementia. J Pathol 2019; 248:291-303. [DOI: 10.1002/path.5254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/10/2019] [Accepted: 02/04/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Carine Bossenmeyer‐Pourié
- Inserm U1256, Nutrition‐Genetics and Environmental Exposure, Medical FacultyUniversity Hospital Center, Université de Lorraine Vandoeuvre‐lès‐Nancy France
| | - A David Smith
- OPTIMA, Department of PharmacologyUniversity of Oxford Oxford UK
| | - Sylvain Lehmann
- Laboratoire de Biochimie‐Protéomique Clinique – IRMB – CCBHM – Inserm U1183, CHU MontpellierHôpital St‐Eloi – Université Montpellier Montpellier France
| | - Vincent Deramecourt
- Inserm U837, Jean‐Pierre Aubert Research Centre and Université de Lille Nord de France Lille France
| | - Bernard Sablonnière
- Inserm U837, Jean‐Pierre Aubert Research Centre and Université de Lille Nord de France Lille France
| | - Jean‐Michel Camadro
- Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592Université Paris Diderot Paris France
| | - Grégory Pourié
- Inserm U1256, Nutrition‐Genetics and Environmental Exposure, Medical FacultyUniversity Hospital Center, Université de Lorraine Vandoeuvre‐lès‐Nancy France
| | - Racha Kerek
- Inserm U1256, Nutrition‐Genetics and Environmental Exposure, Medical FacultyUniversity Hospital Center, Université de Lorraine Vandoeuvre‐lès‐Nancy France
| | - Deborah Helle
- Inserm U1256, Nutrition‐Genetics and Environmental Exposure, Medical FacultyUniversity Hospital Center, Université de Lorraine Vandoeuvre‐lès‐Nancy France
| | - Remy Umoret
- Inserm U1256, Nutrition‐Genetics and Environmental Exposure, Medical FacultyUniversity Hospital Center, Université de Lorraine Vandoeuvre‐lès‐Nancy France
| | - Rosa‐Maria Guéant‐Rodriguez
- Inserm U1256, Nutrition‐Genetics and Environmental Exposure, Medical FacultyUniversity Hospital Center, Université de Lorraine Vandoeuvre‐lès‐Nancy France
| | - Valérie Rigau
- Laboratoire de Biochimie‐Protéomique Clinique – IRMB – CCBHM – Inserm U1183, CHU MontpellierHôpital St‐Eloi – Université Montpellier Montpellier France
| | - Audrey Gabelle
- Laboratoire de Biochimie‐Protéomique Clinique – IRMB – CCBHM – Inserm U1183, CHU MontpellierHôpital St‐Eloi – Université Montpellier Montpellier France
| | | | - Edward V Quadros
- Department of MedicineSUNY Downstate Medical Center New York NY USA
| | - Jean‐Luc Daval
- Inserm U1256, Nutrition‐Genetics and Environmental Exposure, Medical FacultyUniversity Hospital Center, Université de Lorraine Vandoeuvre‐lès‐Nancy France
| | - Jean‐Louis Guéant
- Inserm U1256, Nutrition‐Genetics and Environmental Exposure, Medical FacultyUniversity Hospital Center, Université de Lorraine Vandoeuvre‐lès‐Nancy France
| |
Collapse
|
20
|
Battaglia-Hsu SF, Ghemrawi R, Coelho D, Dreumont N, Mosca P, Hergalant S, Gauchotte G, Sequeira JM, Ndiongue M, Houlgatte R, Alberto JM, Umoret R, Robert A, Paoli J, Jung M, Quadros EV, Guéant JL. Inherited disorders of cobalamin metabolism disrupt nucleocytoplasmic transport of mRNA through impaired methylation/phosphorylation of ELAVL1/HuR. Nucleic Acids Res 2018; 46:7844-7857. [PMID: 30016500 PMCID: PMC6125644 DOI: 10.1093/nar/gky634] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/26/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022] Open
Abstract
The molecular mechanisms that underlie the neurological manifestations of patients with inherited diseases of vitamin B12 (cobalamin) metabolism remain to date obscure. We observed transcriptomic changes of genes involved in RNA metabolism and endoplasmic reticulum stress in a neuronal cell model with impaired cobalamin metabolism. These changes were related to the subcellular mislocalization of several RNA binding proteins, including the ELAVL1/HuR protein implicated in neuronal stress, in this cell model and in patient fibroblasts with inborn errors of cobalamin metabolism and Cd320 knockout mice. The decreased interaction of ELAVL1/HuR with the CRM1/exportin protein of the nuclear pore complex and its subsequent mislocalization resulted from hypomethylation at R-217 produced by decreased S-adenosylmethionine and protein methyl transferase CARM1 and dephosphorylation at S221 by increased protein phosphatase PP2A. The mislocalization of ELAVL1/HuR triggered the decreased expression of SIRT1 deacetylase and genes involved in brain development, neuroplasticity, myelin formation, and brain aging. The mislocalization was reversible upon treatment with siPpp2ca, cobalamin, S-adenosylmethionine, or PP2A inhibitor okadaic acid. In conclusion, our data highlight the key role of the disruption of ELAVL1/HuR nuclear export, with genomic changes consistent with the effects of inborn errors of Cbl metabolisms on brain development, neuroplasticity and myelin formation.
