1
|
Sansare A, Magalhaes TNC, Bernard JA. Relationships between balance performance and connectivity of motor cortex with primary somatosensory cortex and cerebellum in middle aged and older adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587335. [PMID: 38853847 PMCID: PMC11160571 DOI: 10.1101/2024.03.29.587335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Connectivity of somatosensory cortex (S1) and cerebellum with the motor cortex (M1) is critical for balance control. While both S1-M1 and cerebellar-M1 connections are affected with aging, the implications of altered connectivity for balance control are not known. We investigated the relationship between S1-M1 and cerebellar-M1 connectivity and standing balance in middle-aged and older adults. Our secondary objective was to investigate how cognition affected the relationship between connectivity and balance. Our results show that greater S1-M1 and cerebellar-M1 connectivity was related to greater postural sway during standing. This may be indicative of an increase in functional recruitment of additional brain networks to maintain upright balance despite differences in network connectivity. Also, cognition moderated the relationship between S1-M1 connectivity and balance, such that those with lower cognition had a stronger relationship between connectivity and balance performance. It may be that individuals with poor cognition need increased recruitment of brain regions (compensation for cognitive declines) and in turn, higher wiring costs, which would be associated with increased functional connectivity.
Collapse
|
2
|
Zampieri C, Leary JB, Shahim P, Damiano D, Ho PS, Pham DL, Chan L. Associations between white matter integrity and postural control in adults with traumatic brain injury. PLoS One 2023; 18:e0288727. [PMID: 38011096 PMCID: PMC10681193 DOI: 10.1371/journal.pone.0288727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/03/2023] [Indexed: 11/29/2023] Open
Abstract
Abnormalities of postural sway have been extensively reported in traumatic brain injury (TBI). However, the underlying neural correlates of balance disturbances in TBI remain to be elucidated. Studies in children with TBI have reported associations between the Sensory Organization Test (SOT) and measures of white matter (WM) integrity with diffusion tensor imaging (DTI) in brain areas responsible for multisensory integration. This study seeks to replicate those associations in adults as well as explore relationships between DTI and the Limits of Stability (LOS) Test. Fifty-six participants (43±17 years old) with a history of TBI were tested 30 days to 5 years post-TBI. This study confirmed results in children for associations between the SOT and the medial lemniscus as well as middle cerebellar peduncle, and revealed additional associations with the posterior thalamic radiation. Additionally, this study found significant correlations between abnormal LOS scores and impaired WM integrity in the cingulum, corpus callosum, corticopontine and corticospinal tracts, fronto-occipital fasciculi, longitudinal fasciculi, medial lemniscus, optic tracts and thalamic radiations. Our findings indicate the involvement of a broad range of WM tracts in the control of posture, and demonstrate the impact of TBI on balance via disruptions to WM integrity.
Collapse
Affiliation(s)
- Cris Zampieri
- Rehabilitation Medicine Department, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jacob B. Leary
- Rehabilitation Medicine Department, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Pashtun Shahim
- Rehabilitation Medicine Department, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Diane Damiano
- Rehabilitation Medicine Department, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Pei-Shu Ho
- Rehabilitation Medicine Department, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dzung L. Pham
- Center for Neuroscience and Regenerative Medicine, The Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Leighton Chan
- Rehabilitation Medicine Department, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
3
|
Jaatela J, Nurmi T, Vallinoja J, Mäenpää H, Sairanen V, Piitulainen H. Altered corpus callosum structure in adolescents with cerebral palsy: connection to gait and balance. Brain Struct Funct 2023; 228:1901-1915. [PMID: 37615759 PMCID: PMC10516810 DOI: 10.1007/s00429-023-02692-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/24/2023] [Indexed: 08/25/2023]
Abstract
Cerebral palsy (CP) is the most common motor disorder in childhood. Recent studies in children with CP have associated weakened sensorimotor performance with impairments in the major brain white-matter (WM) structure, corpus callosum (CC). However, the relationship between CC structure and lower extremity performance, specifically gait and balance, remains unknown. This study investigated the transcallosal WM structure and lower limb motor stability performance in adolescents aged 10-18 years with spastic hemiplegic (n = 18) or diplegic (n = 13) CP and in their age-matched controls (n = 34). The modern diffusion-weighted MRI analysis included the diffusivity properties of seven CC subparts and the transcallosal lower limb sensorimotor tract of the dominant hemisphere. Children with CP had comprehensive impairments in the cross-sectional area, fractional anisotropy, and mean diffusivity of the CC and sensorimotor tract. Additionally, the extent of WM alterations varied between hemiplegic and diplegic subgroups, which was seen especially in the fractional anisotropy values along the sensorimotor tract. The diffusion properties of transcallosal WM were further associated with static stability in all groups, and with dynamic stability in healthy controls. Our novel results clarify the mechanistic role of the corpus callosum in adolescents with and without CP offering valuable insight into the complex interplay between the brain's WM organization and motor performance. A better understanding of the brain basis of weakened stability performance could, in addition, improve the specificity of clinical diagnosis and targeted rehabilitation in CP.
Collapse
Affiliation(s)
- Julia Jaatela
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, 02150, Espoo, Finland.
| | - Timo Nurmi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, 02150, Espoo, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Jaakko Vallinoja
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, 02150, Espoo, Finland
| | - Helena Mäenpää
- Department of Neurology, New Children's Hospital, Helsinki University Central Hospital, 00029, Helsinki, Finland
| | - Viljami Sairanen
- Department of Clinical Neurophysiology, BABA Center, Pediatric Research Center, Children's Hospital and HUS Imaging, Helsinki University Central Hospital, 00029, Helsinki, Finland
- Department of Radiology, Kanta-Häme Central Hospital, 13530, Hämeenlinna, Finland
| | - Harri Piitulainen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, 02150, Espoo, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40014, Jyväskylä, Finland
- Department of Neurology, New Children's Hospital, Helsinki University Central Hospital, 00029, Helsinki, Finland
- Aalto NeuroImaging, Aalto University, 02150, Espoo, Finland
| |
Collapse
|
4
|
Tulimieri DT, Semrau JA. Aging increases proprioceptive error for a broad range of movement speed and distance estimates in the upper limb. Front Hum Neurosci 2023; 17:1217105. [PMID: 37886690 PMCID: PMC10598783 DOI: 10.3389/fnhum.2023.1217105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Previous work has identified age-related declines in proprioception within a narrow range of limb movements. It is unclear whether these declines are consistent across a broad range of movement characteristics that more closely represent daily living. Here we aim to characterize upper limb error in younger and older adults across a range of movement speeds and distances. The objective of this study was to determine how proprioceptive matching accuracy changes as a function of movement speed and distance, as well as understand the effects of aging on these accuracies. We used an upper limb robotic test of proprioception to vary the speed and distance of movement in two groups: younger (n = 20, 24.25 ± 3.34 years) and older adults (n = 21, 63 ± 10.74 years). The robot moved one arm and the participant was instructed to mirror-match the movement with their opposite arm. Participants matched seven different movement speeds (0.1-0.4 m/s) and five distances (7.5-17.5 cm) over 350 trials. Spatial (e.g., End Point Error) and temporal (e.g., Peak Speed Ratio) outcomes were used to quantify proprioceptive accuracy. Regardless of the speed or distance of movement, we found that older controls had significantly reduced proprioceptive matching accuracy compared to younger control participants (p ≤ 0.05). When movement speed was varied, we observed that errors in proprioceptive matching estimates of spatial and temporal measures were significantly higher for older adults for all but the slowest tested speed (0.1 m/s) for the majority of parameters. When movement distance was varied, we observed that errors in proprioceptive matching estimates were significantly higher for all distances, except for the longest distance (17.5 cm) for older adults compared to younger adults. We found that the magnitude of proprioceptive matching errors was dependent on the characteristics of the reference movement, and that these errors scaled increasingly with age. Our results suggest that aging significantly negatively impacts proprioceptive matching accuracy and that proprioceptive matching errors made by both groups lies along a continuum that depends on movement characteristics and that these errors are amplified due to the typical aging process.