Collapse
Affiliation(s)
- Shyue-Fang Battaglia-Hsu
- INSERM UMRS 954 NGERE – Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-lès-Nancy, F-54000, France
| | - Rose Ghemrawi
- INSERM UMRS 954 NGERE – Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-lès-Nancy, F-54000, France
| | - David Coelho
- INSERM UMRS 954 NGERE – Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-lès-Nancy, F-54000, France
| | - Natacha Dreumont
- INSERM UMRS 954 NGERE – Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-lès-Nancy, F-54000, France
| | - Pauline Mosca
- INSERM UMRS 954 NGERE – Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-lès-Nancy, F-54000, France
| | - Sébastien Hergalant
- INSERM UMRS 954 NGERE – Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-lès-Nancy, F-54000, France
| | - Guillaume Gauchotte
- INSERM UMRS 954 NGERE – Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-lès-Nancy, F-54000, France
| | - Jeffrey M Sequeira
- Division of Hematology/Oncology, Department of Medicine, SUNY-Downstate Medical Center, Brooklyn, New York, NY, USA
| | - Mariam Ndiongue
- INSERM UMRS 954 NGERE – Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-lès-Nancy, F-54000, France
| | - Rémi Houlgatte
- INSERM UMRS 954 NGERE – Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-lès-Nancy, F-54000, France
| | - Jean-Marc Alberto
- INSERM UMRS 954 NGERE – Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-lès-Nancy, F-54000, France
| | - Remy Umoret
- INSERM UMRS 954 NGERE – Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-lès-Nancy, F-54000, France
| | - Aurélie Robert
- INSERM UMRS 954 NGERE – Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-lès-Nancy, F-54000, France
| | - Justine Paoli
- INSERM UMRS 954 NGERE – Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-lès-Nancy, F-54000, France
| | - Martin Jung
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Building 44, Homburg 66421, Germany
| | - Edward V Quadros
- Division of Hematology/Oncology, Department of Medicine, SUNY-Downstate Medical Center, Brooklyn, New York, NY, USA
| | - Jean-Louis Guéant
- INSERM UMRS 954 NGERE – Nutrition, Genetics, and Environmental Risk Exposure and National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-lès-Nancy, F-54000, France
| |
Collapse
|
21
|
Hoffman A, Taleski G, Qian H, Wasek B, Arning E, Bottiglieri T, Sontag JM, Sontag E. Methylenetetrahydrofolate Reductase Deficiency Deregulates Regional Brain Amyloid-β Protein Precursor Expression and Phosphorylation Levels. J Alzheimers Dis 2018; 64:223-237. [DOI: 10.3233/jad-180032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alexander Hoffman
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Goce Taleski
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Helena Qian
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Brandi Wasek
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX, USA
| | - Erland Arning
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX, USA
| | - Jean-Marie Sontag
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Estelle Sontag
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
22
|
Green R, Allen LH, Bjørke-Monsen AL, Brito A, Guéant JL, Miller JW, Molloy AM, Nexo E, Stabler S, Toh BH, Ueland PM, Yajnik C. Vitamin B 12 deficiency. Nat Rev Dis Primers 2017; 3:17040. [PMID: 28660890 DOI: 10.1038/nrdp.2017.40] [Citation(s) in RCA: 465] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vitamin B12 (B12; also known as cobalamin) is a B vitamin that has an important role in cellular metabolism, especially in DNA synthesis, methylation and mitochondrial metabolism. Clinical B12 deficiency with classic haematological and neurological manifestations is relatively uncommon. However, subclinical deficiency affects between 2.5% and 26% of the general population depending on the definition used, although the clinical relevance is unclear. B12 deficiency can affect individuals at all ages, but most particularly elderly individuals. Infants, children, adolescents and women of reproductive age are also at high risk of deficiency in populations where dietary intake of B12-containing animal-derived foods is restricted. Deficiency is caused by either inadequate intake, inadequate bioavailability or malabsorption. Disruption of B12 transport in the blood, or impaired cellular uptake or metabolism causes an intracellular deficiency. Diagnostic biomarkers for B12 status include decreased levels of circulating total B12 and transcobalamin-bound B12, and abnormally increased levels of homocysteine and methylmalonic acid. However, the exact cut-offs to classify clinical and subclinical deficiency remain debated. Management depends on B12 supplementation, either via high-dose oral routes or via parenteral administration. This Primer describes the current knowledge surrounding B12 deficiency, and highlights improvements in diagnostic methods as well as shifting concepts about the prevalence, causes and manifestations of B12 deficiency.
Collapse
Affiliation(s)
- Ralph Green
- Department of Pathology and Laboratory Medicine, University of California Davis, 4400 V Street, PATH Building, Davis, California 95817, USA
| | - Lindsay H Allen
- USDA, ARS Western Human Nutrition Research Center, University of California Davis, Davis, California, USA
| | | | - Alex Brito
- USDA, ARS Western Human Nutrition Research Center, University of California Davis, Davis, California, USA
| | - Jean-Louis Guéant
- Inserm UMRS 954 N-GERE (Nutrition Génétique et Exposition aux Risques Environnementaux), University of Lorraine and INSERM, Nancy, France
| | - Joshua W Miller
- School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Anne M Molloy
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Ebba Nexo
- Department of Clinical Medicine, Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Sally Stabler
- Department of Medicine, University of Colorado Denver, Denver, Colorado, USA
| | - Ban-Hock Toh
- Centre for Inflammatory Diseases, Monash Institute of Medical Research, Clayton, Victoria, Australia
| | - Per Magne Ueland
- Laboratory of Clinical Biochemistry, Haukeland University Hospital, Bergen, Norway.,Section for Pharmacology, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | |
Collapse
|
23
|
Pharmacological intervention of early neuropathy in neurodegenerative diseases. Pharmacol Res 2017; 119:169-177. [PMID: 28167240 DOI: 10.1016/j.phrs.2017.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 12/11/2022]
Abstract
Extensive studies have reported the significant roles of numerous cellular features and processes in properly maintaining neuronal morphology and function throughout the lifespan of an animal. Any alterations in their homeostasis appear to be strongly associated with neuronal aging and the pathogenesis of various neurodegenerative diseases, even before the occurrence of prominent neuronal death. However, until recently, the primary focus of studies regarding many neurodegenerative diseases has been on the massive cell death occurring at the late stages of disease progression. Thus, our understanding on early neuropathy in these diseases remains relatively limited. The complicated nature of various neuropathic features manifested early in neurodegenerative diseases suggests the involvement of a system-wide transcriptional regulation and epigenetic control. Epigenetic alterations and consequent changes in the neuronal transcriptome are now begun to be extensively studied in various neurodegenerative diseases. Upon the catastrophic incident of neuronal death in disease progression, it is utterly difficult to reverse the deleterious defects by pharmacological treatments, and therefore, therapeutics targeting the system-wide transcriptional dysregulation associated with specific early neuropathy is considered a better option. Here, we review our current understanding on the system-wide transcriptional dysregulation that is likely associated with early neuropathy shown in various neurodegenerative diseases and discuss the possible future developments of pharmaceutical therapeutics.