Collapse
Affiliation(s)
- Duncan Thibodeau Tulimieri
- Biomechanics and Movement Science (BIOMS), University of Delaware, Newark, DE, United States
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Jennifer A. Semrau
- Biomechanics and Movement Science (BIOMS), University of Delaware, Newark, DE, United States
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| |
Collapse
|
5
|
Paillard T. The optimal method for improving postural balance in healthy young and older people: specific training for postural tasks encountered in personal physical practice. Front Physiol 2023; 14:1188496. [PMID: 37449015 PMCID: PMC10338096 DOI: 10.3389/fphys.2023.1188496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
It is well known that regular exercise or physical activity (training) improves postural balance in healthy young and older subjects, but the optimal exercise or physical activity (i.e., likely to induce the greatest postural improvements) and the context in which it is carried out remain to be explored and determined for each population. The most beneficial adaptations would depend, in particular, on gestural conditions (body position, movement and gesture practiced) and material conditions (nature of the ground surface, sports equipment used, type of environment - stable or changing). In fact, the global postural adaptations induced by training do not result from the transfer between different trained and untrained postural tasks, but are the sum of the adaptations related to each trained postural task in healthy young and older subjects. Based on current knowledge, optimal training programs should include the full range of postural tasks encountered in personal physical practice for each population. To date, the method of implementing progressive postural balance tasks with different degrees of difficulty and instability has been used as the effective method to improve postural balance, but it should not be considered as the reference method. Instead, it should be considered as a complementary method to the one based on specific postural tasks. An intervention strategy is proposed for young and older adults consisting of three different steps (general, oriented and specific/ecologic training). However, some parameters still need to be explored and possibly reconsidered in future studies to improve postural balance in an optimal way.
Collapse
|
6
|
Rasooli A, Adab HZ, Van Ruitenbeek P, Weerasekera A, Chalavi S, Cuypers K, Levin O, Dhollander T, Peeters R, Sunaert S, Mantini D, Swinnen SP. White matter and neurochemical mechanisms underlying age-related differences in motor processing speed. iScience 2023; 26:106794. [PMID: 37255665 PMCID: PMC10225899 DOI: 10.1016/j.isci.2023.106794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/11/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Aging is associated with changes in the central nervous system and leads to reduced life quality. Here, we investigated the age-related differences in the CNS underlying motor performance deficits using magnetic resonance spectroscopy and diffusion MRI. MRS measured N-acetyl aspartate (NAA), choline (Cho), and creatine (Cr) concentrations in the sensorimotor and occipital cortex, whereas dMRI quantified apparent fiber density (FD) in the same voxels to evaluate white matter microstructural organization. We found that aging was associated with increased reaction time and reduced FD and NAA concentration in the sensorimotor voxel. Both FD and NAA mediated the association between age and reaction time. The NAA concentration was found to mediate the association between age and FD in the sensorimotor voxel. We propose that the age-related decrease in NAA concentration may result in reduced axonal fiber density in the sensorimotor cortex which may ultimately account for the response slowness of older participants.
Collapse
Affiliation(s)
- Amirhossein Rasooli
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Hamed Zivari Adab
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Peter Van Ruitenbeek
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Akila Weerasekera
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sima Chalavi
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Koen Cuypers
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
- REVAL Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium
| | - Oron Levin
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Thijs Dhollander
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Ronald Peeters
- KU Leuven, Department of Imaging and Pathology, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- KU Leuven, Department of Imaging and Pathology, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Dante Mantini
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Stephan P. Swinnen
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
O'Dowd A, Hirst RJ, Setti A, Kenny RA, Newell FN. Older adults with slow sit to stand times show reduced temporal precision of audio-visual integration. Exp Brain Res 2023; 241:1633-1642. [PMID: 37170028 PMCID: PMC10224838 DOI: 10.1007/s00221-023-06628-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
Sustained integration of sensory inputs over increased temporal delays is associated with reduced cognitive and physical functioning in older adults and adverse outcomes such as falls. Here, we explored the relationship between multisensory integration and a clinically relevant measure of balance/postural control; Sit-to-Stand Time, the efficiency with which an older adult can transition between a seated and a standing posture. We investigated whether temporal multisensory integration was associated with performance on the Five-Times Sit-to-Stand Test (FTSST) in a large sample of 2556 older adults (mean age = 63.62 years, SD = 7.50; 55% female) drawn from The Irish Longitudinal Study on Ageing (TILDA). K-means clustering was applied to FTSST data, yielding three clusters characterised by fast (mean = 10.88 s; n = 1122), medium (mean = 14.34 s; n = 1133) and slow (mean = 18.97 s; n = 301) sit-to-stand times. At wave 3 of TILDA, older adults participated in the Sound Induced Flash Illusion (SIFI), a measure of the precision of temporal audio-visual integration, which included three audio-visual stimulus onset asynchronies (SOAs): 70, 150 and 230 ms. Older adults with the slowest sit-to-stand times were more susceptible to the SIFI at the longest SOA (230 ms) compared to the shortest SOA (70 ms) relative to those with the fastest times (p = 0.02). Older adults who take longer to repeatedly transition from a seated to a standing posture exhibit an expanded temporal binding window for audio-visual events, supporting a link between multisensory perception and balance/postural control in ageing.
Collapse
Affiliation(s)
- A O'Dowd
- School of Psychology, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland.
| | - R J Hirst
- School of Psychology, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - A Setti
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
- School of Applied Psychology, University College Cork, Cork, Ireland
| | - R A Kenny
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
- Mercer Institute for Successful Ageing, St James Hospital, Dublin, Ireland
| | - F N Newell
- School of Psychology, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Chepisheva MK. Spatial orientation, postural control and the vestibular system in healthy elderly and Alzheimer's dementia. PeerJ 2023; 11:e15040. [PMID: 37151287 PMCID: PMC10162042 DOI: 10.7717/peerj.15040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/21/2023] [Indexed: 05/09/2023] Open
Abstract
Background While extensive research has been advancing our understanding of the spatial and postural decline in healthy elderly (HE) and Alzheimer's disease (AD), much less is known about how the vestibular system contributes to the spatial and postural processing in these two populations. This is especially relevant during turning movements in the dark, such as while walking in our garden or at home at night, where the vestibular signal becomes central. As the prevention of falls and disorientation are of serious concern for the medical service, more vestibular-driven knowledge is necessary to decrease the burden for HE and AD patients with vestibular disabilities. Overview of the article The review briefly presents the current "non-vestibular based" knowledge (i.e. knowledge based on research that does not mention the "vestibular system" as a contributor or does not investigate its effects) about spatial navigation and postural control during normal healthy ageing and AD pathology. Then, it concentrates on the critical sense of the vestibular system and explores the current expertise about the aspects of spatial orientation and postural control from a vestibular system point of view. The norm is set by first looking at how healthy elderly change with age with respect to their vestibular-guided navigation and balance, followed by the AD patients and the difficulties they experience in maintaining their balance or during navigation. Conclusion Vestibular spatial and vestibular postural deficits present a considerable disadvantage and are felt not only on a physical but also on a psychological level by all those affected. Still, there is a clear need for more (central) vestibular-driven spatial and postural knowledge in healthy and pathological ageing, which can better facilitate our understanding of the aetiology of these dysfunctions. A possible change can start with the more frequent implementation of the "vestibular system examination/rehabilitation/therapy" in the clinic, which can then lead to an improvement of future prognostication and disease outcome for the patients.
Collapse
|
9
|
Levin O, Vints WAJ, Ziv G, Katkutė G, Kušleikienė S, Valatkevičienė K, Sheoran S, Drozdova-Statkevičienė M, Gleiznienė R, Pääsuke M, Dudonienė V, Himmelreich U, Česnaitienė VJ, Masiulis N. Neurometabolic correlates of posturography in normal aging and older adults with mild cognitive impairment: Evidence from a 1H-MRS study. Neuroimage Clin 2023; 37:103304. [PMID: 36580713 PMCID: PMC9827054 DOI: 10.1016/j.nicl.2022.103304] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/03/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) holds promise for revealing and understanding neurodegenerative processes associated with cognitive and functional impairments in aging. In the present study, we examined the neurometabolic correlates of balance performance in 42 cognitively intact older adults (healthy controls - HC) and 26 older individuals that were diagnosed with mild cognitive impairment (MCI). Neurometabolite ratios of total N-acetyl aspartate (tNAA), glutamate-glutamine complex (Glx), total choline (tCho) and myo-inositol (mIns) relative to total creatine (tCr) were assessed using single voxel 1H-MRS in four different brain regions. Regions of interest were the left hippocampus (HPC), dorsal posterior cingulate cortex (dPCC), left sensorimotor cortex (SM1), and right dorsolateral prefrontal cortex (dlPFC). Center-of-pressure velocity (Vcop) and dual task effect (DTE) were used as measures of balance performance. Results indicated no significant group differences in neurometabolite ratios and balance performance measures. However, our observations revealed that higher tCho/tCr and mIns/tCr in hippocampus and dPCC were generic predictors of worse balance performance, suggesting that neuroinflammatory processes in these regions might be a driving factor for impaired balance performance in aging. Further, we found that higher tNAA/tCr and mIns/tCr and lower Glx/tCr in left SM1 were predictors of better balance performance in MCI but not in HC. The latter observation hints at the possibility that individuals with MCI may upregulate balance control through recruitment of sensorimotor pathways.
Collapse
Affiliation(s)
- Oron Levin
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania; Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium
| | - Wouter A J Vints
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania; Department of Rehabilitation Medicine Research School CAPHRI, Maastricht University P.O. Box 616, 6200 MD Maastricht, the Netherlands; Centre of Expertise in Rehabilitation and Audiology, Adelante Zorggroep, Hoensbroek, The Netherlands.
| | - Gal Ziv
- The Academic College at Wingate, Netanya 4290200, Israel
| | - Gintarė Katkutė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania
| | - Simona Kušleikienė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania
| | - Kristina Valatkevičienė
- Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Samrat Sheoran
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania; Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | | | - Rymantė Gleiznienė
- Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Mati Pääsuke
- Institute of Sport Sciences and Physiotherapy, University of Tartu, Estonia
| | - Vilma Dudonienė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania
| | - Uwe Himmelreich
- Biomedical MRI Unit, Department of Imaging and Pathology, Group Biomedical Sciences, KU Leuven, Leuven 3000, Belgium
| | - Vida J Česnaitienė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania
| | - Nerijus Masiulis
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania; Department of Rehabilitation, Physical and Sports Medicine, Institute of Health Science, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
10
|
Hupfeld KE, McGregor HR, Hass CJ, Pasternak O, Seidler RD. Sensory system-specific associations between brain structure and balance. Neurobiol Aging 2022; 119:102-116. [PMID: 36030560 PMCID: PMC9728121 DOI: 10.1016/j.neurobiolaging.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/26/2022] [Accepted: 07/28/2022] [Indexed: 11/15/2022]
Abstract
Nearly 75% of older adults in the US report balance problems. Although it is known that aging results in widespread brain atrophy, less is known about how brain structure relates to balance in aging. We collected T1- and diffusion-weighted MRI scans and measured postural sway of 36 young (18-34 years) and 22 older (66-84 years) adults during eyes open, eyes closed, eyes open-foam, and eyes closed-foam conditions. We calculated summary measures indicating visual, proprioceptive, and vestibular contributions to balance. Across both age groups, thinner cortex in multisensory integration regions was associated with greater reliance on visual inputs for balance. Greater gyrification within sensorimotor and parietal cortices was associated with greater reliance on proprioceptive inputs. Poorer vestibular function was correlated with thinner vestibular cortex, greater gyrification within sensorimotor, parietal, and frontal cortices, and lower free water-corrected axial diffusivity across the corona radiata and corpus callosum. These results expand scientific understanding of how individual differences in brain structure relate to balance and have implications for developing brain stimulation interventions to improve balance.
Collapse
Affiliation(s)
- K E Hupfeld
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - H R McGregor
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - C J Hass
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - O Pasternak
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - R D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; University of Florida Norman Fixel Institute for Neurological Diseases, Gainesville, FL, USA.