Collapse
|
24
|
Kim S, Nho K, Ramanan VK, Lai D, Foroud TM, Lane K, Murrell JR, Gao S, Hall KS, Unverzagt FW, Baiyewu O, Ogunniyi A, Gureje O, Kling MA, Doraiswamy PM, Kaddurah-Daouk R, Hendrie HC, Saykin AJ. Genetic Influences on Plasma Homocysteine Levels in African Americans and Yoruba Nigerians. J Alzheimers Dis 2016; 49:991-1003. [PMID: 26519441 DOI: 10.3233/jad-150651] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Plasma homocysteine, a metabolite involved in key cellular methylation processes seems to be implicated in cognitive functions and cardiovascular health with its high levels representing a potential modifiable risk factor for Alzheimer's disease (AD) and other dementias. A better understanding of the genetic factors regulating homocysteine levels, particularly in non-white populations, may help in risk stratification analyses of existing clinical trials and may point to novel targets for homocysteine-lowering therapy. To identify genetic influences on plasma homocysteine levels in individuals with African ancestry, we performed a targeted gene and pathway-based analysis using a priori biological information and then to identify new association performed a genome-wide association study. All analyses used combined data from the African American and Yoruba cohorts from the Indianapolis-Ibadan Dementia Project. Targeted analyses demonstrated significant associations of homocysteine and variants within the CBS (Cystathionine beta-Synthase) gene. We identified a novel genome-wide significant association of the AD risk gene CD2AP (CD2-associated protein) with plasma homocysteine levels in both cohorts. Minor allele (T) carriers of identified CD2AP variant (rs6940729) exhibited decreased homocysteine level. Pathway enrichment analysis identified several interesting pathways including the GABA receptor activation pathway. This is noteworthy given the known antagonistic effect of homocysteine on GABA receptors. These findings identify several new targets warranting further investigation in relation to the role of homocysteine in neurodegeneration.
Collapse
Affiliation(s)
- Sungeun Kim
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana University Network Science Institute, Bloomington, IN, USA
| | - Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana University Network Science Institute, Bloomington, IN, USA
| | - Vijay K Ramanan
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Internal Medicine, Preliminary Medicine Residency, St. Vincent Indianapolis, Indianapolis, IN, USA
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tatiana M Foroud
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana University Network Science Institute, Bloomington, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Katie Lane
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jill R Murrell
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sujuan Gao
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kathleen S Hall
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Frederick W Unverzagt
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Olusegun Baiyewu
- Department of Psychiatry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adesola Ogunniyi
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oye Gureje
- Department of Psychiatry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Mitchel A Kling
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Behavioral Health Service, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - P Murali Doraiswamy
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.,Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.,Duke Institute for Brain Sciences, Duke University, Durham, NC, USA.,Pharmacometabolomics Center, Duke University, Durham, NC, USA
| | - Hugh C Hendrie
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana University Center for Aging Research, Indianapolis, IN, USA.,Regenstrief Institute Inc., Indianapolis, IN, USA
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana University Network Science Institute, Bloomington, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
25
|
Tian T, Bai D, Li W, Huang GW, Liu H. Effects of Folic Acid on Secretases Involved in Aβ Deposition in APP/PS1 Mice. Nutrients 2016; 8:E556. [PMID: 27618097 PMCID: PMC5037541 DOI: 10.3390/nu8090556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/31/2016] [Accepted: 09/06/2016] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia. Amyloid-β protein (Aβ) is identified as the core protein of neuritic plaques. Aβ is generated by the sequential cleavage of the amyloid precursor protein (APP) via the APP cleaving enzyme (α-secretase, or β-secretase) and γ-secretase. Previous studies indicated that folate deficiency elevated Aβ deposition in APP/PS1 mice, and this rise was prevented by folic acid. In the present study, we aimed to investigate whether folic acid could influence the generation of Aβ by regulating α-, β-, and γ-secretase. Herein, we demonstrated that folic acid reduced the deposition of Aβ42 in APP/PS1 mice brain by decreasing the mRNA and protein expressions of β-secretase [beta-site APP-cleaving enzyme 1 (BACE1)] and γ-secretase complex catalytic component-presenilin 1 (PS1)-in APP/PS1 mice brain. Meanwhile, folic acid increased the levels of ADAM9 and ADAM10, which are important α-secretases in ADAM (a disintegrin and metalloprotease) family. However, folic acid has no impact on the protein expression of nicastrin (Nct), another component of γ-secretase complex. Moreover, folic acid regulated the expression of miR-126-3p and miR-339-5p, which target ADAM9 and BACE1, respectively. Taken together, the effect of folic acid on Aβ deposition may relate to making APP metabolism through non-amyloidogenic pathway by decreasing β-secretase and increasing α-secretase. MicroRNA (miRNA) may involve in the regulation mechanism of folic acid on secretase expression.
Collapse
Affiliation(s)
- Tian Tian
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China.
| | - Dong Bai
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China.
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China.
| | - Guo-Wei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China.
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
26
|
Zhu YP, Feng Y, Liu T, Wu YC. Epigenetic Modification and Its Role in Alzheimer's Disease. ACTA ACUST UNITED AC 2015. [DOI: 10.1159/000437329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Liu H, Li W, Zhao S, Zhang X, Zhang M, Xiao Y, Wilson JX, Huang G. Folic acid attenuates the effects of amyloid β oligomers on DNA methylation in neuronal cells. Eur J Nutr 2015. [PMID: 26224648 DOI: 10.1007/s00394-015-1002-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Alzheimer's disease (AD) is a highly prevalent type of dementia. The epigenetic mechanism of gene methylation provides a putative link between nutrition, one-carbon metabolism, and disease progression because folate deficiency may cause hypomethylation of promoter regions in AD-relevant genes. We hypothesized that folic acid supplementation may protect neuron cells from amyloid β (Aβ) oligomer-induced toxicity by modulating DNA methylation of APP and PS1 in AD models. METHODS Primary hippocampal neuronal cells and hippocampal HT-22 cells were incubated for 24 h with a combination of folic acid and either Aβ oligomers or vehicle and were then incubated for 72 h with various concentrations of folic acid. AD transgenic mice were fed either folate-deficient or control diets and gavaged daily with various doses of folic acid (0 or 600 μg/kg). DNA methyltransferase (DNMT) activity, cell viability, methylation potential of cells, APP and PS1 expression, and the methylation of the respective promoters were determined. RESULTS Aβ oligomers lowered DNMT activity, increased PS1 and APP expression, and decreased cell viability. Folic acid dose-dependently stimulated methylation potential and DNMT activity, altered PS1 and APP promoter methylation, decreased PS1 and APP expression, and partially preserved cell viability. Folic acid increased PS1 and APP promoter methylation in AD transgenic mice. CONCLUSION These results suggest a mechanism by which folic acid may prevent Aβ oligomer-induced neuronal toxicity.
Collapse
Affiliation(s)
- Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Shijing Zhao
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Meilin Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Yanyu Xiao
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - John X Wilson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.
| |
Collapse
|
28
|
Chiu S, Woodbury-Fariña MA, Shad MU, Husni M, Copen J, Bureau Y, Cernovsky Z, Hou JJ, Raheb H, Terpstra K, Sanchez V, Hategan A, Kaushal M, Campbell R. The role of nutrient-based epigenetic changes in buffering against stress, aging, and Alzheimer's disease. Psychiatr Clin North Am 2014; 37:591-623. [PMID: 25455068 DOI: 10.1016/j.psc.2014.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Converging evidence identifies stress-related disorders as putative risk factors for Alzheimer Disease (AD). This article reviews evidence on the complex interplay of stress, aging, and genes-epigenetics interactions. The recent classification of AD into preclinical, mild cognitive impairment, and AD offers a window for intervention to prevent, delay, or modify the course of AD. Evidence in support of the cognitive effects of epigenetics-diet, and nutraceuticals is reviewed. A proactive epigenetics diet and nutraceuticals program holds promise as potential buffer against the negative impact of aging and stress responses on cognition, and can optimize vascular, metabolic, and brain health in the community.
Collapse
Affiliation(s)
- Simon Chiu
- Department of Psychiatry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6G 4X8, Canada.
| | - Michel A Woodbury-Fariña
- Department of Psychiatry, University of Puerto Rico School of Medicine, 307 Calle Eleonor Roosevelt, San Juan, PR 00918-2720, USA
| | - Mujeeb U Shad
- Oregon Health & Science University, Department Psychiatry, 3181 South West Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | - Mariwan Husni
- Northern Ontario Medical School/Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada; Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - John Copen
- Vancouver Island Health Authority, Department of Psychiatry, Victoria, BC, University of British Columbia-Victoria Medical Campus, Island Medical Program, University of Victoria, 3800 Finnerty Road, Victoria, BC V8N-1M5, Canada
| | - Yves Bureau
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry University of Western Ontario, London, ON N6G 4X8, Canada
| | - Zack Cernovsky
- Certificate Professional Qualification (CPQ), Clinical Psychology, Association of State and Provincial Psychology Board (ASPB): USA and Canada
| | - J Jurui Hou
- Epigenetics Research Group, Lawson Health Research Institute, St Joseph Health Care, 268 Grosvenor Street, London, ON N6A 4V2, Canada
| | - Hana Raheb
- Epigenetics Research Group, Lawson Health Research Institute, St Joseph Health Care, 268 Grosvenor Street, London, ON N6A 4V2, Canada
| | - Kristen Terpstra
- Accelerated B.Sc.N. Nursing Program, Lawrence S. Bloomberg, Faculty of Nursing, University of Toronto, 155 College Street, Suite 130 Toronto, ON M5T 1P8, Canada
| | - Veronica Sanchez
- McGill University, Meakins-Christie Labs, 3626 St., Urbain Street, Montreal, QC H2X 2P2, Canada
| | - Ana Hategan
- Geriatric Psychiatry Division, St. Joseph's Healthcare Hamilton /McMaster University Health Sciences, West 5th Campus 100 West 5th Hamilton, ON L8N 3K7, Canada
| | - Mike Kaushal
- Epigenetics Research Group, Lawson Health Research Institute, St Joseph Health Care, 268 Grosvenor Street, London, ON N6A 4V2, Canada
| | - Robbie Campbell
- Department of Psychiatry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6G 4X8, Canada
| |
Collapse
|
29
|
Veitinger M, Varga B, Guterres SB, Zellner M. Platelets, a reliable source for peripheral Alzheimer's disease biomarkers? Acta Neuropathol Commun 2014; 2:65. [PMID: 24934666 PMCID: PMC4229876 DOI: 10.1186/2051-5960-2-65] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/01/2014] [Indexed: 12/20/2022] Open
Abstract
Peripheral biomarkers play an indispensable role in quick and reliable diagnoses of any kind of disease. With the population ageing, the number of people suffering from age-related diseases is expected to rise dramatically over the coming decades. In particular, all types of cognitive deficits, such as Alzheimer's disease, will increase. Alzheimer's disease is characterised mainly by coexistence of amyloid plaques and neurofibrillary tangles in brain. Reliable identification of such molecular characteristics antemortem, however, is problematic due to restricted availability of appropriate sample material and definitive diagnosis is only possible postmortem. Currently, the best molecular biomarkers available for antemortem diagnosis originate from cerebrospinal fluid. Though, this is not convenient for routine diagnosis because of the required invasive lumbar puncture. As a consequence, there is a growing demand for additional peripheral biomarkers in a more readily accessible sample material. Blood platelets, due to shared biochemical properties with neurons, can constitute an attractive alternative as discussed here. This review summarises potential platelet Alzheimer's disease biomarkers, their role, implication, and alteration in the disease. For easy comparison of their performance, the Hedge effect size was calculated whenever data were available.
Collapse
Affiliation(s)
- Michael Veitinger
- />Institute of Physiology, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, EU, Austria
| | - Balazs Varga
- />Institute of Physiology, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, EU, Austria
| | - Sheila B Guterres
- />Institute of Physiology, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, EU, Austria
- />Institute of Chemistry at São Carlos, University of São Paulo, São Paulo, Brazil
| | - Maria Zellner
- />Institute of Physiology, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, EU, Austria
| |
Collapse
|
30
|
Mazzio EA, Soliman KFA. Epigenetics and nutritional environmental signals. Integr Comp Biol 2014; 54:21-30. [PMID: 24861811 DOI: 10.1093/icb/icu049] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
All terrestrial life is influenced by multi-directional flows of information about its environment, enabling malleable phenotypic change through signals, chemical processes, or various forms of energy that facilitate acclimatization. Billions of biological co-inhabitants of the earth, including all plants and animals, collectively make up a genetic/epigenetic ecosystem by which adaptation/survival (inputs and outputs) are highly interdependent on one another. As an ecosystem, the solar system, rotation of the planets, changes in sunlight, and gravitational pull influence cyclic epigenetic transitions and chromatin remodeling that constitute biological circadian rhythms controlling senescence. In humans, adverse environmental conditions such as poverty, stress, alcohol, malnutrition, exposure to pollutants generated from industrialization, man-made chemicals, and use of synthetic drugs can lead to maladaptive epigenetic-related illnesses with disease-specific genes being atypically activated or silenced. Nutrition and dietary practices are one of the largest facets in epigenetic-related metabolism, where specific "epi-nutrients" can stabilize the genome, given established roles in DNA methylation, histone modification, and chromatin remodeling. Moreover, food-based "epi-bioactive" constituents may reverse maladaptive epigenetic patterns, not only prior to conception and during fetal/early postnatal development but also through adulthood. In summary, in contrast to a static genomic DNA structure, epigenetic changes are potentially reversible, raising the hope for therapeutic and/or dietary interventions that can reverse deleterious epigenetic programing as a means to prevent or treat major illnesses.