| |
Collapse
|
11
|
Kannan L, Bhatt T, Zhang A, Ajilore O. Association of balance control mechanisms with brain structural integrity in older adults with mild cognitive impairment. Neurosci Lett 2022; 783:136699. [DOI: 10.1016/j.neulet.2022.136699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
|
12
|
Ogama N, Endo H, Satake S, Niida S, Arai H, Sakurai T. Impact of regional white matter hyperintensities on specific gait function in Alzheimer's disease and mild cognitive impairment. J Cachexia Sarcopenia Muscle 2021; 12:2045-2055. [PMID: 34585518 PMCID: PMC8718089 DOI: 10.1002/jcsm.12807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/01/2021] [Accepted: 08/23/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Gait disturbance and musculoskeletal changes are evident in persons living with Alzheimer's disease (AD). Because complex gait control requires the integration of neural networks, cerebral small vessel disease (SVD), which is highly prevalent in persons with AD, might have an additional impact on gait disturbance. This study investigated whether white matter hyperintensities (WMH) are more predominantly associated with gait disturbance in persons with AD than in individuals with mild cognitive impairment (MCI) and normal cognition (NC) and further identified the regional impact of WMH on specific gait changes. METHODS This study included 396 subjects (aged 65 to 86 years, 63.9% female) diagnosed with AD (n = 187), MCI (n = 118), or NC (n = 91). WMH, lacunes, perivascular spaces, and cerebral microbleeds were assessed as markers of SVD. The volume of WMH was quantified in each brain lobe (frontal, temporal, occipital, and parietal) and sublobar regions in the basal ganglia and thalamus. Gait function was assessed using an electronic walkway. We investigated the association between regional WMH and gait disturbance in individuals with AD, MCI, and NC, adjusted for classical and musculoskeletal confounders. RESULTS Among markers of SVD, WMH were most associated with gait disturbance. In AD subjects, periventricular WMH in the frontal and parietal lobes were associated with slow gait speed (rs = -0.21, P = 0.007 and rs = -0.18, P = 0.019, respectively). These lesions were also associated with changes in stride time, double-leg support time, and walking angle (all rs > 0.20, P < 0.01). Lesions in the basal ganglia and thalamus were associated with slow gait speed (rs = -0.16, P = 0.034 and rs = -0.18, P = 0.023, respectively) and greater gait speed variability (rs = 0.16, P = 0.034 and rs = 0.20, P = 0.010, respectively). MCI subjects showed only associations between sublobar lesions and shorter stride length (rs = -0.24, P = 0.016) and increased walking angle (rs = 0.32, P = 0.002). NC subjects did not show associations between WMH and gait parameters. MCI and NC subjects were more affected by muscle weakness than WMH for global gait function (rs = 0.42, P < 0.001 and rs = 0.23, P = 0.046, respectively). CONCLUSIONS Persons with AD showed a predominant association between WMH and gait disturbance compared with MCI and NC subjects, and regional WMH had a detrimental effect on specific gait changes.
Collapse
Affiliation(s)
- Noriko Ogama
- Department of Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Japan.,Department of Frailty Research, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hidetoshi Endo
- Department of Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Shosuke Satake
- Department of Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Japan.,Department of Frailty Research, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Shumpei Niida
- Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hidenori Arai
- National Center for Geriatrics and Gerontology, Obu, Japan
| | - Takashi Sakurai
- Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Obu, Japan.,Department of Cognition and Behavior Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
13
|
Nicolini C, Fahnestock M, Gibala MJ, Nelson AJ. Understanding the Neurophysiological and Molecular Mechanisms of Exercise-Induced Neuroplasticity in Cortical and Descending Motor Pathways: Where Do We Stand? Neuroscience 2020; 457:259-282. [PMID: 33359477 DOI: 10.1016/j.neuroscience.2020.12.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
Exercise is a promising, cost-effective intervention to augment successful aging and neurorehabilitation. Decline of gray and white matter accompanies physiological aging and contributes to motor deficits in older adults. Exercise is believed to reduce atrophy within the motor system and induce neuroplasticity which, in turn, helps preserve motor function during aging and promote re-learning of motor skills, for example after stroke. To fully exploit the benefits of exercise, it is crucial to gain a greater understanding of the neurophysiological and molecular mechanisms underlying exercise-induced brain changes that prime neuroplasticity and thus contribute to postponing, slowing, and ameliorating age- and disease-related impairments in motor function. This knowledge will allow us to develop more effective, personalized exercise protocols that meet individual needs, thereby increasing the utility of exercise strategies in clinical and non-clinical settings. Here, we review findings from studies that investigated neurophysiological and molecular changes associated with acute or long-term exercise in healthy, young adults and in healthy, postmenopausal women.
Collapse
Affiliation(s)
- Chiara Nicolini
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Margaret Fahnestock
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Aimee J Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
14
|
Disrupted white matter integrity and network connectivity are related to poor motor performance. Sci Rep 2020; 10:18369. [PMID: 33110225 PMCID: PMC7591496 DOI: 10.1038/s41598-020-75617-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 10/15/2020] [Indexed: 11/24/2022] Open
Abstract
Motor impairment is common in the elderly population. Disrupted white matter tracts and the resultant loss of connectivity between cortical regions play an essential role in motor control. Using diffusion tensor imaging (DTI), we investigated the effect of white matter microstructure on upper-extremity and lower-extremity motor function in a community-based sample. A total of 766 participants (57.3 ± 9.2 years) completed the assessment of motor performance, including 3-m walking speed, 5-repeat chair-stand time, 10-repeat hand pronation-supination time, and 10-repeat finger-tapping time. Fractional anisotropy (FA), mean diffusivity (MD), and structural network connectivity parameters were calculated based on DTI. Lower FA and higher MD were associated with poor performance in walking, chair-stand, hand pronation-supination, and finger-tapping tests, independent of the presence of lacunes, white matter hyperintensities volume, and brain atrophy. Reduced network density, network strength, and global efficiency related to slower hand pronation-supination and finger-tapping, but not related to walking speed and chair-stand time. Disrupted white matter integrity and reduced cerebral network connectivity were associated with poor motor performance. Diffusion-based methods provide a more in-depth insight into the neural basis of motor dysfunction.
Collapse
|
15
|
Dijkstra BW, Bekkers EMJ, Gilat M, de Rond V, Hardwick RM, Nieuwboer A. Functional neuroimaging of human postural control: A systematic review with meta-analysis. Neurosci Biobehav Rev 2020; 115:351-362. [PMID: 32407735 DOI: 10.1016/j.neubiorev.2020.04.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/07/2020] [Accepted: 04/23/2020] [Indexed: 02/03/2023]
Abstract
Postural instability is a strong risk factor for falls that becomes more prominent with aging. To facilitate treatment and prevention of falls in an aging society, a thorough understanding of the neural networks underlying postural control is warranted. Here, we present a systematic review of the functional neuroimaging literature of studies measuring posture-related neural activity in healthy subjects. Study methods were overall heterogeneous. Eleven out of the 14 studies relied on postural simulation in a supine position (e.g. motor imagery). The key nodes of human postural control involved the brainstem, cerebellum, basal ganglia, thalamus and several cortical regions. An activation likelihood estimation meta-analysis revealed that the anterior cerebellum was consistently activated across the wide range of postural tasks. The cerebellum is known to modulate the brainstem nuclei involved in the control of posture. Hence, this systematic review with meta-analysis provides insight into the neural correlates which underpin human postural control and which may serve as a reference for future neural network and region of interest analyses.
Collapse
Affiliation(s)
- Bauke W Dijkstra
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, Bus 1501, 3001, Leuven, Belgium.
| | - Esther M J Bekkers
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, Bus 1501, 3001, Leuven, Belgium.
| | - Moran Gilat
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, Bus 1501, 3001, Leuven, Belgium.
| | - Veerle de Rond
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, Bus 1501, 3001, Leuven, Belgium.
| | - Robert M Hardwick
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, Bus 1501, 3001, Leuven, Belgium; Institute of Neuroscience, Université Catholique De Louvain, Brussels, Belgium.
| | - Alice Nieuwboer
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, Bus 1501, 3001, Leuven, Belgium.