Collapse
Affiliation(s)
- Elizabeth A Mazzio
- Florida A&M University, College of Pharmacy & Pharmaceutical Sciences, 1520 S MLK Jr. Blvd Tallahassee, FL 32307, USA
| | - Karam F A Soliman
- Florida A&M University, College of Pharmacy & Pharmaceutical Sciences, 1520 S MLK Jr. Blvd Tallahassee, FL 32307, USA
| |
Collapse
|
31
|
Dietary cyclic dipeptides, apoptosis and psychiatric disorders: a hypothesis. Med Hypotheses 2014; 82:740-3. [PMID: 24717821 DOI: 10.1016/j.mehy.2014.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/27/2014] [Accepted: 03/08/2014] [Indexed: 12/14/2022]
Abstract
Cyclic dipeptides from food and intestinal yeast cyclic dipeptides may play a role in causing psychiatric disorders such as schizophrenia. From cancer research, cyclic dipeptides such as cyclo (proline-phenylalanine) have been found to activate the pathways of apoptosis and to cause programmed cell death. Activation of such pathways is also thought to be important in causing the neurodevelopmental abnormalities seen in disorders such as schizophrenia and autistic disorder, and also may be important in Alzheimer's. Cyclic dipeptides are found in foods such as malt and cocoa and beer. The intestinal yeast Candida albicans also synthesizes cyclic dipeptides. These dipeptides may be activating apoptosis pathways throughout fetal development and postnatal development, leading to some of the changes seen in brain in schizophrenia and in other psychiatric disorders. These compounds should be researched further to see if they play a role in causing these brain changes. In addition, these cyclic dipeptides are considered within the larger context of research on amino acids and other cyclic dipeptides in neurotransmission and neurophysiology. A better understanding of the role of these cyclic dipeptides in psychiatric disorders could lead to strategies for prevention and treatment of these disorders.
Collapse
|
32
|
Sontag JM, Sontag E. Protein phosphatase 2A dysfunction in Alzheimer's disease. Front Mol Neurosci 2014; 7:16. [PMID: 24653673 PMCID: PMC3949405 DOI: 10.3389/fnmol.2014.00016] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 02/22/2014] [Indexed: 01/26/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is a large family of enzymes that account for the majority of brain Ser/Thr phosphatase activity. While PP2A enzymes collectively modulate most cellular processes, sophisticated regulatory mechanisms are ultimately responsible for ensuring isoform-specific substrate specificity. Of particular interest to the Alzheimer’s disease (AD) field, alterations in PP2A regulators and PP2A catalytic activity, subunit expression, methylation and/or phosphorylation, have been reported in AD-affected brain regions. “PP2A” dysfunction has been linked to tau hyperphosphorylation, amyloidogenesis and synaptic deficits that are pathological hallmarks of this neurodegenerative disorder. Deregulation of PP2A enzymes also affects the activity of many Ser/Thr protein kinases implicated in AD. This review will more specifically discuss the role of the PP2A/Bα holoenzyme and PP2A methylation in AD pathogenesis. The PP2A/Bα isoform binds to tau and is the primary tau phosphatase. Its deregulation correlates with increased tau phosphorylation in vivo and in AD. Disruption of PP2A/Bα-tau protein interactions likely contribute to tau deregulation in AD. Significantly, alterations in one-carbon metabolism that impair PP2A methylation are associated with increased risk for sporadic AD, and enhanced AD-like pathology in animal models. Experimental studies have linked deregulation of PP2A methylation with down-regulation of PP2A/Bα, enhanced phosphorylation of tau and amyloid precursor protein, tau mislocalization, microtubule destabilization and neuritic defects. While it remains unclear what are the primary events that underlie “PP2A” dysfunction in AD, deregulation of PP2A enzymes definitely affects key players in the pathogenic process. As such, there is growing interest in developing PP2A-centric therapies for AD, but this may be a daunting task without a better understanding of the regulation and function of specific PP2A enzymes.
Collapse
Affiliation(s)
- Jean-Marie Sontag
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle Callaghan, NSW, Australia
| | - Estelle Sontag
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle Callaghan, NSW, Australia
| |
Collapse
|
33
|
Kruman II, Fowler AK. Impaired one carbon metabolism and DNA methylation in alcohol toxicity. J Neurochem 2014; 129:770-80. [PMID: 24521073 DOI: 10.1111/jnc.12677] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 01/30/2014] [Accepted: 02/03/2014] [Indexed: 12/30/2022]
Abstract
Excessive alcohol consumption is a prominent problem and one of the major causes of mortality and morbidity around the world. Long-term, heavy alcohol consumption is associated with a number of deleterious health consequences, such as cancer, heart and liver disease, a variety of neurological, cognitive, and behavioral deficits. Alcohol consumption is also associated with developmental defects. The causes of alcohol-induced toxicity are presently unclear. One of the mechanisms underlying alcohol toxicity has to do with its interaction with folic acid/homocysteine or one-carbon metabolism (OCM). OCM is a major donor of methyl groups for methylation, particularly DNA methylation critical for epigenetic regulation of gene expression, and its disturbance may compromise DNA methylation, thereby affecting gene expression. OCM disturbance mediated by nutrient deficits is a well-known risk factor for various disorders and developmental defects (e.g., neural tube defects). In this review, we summarize the role of OCM disturbance and associated epigenetic aberrations in chronic alcohol-induced toxicity. In this review, we summarize the role of one-carbon metabolism (OCM) aberrations in chronic alcohol-induced toxicity. OCM is a major donor of methyl groups for methylation reactions, particularly DNA methylation critical for epigenetic regulation of gene expression. Alcohol interference with OCM and consequent reduced availability of methyl groups, improper DNA methylation, and aberrant gene expression can play a causative role in alcohol toxicity.