| |
Collapse
|
16
|
Associations between Age-Related Changes in the Core Vestibular Projection Pathway and Balance Ability: A Diffusion Tensor Imaging Study. Behav Neurol 2020; 2020:2825108. [PMID: 32104515 PMCID: PMC7036129 DOI: 10.1155/2020/2825108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Objective We investigated the changes of the vestibulospinal tract (VST) and parietoinsular vestibular cortex (PIVC) using diffusion tensor imaging (DTI) and relation to balance between old and young healthy adults. Methods This study recruited eleven old adults (6 males, 5 females; mean age 63.36 ± 4.25 years) and 12 young adults (7 males, 5 females; mean age 28.42 ± 4.40 years). The lateral and medial VST and PIVC were reconstructed using DTI. Fractional anisotropy (FA), mean diffusivity (MD), and tract volume were measured. The six-minute walk test (6-MWT), the timed up and go test (TUG), and the Berg balance scale (BBS) were conducted. Spatiotemporal parameters during tandem gait and values of sway during one-leg standing using the wearable sensors were measured. All parameters between two groups were analyzed by the Mann-Whitney U test and independent t-test. Results Statistically significant decrease in old adults was detected in the tract volume of lateral (p = 0.005) and medial VST (p = 0.005) and medial VST (p = 0.005) and medial VST (p = 0.005) and medial VST (p = 0.005) and medial VST (p = 0.005) and medial VST (p = 0.005) and medial VST (p = 0.005) and medial VST (p = 0.005) and medial VST (p = 0.005) and medial VST (p = 0.005) and medial VST (p = 0.005) and medial VST (p = 0.005) and medial VST (p = 0.005) and medial VST (p = 0.005) and medial VST (. Conclusion The results suggested that there was a relationship between DTI parameters in the vestibular neural pathway and balance according to aging.
Collapse
|
17
|
Noohi F, Kinnaird C, De Dios Y, Kofman I, Wood SJ, Bloomberg JJ, Mulavara AP, Sienko KH, Polk TA, Seidler RD. Deactivation of somatosensory and visual cortices during vestibular stimulation is associated with older age and poorer balance. PLoS One 2019; 14:e0221954. [PMID: 31513630 PMCID: PMC6742389 DOI: 10.1371/journal.pone.0221954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
Aging is associated with peripheral and central declines in vestibular processing and postural control. Here we used functional MRI to investigate age differences in neural vestibular representations in response to pneumatic tap stimulation. We also measured the amount of body sway in multiple balance tasks outside of the MRI scanner to assess the relationship between individuals' balance ability and their vestibular neural response. We found a general pattern of activation in canonical vestibular cortex and deactivation in cross modal sensory regions in response to vestibular stimulation. We found that activation amplitude of the vestibular cortex was correlated with age, with younger individuals exhibiting higher activation. Deactivation of visual and somatosensory regions increased with age and was associated with poorer balance. The results demonstrate that brain activations and deactivations in response to vestibular stimuli are correlated with balance, and the pattern of these correlations varies with age. The findings also suggest that older adults exhibit less sensitivity to vestibular stimuli, and may compensate by differentially reweighting visual and somatosensory processes.
Collapse
Affiliation(s)
- Fatemeh Noohi
- Department of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States of America
- * E-mail:
| | - Catherine Kinnaird
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | | | - Igor Kofman
- KBRwyle, Houston, TX, United States of America
| | - Scott J. Wood
- NASA Johnson Space Center, Houston, TX, United States of America
| | | | | | - Kathleen H. Sienko
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Thad A. Polk
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States of America
| | - Rachael D. Seidler
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
18
|
Henry M, Baudry S. Age-related changes in leg proprioception: implications for postural control. J Neurophysiol 2019; 122:525-538. [PMID: 31166819 DOI: 10.1152/jn.00067.2019] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In addition to being a prerequisite for many activities of daily living, the ability to maintain steady upright standing is a relevant model to study sensorimotor integrative function. Upright standing requires managing multimodal sensory inputs to produce finely tuned motor output that can be adjusted to accommodate changes in standing conditions and environment. The sensory information used for postural control mainly arises from the vestibular system of the inner ear, vision, and proprioception. Proprioception (sense of body position and movement) encompasses signals from mechanoreceptors (proprioceptors) located in muscles, tendons, and joint capsules. There is general agreement that proprioception signals from leg muscles provide the primary source of information for postural control. This is because of their exquisite sensitivity to detect body sway during unperturbed upright standing that mainly results from variations in leg muscle length induced by rotations around the ankle joint. However, aging is associated with alterations of muscle spindles and their neural pathways, which induce a decrease in the sensitivity, acuity, and integration of the proprioceptive signal. These alterations promote changes in postural control that reduce its efficiency and thereby may have deleterious consequences for the functional independence of an individual. This narrative review provides an overview of how aging alters the proprioceptive signal from the legs and presents compelling evidence that these changes modify the neural control of upright standing.
Collapse
Affiliation(s)
- Mélanie Henry
- Laboratory of Applied Biology and Research Unit in Applied Neurophysiology, ULB Neuroscience Institute, Université libre de Bruxelles, Brussels, Belgium
| | - Stéphane Baudry
- Laboratory of Applied Biology and Research Unit in Applied Neurophysiology, ULB Neuroscience Institute, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
19
|
Massa RE, Rosso A, Metti AL, Sparto PJ, Aizenstein H, Ferrucci L, Divecha A, Rosano C. Neuroimaging correlates of lateral postural control in older ambulatory adults. Aging Clin Exp Res 2019; 31:611-619. [PMID: 30168099 DOI: 10.1007/s40520-018-1028-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/17/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND In older adults, impaired postural control contributes to falls, a major source of morbidity. Understanding central mechanisms may help identify individuals at risk for impaired postural control. AIMS To determine the relationship between gray matter volume (GMV), white matter hyperintensities (WMH), mean diffusivity (MD), and fractional anisotropy (FA) with lateral postural control. METHODS Neuroimaging and postural control were assessed in 193 community-dwelling older adults (mean age 82, 55.4% female, 44.6% black). GMV, WMH, and diffusion tensor-derived markers of microstructure (MD and FA) were quantified for total brain and regions of interest. Lateral postural control was defined as the root mean square error (RMSE) of lateral sway during a visual feedback test. Associations were assessed with linear regression, adjusted for total brain atrophy and risk factors for impaired postural control. RESULTS RMSE was higher for women than men (p < 0.001) and inversely correlated with gait speed (r = - 0.20, p = 0.01), modified mini-mental state (r = - 0.27, p < 0.001), digit symbol substitution test (r = - 0.20, p = 0.01) and quadriceps strength (r = - 0.18, p = 0.01). RMSE was inversely associated with GMV of bilateral precuneus (r = - 0.26, p = 0.01) and FA of corpus callosum and selected tracts in the right hemisphere (anterior thalamic radiation, cingulum, inferior longitudinal and fronto-occipital fasciculi), independent of covariates (r = - 0.34 to - 0.18, p ≤ 0.04). DISCUSSION Lower GMV and microstructural white matter integrity in selected networks can explain worse lateral postural control in older ambulatory adults without neurologic diseases. CONCLUSION Neuroimaging markers of poor postural control in healthy aging may help identify increased fall risk and design preventative fall strategies.