Collapse
Affiliation(s)
- Inna I Kruman
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | | |
Collapse
|
34
|
Lu H, Liu X, Deng Y, Qing H. DNA methylation, a hand behind neurodegenerative diseases. Front Aging Neurosci 2013; 5:85. [PMID: 24367332 PMCID: PMC3851782 DOI: 10.3389/fnagi.2013.00085] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 11/17/2013] [Indexed: 12/13/2022] Open
Abstract
Epigenetic alterations represent a sort of functional modifications related to the genome that are not responsible for changes in the nucleotide sequence. DNA methylation is one of such epigenetic modifications that have been studied intensively for the past several decades. The transfer of a methyl group to the 5 position of a cytosine is the key feature of DNA methylation. A simple change as such can be caused by a variety of factors, which can be the cause of many serious diseases including several neurodegenerative diseases. In this review, we have reviewed and summarized recent progress regarding DNA methylation in four major neurodegenerative diseases: Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). The studies of these four major neurodegenerative diseases conclude the strong suggestion of the important role DNA methylation plays in these diseases. However, each of these diseases has not yet been understood completely as details in some areas remain unclear, and will be investigated in future studies. We hope this review can provide new insights into the understanding of neurodegenerative diseases from the epigenetic perspective.
Collapse
Affiliation(s)
| | | | | | - Hong Qing
- School of Life Science, Beijing Institute of TechnologyBeijing, China
| |
Collapse
|
35
|
Guéant JL, Namour F, Guéant-Rodriguez RM, Daval JL. Folate and fetal programming: a play in epigenomics? Trends Endocrinol Metab 2013; 24:279-89. [PMID: 23474063 DOI: 10.1016/j.tem.2013.01.010] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/27/2013] [Accepted: 01/30/2013] [Indexed: 01/12/2023]
Abstract
Folate plays a key role in the interactions between nutrition, fetal programming, and epigenomics. Maternal folate status influences DNA methylation, inheritance of the agouti phenotype, expression of imprinting genes, and the effects of mycotoxin FB1 on heterochromatin assembly in rodent offspring. Deficiency in folate and other methyl donors increases birth defects and produces visceral manifestations of fetal programming, including liver and heart steatosis, through imbalanced methylation and acetylation of PGC1-α and decreased SIRT1 expression, and produces persistent cognitive and learning disabilities through impaired plasticity and hippocampal atrophy. Maternal folate supplementation also produces long-term epigenomic effects in offspring, some beneficial and others negative. Deciphering these mechanisms will help understanding the discordances between experimental models and population studies of folate deficiency and supplementation.
Collapse
Affiliation(s)
- Jean-Louis Guéant
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 954, Department of Nutrition-Genetics-Environmental Risk Exposure, University of Lorraine and University Hospital of Nancy, Vandoeuvre-lès-Nancy, France.
| | | | | | | |
Collapse
|
36
|
Fuso A. The 'golden age' of DNA methylation in neurodegenerative diseases. Clin Chem Lab Med 2013; 51:523-34. [PMID: 23183753 DOI: 10.1515/cclm-2012-0618] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 10/19/2012] [Indexed: 12/16/2023]
Abstract
DNA methylation reactions are regulated, in the first instance, by enzymes and the intermediates that constitute the 'so called' one-carbon metabolism. This is a complex biochemical pathway, also known as the homocysteine cycle, regulated by the presence of B vitamins (folate, B6, B12) and choline, among other metabolites. One of the intermediates of this metabolism is S-adenosylmethionine, which represent the methyl donor in all the DNA methyltransferase reactions in eukaryotes. The one-carbon metabolism therefore produces the substrate necessary for the transferring of a methyl group on the cytosine residues of DNA; S-adenosylmethionine also regulates the activity of the enzymes that catalyze this reaction, namely the DNA methyltransferases (DNMTs). Alterations of this metabolic cycle can therefore be responsible for aberrant DNA methylation processes possibly leading to several human diseases. As a matter of fact, increasing evidences indicate that a number of human diseases with multifactorial origin may have an epigenetic basis. This is also due to the great technical advances in the field of epigenetic research. Among the human diseases associated with epigenetic factors, aging-related and neurodegenerative diseases are probably the object of most intense research. This review will present the main evidences linking several human diseases to DNA methylation, with particular focus on neurodegenerative diseases, together with a short description of the state-of-the-art of methylation assays.
Collapse
Affiliation(s)
- Andrea Fuso
- Department of Psychology, Section of Neuroscience, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
37
|
Wolf AB, Braden BB, Bimonte-Nelson H, Kusne Y, Young N, Engler-Chiurazzi E, Garcia AN, Walker DG, Moses GSD, Tran H, LaFerla F, Lue L, Emerson Lombardo N, Valla J. Broad-based nutritional supplementation in 3xTg mice corrects mitochondrial function and indicates sex-specificity in response to Alzheimer's disease intervention. J Alzheimers Dis 2013; 32:217-32. [PMID: 22796872 DOI: 10.3233/jad-2012-120478] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nutrition has been highlighted as a potential factor in Alzheimer's disease (AD) risk and decline and has been investigated as a therapeutic target. Broad-based combination diet therapies have the potential to simultaneously effect numerous protective and corrective processes, both directly (e.g., neuroprotection) and indirectly (e.g., improved vascular health). Here we administered either normal mouse chow with a broad-based nutritional supplement or mouse chow alone to aged male and female 3xTg mice and wildtype (WT) controls. After approximately 4 months of feeding, mice were given a battery of cognitive tasks and then injected with a radiolabeled glucose analog. Brains were assessed for differences in regional glucose uptake and mitochondrial cytochrome oxidase activity, AD pathology, and inflammatory markers. Supplementation induced behavioral changes in the 3xTg, but not WT, mice, and the mode of these changes was influenced by sex. Subsequent analyses indicated that differential response to supplementation by male and female 3xTg mice highlighted brain regional strategies for the preservation of function. Several regions involved have been shown to mediate responses to steroid hormones, indicating a mechanism for sex-based vulnerability. Thus, these findings may have broad implications for the human response to future therapeutics.