Collapse
|
20
|
TERADA MASAFUMI, JOHNSON NATHAN, KOSIK KYLE, GRIBBLE PHILLIP. Quantifying Brain White Matter Microstructure of People with Lateral Ankle Sprain. Med Sci Sports Exerc 2019; 51:640-646. [DOI: 10.1249/mss.0000000000001848] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Ghanavati T, Smitt MS, Lord SR, Sachdev P, Wen W, Kochan NA, Brodaty H, Delbaere K. Deep white matter hyperintensities, microstructural integrity and dual task walking in older people. Brain Imaging Behav 2019; 12:1488-1496. [PMID: 29297156 DOI: 10.1007/s11682-017-9787-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To examine neural, physiological and cognitive influences on gait speed under single and dual-task conditions. Sixty-two community-dwelling older people (aged 80.0 ± 4.2 years) participated in our study. Gait speed was assessed with a timed 20-meter walk under single and dual-task (reciting alternate letters of the alphabet) conditions. Participants also underwent tests to estimate physiological fall risk based on five measures of sensorimotor function, cognitive function across five domains, brain white matter (WM) hyperintensities and WM microstructural integrity by measuring fractional anisotropy (FA). Univariate linear regression analyses showed that global physiological and cognitive measures were associated with single (β = 0.594 and β=-0.297, respectively) and dual-task gait speed (β = 0.306 and β=-0.362, respectively). Deep WMHs were associated with dual-task gait speed only (β = 0.257). Multivariate mediational analyses showed that global and executive cognition reduced the strength of the association between deep WMHs and dual-task gait speed by 27% (β = 0.188) and 44% (β = 0.145) respectively. There was a significant linear association between single-task gait speed and mean FA values of the genu (β=-0.295) and splenium (β=-0.326) of the corpus callosum, and between dual-task gait speed and mean FA values of Superior Cerebellar Peduncle (β=-0.284), splenium of the Corpus Callosum (β=-0.286) and Cingulum (β=-0.351). Greater deep WMH volumes are associated with slower walking speed under dual-task conditions, and this relationship is mediated in part by global cognition and executive abilities specifically. Furthermore, both cerebellum and cingulum are related to dual-task walking due to their role in motor skill performance and attention, respectively.
Collapse
Affiliation(s)
- Tabassom Ghanavati
- Department of Physiotherapy Faculty of Rehabilitation, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Myriam Sillevis Smitt
- Neuroscience Research Australia, University of New South Wales, NeuRA, Margarete Ainsworth Building, Barker Street, Randwick, NSW, 2031, Australia
| | - Stephen R Lord
- Neuroscience Research Australia, University of New South Wales, NeuRA, Margarete Ainsworth Building, Barker Street, Randwick, NSW, 2031, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing (CHeBA) School of Psychiatry UNSW Medicine, University of New South Wales, Sydney, Australia.,Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA) School of Psychiatry UNSW Medicine, University of New South Wales, Sydney, Australia
| | - Nicole A Kochan
- Centre for Healthy Brain Ageing (CHeBA) School of Psychiatry UNSW Medicine, University of New South Wales, Sydney, Australia.,Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, Australia
| | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA) School of Psychiatry UNSW Medicine, University of New South Wales, Sydney, Australia.,Dementia Collaborative Research Centre UNSW Medicine, University of New South Wales, Sydney, Australia
| | - Kim Delbaere
- Neuroscience Research Australia, University of New South Wales, NeuRA, Margarete Ainsworth Building, Barker Street, Randwick, NSW, 2031, Australia.
| |
Collapse
|
22
|
The Influence of Video Game Training with and without Subpatelar Bandage in Mobility and Gait Speed on Elderly Female Fallers. J Aging Res 2018; 2018:9415093. [PMID: 29796315 PMCID: PMC5896240 DOI: 10.1155/2018/9415093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/29/2018] [Accepted: 03/06/2018] [Indexed: 11/22/2022] Open
Abstract
Objectives The aim of the study was to investigate the effect of balance training with Nintendo Wii technology, with and without the use of additional sensory information (subpatellar bandage), in the functional mobility and gait speed of elderly female fallers. Methods Twenty elderly women were divided into two groups: group I: trained with the use of the Nintendo Wii; group II: trained using the Nintendo Wii and the addition of sensory information (subpatellar bandage). The functional mobility was assessed with the Timed up and Go test (TUG) and gait speed with the 10 m test. The tests were carried out with and without the use of the subpatellar bandage. The training was carried out within sessions of 30 minutes, twice a week, using three different games (Penguin Slide, Table Tilt, and Tightrope). Results There was an increase in the gait speed and a decrease in the TUG time in both groups, independently of the sensory condition used (p < 0.05). In the short term, the subpatellar bandage improved the TUG time (p < 0.05) and the gait speed (p < 0.01). Conclusion The training for postural balance with virtual reality was effective for improving functional mobility and gait speed of elderly female fallers. The subpatellar bandage did not maximize the effect of training.
Collapse
|
23
|
Drozdova-Statkevičienė M, Česnaitienė VJ, Pukėnas K, Levin O, Masiulis N. Sway regularity and sway activity in older adults’ upright stance are differentially affected by dual task. Neurosci Lett 2018; 666:153-157. [DOI: 10.1016/j.neulet.2017.12.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/22/2017] [Accepted: 12/26/2017] [Indexed: 10/18/2022]
|
24
|
The effect of age and microstructural white matter integrity on lap time variation and fast-paced walking speed. Brain Imaging Behav 2017; 10:697-706. [PMID: 26399234 DOI: 10.1007/s11682-015-9449-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Macrostructural white matter damage (WMD) is associated with less uniform and slower walking in older adults. The effect of age and subclinical microstructural WM degeneration (a potentially earlier phase of WM ischemic damage) on walking patterns and speed is less clear. This study examines the effect of age on the associations of regional microstructural WM integrity with walking variability and speed, independent of macrostructural WMD. This study involved 493 participants (n = 51 young; n = 209 young-old; n = 233 old-old) from the Baltimore Longitudinal Study of Aging. All completed a 400-meter walk test and underwent a concurrent brain MRI with diffusion tensor imaging. Microstructural WM integrity was measured as fractional anisotropy (FA). Walking variability was measured as trend-adjusted variation in time over ten 40-meter laps (lap time variation, LTV). Fast-paced walking speed was assessed as mean lap time (MLT). Multiple linear regression models of FA predicting LTV and MLT were adjusted for age, sex, height, weight, and WM hyperintensities. Independent of WM hyperintensities, lower FA in the body of the corpus callosum was associated with higher LTV and longer MLT only in the young-old. Lower FA in superior longitudinal, inferior fronto-occipital, and uncinate fasciculi, the anterior limb of the internal capsule, and the anterior corona radiate was associated with longer MLT only in the young-old. While macrostructural WMD is known to predict more variable and slower walking in older adults, microstructural WM disruption is independently associated with more variable and slower fast-paced walking only in the young-old. Disrupted regional WM integrity may be a subclinical contributor to abnormal walking at an earlier phase of aging.