Collapse
Affiliation(s)
- Andrew B Wolf
- Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sultan FA, Sweatt JD. The Role of the Gadd45 Family in the Nervous System: A Focus on Neurodevelopment, Neuronal Injury, and Cognitive Neuroepigenetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 793:81-119. [DOI: 10.1007/978-1-4614-8289-5_6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
McCaddon A. Vitamin B12 in neurology and ageing; clinical and genetic aspects. Biochimie 2012; 95:1066-76. [PMID: 23228515 DOI: 10.1016/j.biochi.2012.11.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 11/27/2012] [Indexed: 01/13/2023]
Abstract
The classic neurological and psychiatric features associated with vitamin B12 deficiency have been well described and are the subject of many excellent review articles. The advent of sensitive diagnostic tests, including homocysteine and methylmalonic acid assays, has revealed a surprisingly high prevalence of a more subtle 'subclinical' form of B12 deficiency, particularly within the elderly. This is often associated with cognitive impairment and dementia, including Alzheimer's disease. Metabolic evidence of B12 deficiency is also reported in association with other neurodegenerative disorders including vascular dementia, Parkinson's disease and multiple sclerosis. These conditions are all associated with chronic neuro-inflammation and oxidative stress. It is possible that these clinical associations reflect compromised vitamin B12 metabolism due to such stress. Physicians are also increasingly aware of considerable inter-individual variation in the clinical response to B12 replacement therapy. Further research is needed to determine to what extent this is attributable to genetic determinants of vitamin B12 absorption, distribution and cellular uptake.
Collapse
Affiliation(s)
- Andrew McCaddon
- School of Medicine, Cardiff University, Gwenfro Units 6/7, Wrexham Technology Park, Wrexham LL17 7YP, Wales, United Kingdom.
| |
Collapse
|
40
|
Acute administration of L-DOPA induces changes in methylation metabolites, reduced protein phosphatase 2A methylation, and hyperphosphorylation of Tau protein in mouse brain. J Neurosci 2012; 32:9173-81. [PMID: 22764226 DOI: 10.1523/jneurosci.0125-12.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Folate deficiency and hypomethylation have been implicated in a number of age-related neurodegenerative disorders including dementia and Parkinson's disease (PD). Levodopa (L-dopa) therapy in PD patients has been shown to cause an increase in plasma total homocysteine as well as depleting cellular concentrations of the methyl donor, S-adenosylmethionine (SAM), and increasing the demethylated product S-adenosylhomocysteine (SAH). Modulation of the cellular SAM/SAH ratio can influence activity of methyltransferase enzymes, including leucine carboxyl methyltransferase that specifically methylates Ser/Thr protein phosphatase 2A (PP2A), a major Tau phosphatase. Here we show in human SH-SY5Y cells, in dopaminergic neurons, and in wild-type mice that l-dopa results in a reduced SAM/SAH ratio that is associated with hypomethylation of PP2A and increased phosphorylation of Tau (p-Tau) at the Alzheimer's disease-like PHF-1 phospho-epitope. The effect of L-dopa on PP2A and p-Tau was exacerbated in cells exposed to folate deficiency. In the folate-deficient mouse model, L-dopa resulted in a marked depletion of SAM and an increase in SAH in various brain regions with parallel downregulation of PP2A methylation and increased Tau phosphorylation. L-Dopa also enhanced demethylated PP2A amounts in the liver. These findings reveal a novel mechanism involving methylation-dependent pathways in L-dopa induces PP2A hypomethylation and increases Tau phosphorylation, which may be potentially detrimental to neuronal cells.
Collapse
|
41
|
Chouliaras L, van den Hove DL, Kenis G, Keitel S, Hof PR, van Os J, Steinbusch HW, Schmitz C, Rutten BP. Prevention of age-related changes in hippocampal levels of 5-methylcytidine by caloric restriction. Neurobiol Aging 2012; 33:1672-81. [PMID: 21764481 PMCID: PMC3355211 DOI: 10.1016/j.neurobiolaging.2011.06.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 05/24/2011] [Accepted: 06/04/2011] [Indexed: 11/15/2022]
Abstract
Aberrant DNA methylation patterns have been linked to molecular and cellular alterations in the aging brain. Caloric restriction (CR) and upregulation of antioxidants have been proposed as interventions to prevent or delay age-related brain pathology. Previously, we have shown in large cohorts of aging mice, that age-related increases in DNA methyltransferase 3a (Dnmt3a) immunoreactivity in the mouse hippocampus were attenuated by CR, but not by overexpression of superoxide dismutase 1 (SOD1). Here, we investigated age-related alterations of 5-methylcytidine (5-mC), a marker of DNA methylation levels, in a hippocampal subregion-specific manner. Examination of 5-mC immunoreactivity in 12- and 24-month-old wild type (WT) mice on control diet, mice overexpressing SOD1 on control diet, wild type mice on CR, and SOD1 mice on CR, indicated an age-related increase in 5-mC immunoreactivity in the hippocampal dentate gyrus, CA3, and CA1-2 regions, which was prevented by CR but not by SOD1 overexpression. Moreover, positive correlations between 5-mC and Dnmt3a immunoreactivity were observed in the CA3 and CA1-2. These findings suggest a crucial role for DNA methylation in hippocampal aging and in the mediation of the beneficial effects of CR on aging.
Collapse
Affiliation(s)
- Leonidas Chouliaras
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, European Graduate School of Neuroscience (EURON), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Daniel L.A. van den Hove
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, European Graduate School of Neuroscience (EURON), Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Gunter Kenis
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, European Graduate School of Neuroscience (EURON), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Stella Keitel
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, European Graduate School of Neuroscience (EURON), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, NY, USA
| | - Jim van Os
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, European Graduate School of Neuroscience (EURON), Maastricht University Medical Centre, Maastricht, The Netherlands
- King’s College London, King’s Health Partners, Department of Psychosis Studies, Institute of Psychiatry, London, UK
| | - Harry W.M. Steinbusch
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, European Graduate School of Neuroscience (EURON), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Christoph Schmitz
- Department of Anatomy II, Institute of Anatomy, Ludwig-Maximilians-University Munich, Germany
| | - Bart P.F. Rutten
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, European Graduate School of Neuroscience (EURON), Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
42
|
Folate and Alzheimer: when time matters. J Neural Transm (Vienna) 2012; 120:211-24. [DOI: 10.1007/s00702-012-0822-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/06/2012] [Indexed: 12/14/2022]
|
43
|
de Oliveira DM, Ferreira Lima RM, El-Bachá RS. Brain rust: recent discoveries on the role of oxidative stress in neurodegenerative diseases. Nutr Neurosci 2012; 15:94-102. [PMID: 22583954 DOI: 10.1179/1476830511y.0000000029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Oxidative stress (OS) and damages due to excessive reactive oxygen species (ROS) are common causes of injuries to cells and organisms. The prevalence of neurodegenerative diseases (ND) increases with aging and much of the research involving ROS and OS has emerged from works in this field. This text reviews some recent published articles about the role of OS in ND. Since there are many reviews in this field, the focus was centered in articles published recently. The Scientific Journals Directory supported by the Brazilian Ministry of Education Office for the Coordination of Higher Educational Personnel Improvement (CAPES) was used to search, download, and review articles. The search engine looked for the terms 'oxidative stress AND neurodegenerative diseases AND nutrition' in 10 different scientific collections. Biochemical markers for ND lack sensitivity or specificity for diagnosis or for tracking response to therapy today. OS has an intimate connection with ND, albeit low levels of ROS seem to protect the brain. Deleterious changes in mitochondria, OS, calcium, glucocorticoids, inflammation, trace metals, insulin, cell cycle, protein aggregation, and hundreds to thousands of genes occur in ND. The interaction of genes with their environment, may explain ND. Although OS has received much attention over the years, which increased the number of scientific works on antioxidant interventions, no one knows how to stop or delay ND at present. Interventions in vitro, in vivo, and in humans will continue to contribute for a better understanding of these pathologies.