Collapse
|
25
|
Cruz-Almeida Y, Rosso A, Marcum Z, Harris T, Newman AB, Nevitt M, Satterfield S, Yaffe K, Rosano C. Associations of Musculoskeletal Pain With Mobility in Older Adults: Potential Cerebral Mechanisms. J Gerontol A Biol Sci Med Sci 2017; 72:1270-1276. [PMID: 28505228 PMCID: PMC5861958 DOI: 10.1093/gerona/glx084] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/25/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Musculoskeletal pain is highly prevalent and limits mobility in older adults. A potential mechanism by which pain affects mobility could be through its negative impact on the brain. We examined whether structural integrity of cerebral gray and white matter (WM) mediated the relationship between pain and mobility in community-dwelling older adults. METHODS Musculoskeletal pain, gait speed, and neuroimaging data were obtained concurrently from the Health ABC study (mean age = 83/56% female, n = 212). Microstructural gray matter integrity was measured by mean diffusivity (MD), WM microstructure and macrostructure were measured by fractional anisotropy (FA) and WM hyperintensities (WMH), respectively. Regression models were adjusted for gray matter atrophy, age, gender, medication use, and obesity. Bootstrapped mediation methods were used (1,000 bootstrapped samples, 95% confidence intervals). RESULTS The associations of musculoskeletal pain with WMH (β = .19, p < .05) and FA (β = -.18, p < .05) were robust to adjustment for gender, medication use, age, body mass index (BMI), and brain atrophy. Participants who experienced both knee and back pain had a significantly slower gait speed (~0.11 m/s) than those without knee or back pain (p < .05) independent of gender, medication, age, and BMI. WMH and FA significantly mediated the pain-gait speed relationship. Associations between pain and MD were not significant, and MD did not modify the association between pain and gait speed. CONCLUSIONS Cerebral WM integrity may contribute to the detrimental effects of musculoskeletal pain on mobility, although pre-existing WM integrity may also simultaneously amplify pain and decrease mobility. Future studies are needed to further understand whether successful pain management may significantly improve both brain health and mobility.
Collapse
Affiliation(s)
- Yenisel Cruz-Almeida
- Departments of Aging and Geriatric Research and Neuroscience, Institute on Aging, Pain Research and Intervention Center of Excellence, University of Florida
| | - Andrea Rosso
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh
| | - Zachary Marcum
- Department of Pharmacy, School of Pharmacy, University of Washington
| | - Tamara Harris
- Laboratory of Epidemiology and Population Science, National Institute on Aging
| | - Anne B Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh
- Department of Geriatric Medicine, School of Medicine, University of Pittsburgh
| | - Michael Nevitt
- Department of Epidemiology and Biostatistics, UCSF School of Medicine
| | - Suzanne Satterfield
- Department of Preventive Medicine, University of Tennessee Health Science Center
| | - Kristine Yaffe
- Departments of Psychiatry, Neurology and Epidemiology, UCSF School of Medicine
| | - Caterina Rosano
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh
| |
Collapse
|
26
|
Diez I, Drijkoningen D, Stramaglia S, Bonifazi P, Marinazzo D, Gooijers J, Swinnen SP, Cortes JM. Enhanced prefrontal functional-structural networks to support postural control deficits after traumatic brain injury in a pediatric population. Netw Neurosci 2017; 1:116-142. [PMID: 29911675 PMCID: PMC5988395 DOI: 10.1162/netn_a_00007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/28/2017] [Indexed: 11/04/2022] Open
Abstract
Traumatic brain injury (TBI) affects structural connectivity, triggering the reorganization of structural-functional circuits in a manner that remains poorly understood. We focus here on brain network reorganization in relation to postural control deficits after TBI. We enrolled young participants who had suffered moderate to severe TBI, comparing them to young, typically developing control participants. TBI patients (but not controls) recruited prefrontal regions to interact with two separated networks: (1) a subcortical network, including parts of the motor network, basal ganglia, cerebellum, hippocampus, amygdala, posterior cingulate gyrus, and precuneus; and (2) a task-positive network, involving regions of the dorsal attention system, together with dorsolateral and ventrolateral prefrontal regions. We also found that the increased prefrontal connectivity in TBI patients was correlated with some postural control indices, such as the amount of body sway, whereby patients with worse balance increased their connectivity in frontal regions more strongly. The increased prefrontal connectivity found in TBI patients may provide the structural scaffolding for stronger cognitive control of certain behavioral functions, consistent with the observations that various motor tasks are performed less automatically following TBI and that more cognitive control is associated with such actions.
Collapse
Affiliation(s)
- Ibai Diez
- Biocruces Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - David Drijkoningen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuve, Belgium
| | - Sebastiano Stramaglia
- Dipartimento di Fisica, Universita degli Studi di Bari and INFN, Bari, Italy.,Basque Center for Applied Mathematics (BCAM), Bilbao, Spain
| | - Paolo Bonifazi
- Biocruces Health Research Institute, Cruces University Hospital, Barakaldo, Spain.,Ikerbasque: The Basque Foundation for Science, Bilbao, Spain
| | - Daniele Marinazzo
- Department of Data Analysis, Faculty of Psychological and Pedagogical Sciences, University of Ghent, Ghent, Belgium
| | - Jolien Gooijers
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuve, Belgium
| | - Stephan P Swinnen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuve, Belgium.,KU Leuven, Leuven Research Institute for Neuroscience & Disease (LIND), Leuven, Belgium
| | - Jesus M Cortes
- Biocruces Health Research Institute, Cruces University Hospital, Barakaldo, Spain.,Ikerbasque: The Basque Foundation for Science, Bilbao, Spain.,Department of Cell Biology and Histology, University of the Basque Country, Leioa, Spain
| |
Collapse
|
27
|
Demnitz N, Zsoldos E, Mahmood A, Mackay CE, Kivimäki M, Singh-Manoux A, Dawes H, Johansen-Berg H, Ebmeier KP, Sexton CE. Associations between Mobility, Cognition, and Brain Structure in Healthy Older Adults. Front Aging Neurosci 2017; 9:155. [PMID: 28588477 PMCID: PMC5440513 DOI: 10.3389/fnagi.2017.00155] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/05/2017] [Indexed: 11/13/2022] Open
Abstract
Mobility limitations lead to a cascade of adverse events in old age, yet the neural and cognitive correlates of mobility performance in older adults remain poorly understood. In a sample of 387 adults (mean age 69.0 ± 5.1 years), we tested the relationship between mobility measures, cognitive assessments, and MRI markers of brain structure. Mobility was assessed in 2007-2009, using gait, balance and chair-stands tests. In 2012-2015, cognitive testing assessed executive function, memory and processing-speed; gray matter volumes (GMV) were examined using voxel-based morphometry, and white matter microstructure was assessed using tract-based spatial statistics of fractional anisotropy, axial diffusivity (AD), and radial diffusivity (RD). All mobility measures were positively associated with processing-speed. Faster walking speed was also correlated with higher executive function, while memory was not associated with any mobility measure. Increased GMV within the cerebellum, basal ganglia, post-central gyrus, and superior parietal lobe was associated with better mobility. In addition, better performance on the chair-stands test was correlated with decreased RD and AD. Overall, our results indicate that, even in non-clinical populations, mobility measures can be sensitive to sub-clinical variance in cognition and brain structures.