Collapse
|
44
|
Nicotinamide, NAD(P)(H), and Methyl-Group Homeostasis Evolved and Became a Determinant of Ageing Diseases: Hypotheses and Lessons from Pellagra. Curr Gerontol Geriatr Res 2012; 2012:302875. [PMID: 22536229 PMCID: PMC3318212 DOI: 10.1155/2012/302875] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 12/19/2011] [Indexed: 01/22/2023] Open
Abstract
Compartmentalized redox faults are common to ageing diseases. Dietary constituents are catabolized to NAD(H) donating electrons producing proton-based bioenergy in coevolved, cross-species and cross-organ networks. Nicotinamide and NAD deficiency from poor diet or high expenditure causes pellagra, an ageing and dementing disorder with lost robustness to infection and stress. Nicotinamide and stress induce Nicotinamide-N-methyltransferase (NNMT) improving choline retention but consume methyl groups. High NNMT activity is linked to Parkinson's, cancers, and diseases of affluence. Optimising nicotinamide and choline/methyl group availability is important for brain development and increased during our evolution raising metabolic and methylome ceilings through dietary/metabolic symbiotic means but strict energy constraints remain and life-history tradeoffs are the rule. An optimal energy, NAD and methyl group supply, avoiding hypo and hyper-vitaminoses nicotinamide and choline, is important to healthy ageing and avoids utilising double-edged symbionts or uncontrolled autophagy or reversions to fermentation reactions in inflammatory and cancerous tissue that all redistribute NAD(P)(H), but incur high allostatic costs.
Collapse
|
45
|
Nachum-Biala Y, Troen AM. B-vitamins for neuroprotection: narrowing the evidence gap. Biofactors 2012; 38:145-50. [PMID: 22419558 DOI: 10.1002/biof.1006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 01/17/2012] [Indexed: 11/11/2022]
Abstract
A compelling and extensive epidemiological literature documents the strong association of inadequate status of folate, vitamin B₁₂, and to a lesser degree vitamin B6, with increased risk of neurodegenerative and cerebrovascular disease. Mildly elevated plasma total homocysteine, which is biochemically related to low status of these B-vitamins, is similarly associated with increased risk for these conditions. This, together with experimental data showing that experimental B-vitamin deficiency and/or hyperhomocysteinemia can cause a variety of neurological and vascular deficits in animals, has provided the evidence base and motivation for a growing number of large randomized, double-blind clinical trials aimed at determining the efficacy and safety of B-vitamin supplementation for preserving cognitive function in older adults. Despite some encouraging trials showing benefit of B-vitamins for slowing brain atrophy and cognitive decline, the majority of these studies have not demonstrated that B-vitamin supplementation has protective or therapeutic cognitive benefit. There are many possible explanations for the inconsistency between the clinical trials and for the discrepancy between their findings and the predictions of the epidemiological evidence. Among these are the possibility of inadequate hypotheses guiding the trials, design limitations of the individual trials, and inherent limitations of nutritional randomized clinical trials. Resolving these issues will be crucial for designing definitive trials and ultimately for guiding nutritional interventions for cognitive protection.
Collapse
Affiliation(s)
- Yaarit Nachum-Biala
- Nutrition and Brain Health Laboratory, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | |
Collapse
|
46
|
Zellner M, Baureder M, Rappold E, Bugert P, Kotzailias N, Babeluk R, Baumgartner R, Attems J, Gerner C, Jellinger K, Roth E, Oehler R, Umlauf E. Comparative platelet proteome analysis reveals an increase of monoamine oxidase-B protein expression in Alzheimer's disease but not in non-demented Parkinson's disease patients. J Proteomics 2012; 75:2080-92. [PMID: 22270014 DOI: 10.1016/j.jprot.2012.01.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/06/2012] [Accepted: 01/08/2012] [Indexed: 11/29/2022]
Abstract
Monoamine oxidase-B (Mao-B) catalysing the breakdown of the neurotransmitter dopamine, is known to be involved in the pathophysiology of Parkinson's (PD) and Alzheimer's disease (AD). Increased brain Mao-B activity is associated with AD. This alteration can also be seen in platelets, albeit the cause has hitherto remained elusive. To gain a deeper understanding of the etiology of AD, the platelet proteome was characterised, (2D DIGE pH6-9, including Mao-B) from 150 individuals: 34 AD, 13 vascular dementia, 15 non-demented PD patients, 49 matched controls, 18 oldest old and 21 young individuals. One significant change was noted after applying false discovery rate with the upregulation of the Mao-B expression (30% adjusted P value<0.001; effect size 1.31) in AD compared to age- and sex-matched controls. In contrast, Mao-B levels were unchanged in PD to matched controls. Western blot and mRNA analyses verified these findings. Moreover, Mao-B concentration correlated with age in the cognitive healthy individuals (r=0.53; P<0.001) and PD patients but not in those suffering from AD (r=-0.03; P=0.874). Mao-B activity correlated with the increased Mao-B protein expression in AD (r=0.81; P=0.016). We suggest that Mao-B platelet protein level may serve as a biomarker for age-related dementia, especially AD.
Collapse
Affiliation(s)
- Maria Zellner
- Surgical Research Laboratories, Medical University of Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
The epigenetics of Alzheimer's disease — additional considerations. Neurobiol Aging 2011; 32:1196-7. [DOI: 10.1016/j.neurobiolaging.2011.02.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 02/23/2011] [Indexed: 12/24/2022]
|