Collapse
Affiliation(s)
- Naiara Demnitz
- Department of Psychiatry, University of Oxford, Warneford HospitalOxford, United Kingdom.,Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of OxfordJohn Radcliffe Hospital, Oxford, United Kingdom
| | - Enikő Zsoldos
- Department of Psychiatry, University of Oxford, Warneford HospitalOxford, United Kingdom
| | - Abda Mahmood
- Department of Psychiatry, University of Oxford, Warneford HospitalOxford, United Kingdom
| | - Clare E Mackay
- Department of Epidemiology and Public Health, University College LondonLondon, United Kingdom
| | - Mika Kivimäki
- Department of Epidemiology and Public Health, University College LondonLondon, United Kingdom
| | - Archana Singh-Manoux
- Department of Epidemiology and Public Health, University College LondonLondon, United Kingdom
| | - Helen Dawes
- Oxford Institute of Nursing, Midwifery and Allied Health Research, Oxford Brookes UniversityOxford, United Kingdom
| | - Heidi Johansen-Berg
- Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of OxfordJohn Radcliffe Hospital, Oxford, United Kingdom
| | - Klaus P Ebmeier
- Department of Psychiatry, University of Oxford, Warneford HospitalOxford, United Kingdom
| | - Claire E Sexton
- Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of OxfordJohn Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
28
|
Honeine JL, Crisafulli O, Schieppati M. Body sway adaptation to addition but not withdrawal of stabilizing visual information is delayed by a concurrent cognitive task. J Neurophysiol 2017; 117:777-785. [PMID: 27903641 DOI: 10.1152/jn.00725.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/26/2016] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to test the effects of a concurrent cognitive task on the promptness of the sensorimotor integration and reweighting processes following addition and withdrawal of vision. Fourteen subjects stood in tandem while vision was passively added and removed. Subjects performed a cognitive task, consisting of counting backward in steps of three, or were "mentally idle." We estimated the time intervals following addition and withdrawal of vision at which body sway began to change. We also estimated the time constant of the exponential change in body oscillation until the new level of sway was reached, consistent with the current visual state. Under the mentally idle condition, mean latency was 0.67 and 0.46 s and the mean time constant was 1.27 and 0.59 s for vision addition and withdrawal, respectively. Following addition of vision, counting backward delayed the latency by about 300 ms, without affecting the time constant. Following withdrawal, counting backward had no significant effect on either latency or time constant. The extension by counting backward of the time interval to stabilization onset on addition of vision suggests a competition for allocation of cortical resources. Conversely, the absence of cognitive task effect on the rapid onset of destabilization on vision withdrawal, and on the relevant reweighting time course, advocates the intervention of a subcortical process. Diverting attention from a challenging standing task discloses a cortical supervision on the process of sensorimotor integration of new balance-stabilizing information. A subcortical process would instead organize the response to removal of the stabilizing sensory input.NEW & NOTEWORTHY This study is the first to test the effect of an arithmetic task on the time course of balance readjustment following visual withdrawal or addition. Performing such a cognitive task increases the time delay following addition of vision but has no effect on withdrawal dynamics. This suggests that sensorimotor integration following addition of a stabilizing signal is performed at a cortical level, whereas the response to its withdrawal is "automatic" and accomplished at a subcortical level.
Collapse
Affiliation(s)
- Jean-Louis Honeine
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; and
| | - Oscar Crisafulli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; and
| | - Marco Schieppati
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; and.,Centro Studi Attività Motorie (CSAM), Fondazione Salvatore Maugeri (IRCSS), Scientific Institute of Pavia, Pavia, Italy
| |
Collapse
|
29
|
Paillard T. Plasticity of the postural function to sport and/or motor experience. Neurosci Biobehav Rev 2017; 72:129-152. [DOI: 10.1016/j.neubiorev.2016.11.015] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/27/2016] [Accepted: 11/15/2016] [Indexed: 11/27/2022]
|
30
|
Neural Correlates of Dual-Task Walking: Effects of Cognitive versus Motor Interference in Young Adults. Neural Plast 2016; 2016:8032180. [PMID: 27200192 PMCID: PMC4855015 DOI: 10.1155/2016/8032180] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/31/2016] [Indexed: 12/03/2022] Open
Abstract
Walking while concurrently performing cognitive and/or motor interference tasks is the norm rather than the exception during everyday life and there is evidence from behavioral studies that it negatively affects human locomotion. However, there is hardly any information available regarding the underlying neural correlates of single- and dual-task walking. We had 12 young adults (23.8 ± 2.8 years) walk while concurrently performing a cognitive interference (CI) or a motor interference (MI) task. Simultaneously, neural activation in frontal, central, and parietal brain areas was registered using a mobile EEG system. Results showed that the MI task but not the CI task affected walking performance in terms of significantly decreased gait velocity and stride length and significantly increased stride time and tempo-spatial variability. Average activity in alpha and beta frequencies was significantly modulated during both CI and MI walking conditions in frontal and central brain regions, indicating an increased cognitive load during dual-task walking. Our results suggest that impaired motor performance during dual-task walking is mirrored in neural activation patterns of the brain. This finding is in line with established cognitive theories arguing that dual-task situations overstrain cognitive capabilities resulting in motor performance decrements.
Collapse
|
31
|
Beauchet O, Barden J, Liu-Ambrose T, Chester VL, Szturm T, Allali G. The relationship between hippocampal volume and static postural sway: results from the GAIT study. AGE (DORDRECHT, NETHERLANDS) 2016; 38:19. [PMID: 26833034 PMCID: PMC5005866 DOI: 10.1007/s11357-016-9883-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/26/2016] [Indexed: 05/24/2023]
Abstract
The role of the hippocampus in postural control, in particular in maintaining upright stance, has not been fully examined in normal aging. This study aims to examine the association of postural sway with hippocampal volume while maintaining upright stance in healthy older individuals. Seventy healthy individuals (mean age 69.7 ± 3.4 years; 41.4 % women) were recruited in this study based on cross-sectional design. Hippocampal volume (quantified from a three-dimensional T1-weighted MRI using semi-automated software), three center of pressure (COP) motion parameters (sway area, path length of anterior-posterior (AP) and medial-lateral (ML) displacement) while maintaining upright stance (eyes open and closed), and the relative difference between open and closed eye conditions were used as outcome measures. Age, sex, body mass index, lower limb proprioception, distance vision, 15-item geriatric depression scale score, total cranial volume, and white matter abnormalities were used as covariates. The sway area decreased from open to closed eye condition but this variation was non-significant (P = 0.244), whereas path length of AP and ML displacement increased significantly (P < 0.003). Increase in sway area from open to closed eyes was associated with greater hippocampal volume (β -18.21; P = 0.044), and a trend for an association of increase in path length of AP displacement (P = 0.075 for open eyes and P = 0.071 for closed eyes) with greater hippocampal volume was reported. The hippocampus is involved in upright postural control in normal aging, such that an increase in sway area of COP motion from open to closed eyes is associated with greater hippocampal volume in healthy older adults.
Collapse
Affiliation(s)
- Olivier Beauchet
- Department of Medicine, Division of Geriatric Medicine, Sir Mortimer B. Davis - Jewish General Hospital and Lady Davis Institute for Medical Research, McGill University, Montreal, QC, Canada.
- Dr. Joseph Kaufmann Chair in Geriatric Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada.
- Centre of Excellence on Aging and Chronic Diseases of McGill integrated University Health Network, Quebec, Canada.
| | - John Barden
- Neuromechanical Research Centre, Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - Teresa Liu-Ambrose
- Aging, Mobility and Cognitive Neuroscience Laboratory, University of British Columbia, Vancouver, BC, Canada
| | - Victoria L Chester
- Andrew and Marjorie McCain Human Performance Laboratory, Richard J. Currie Center, Faculty of Kinesiology, University of New Brunswick, Fredericton, NB, Canada
| | - Tony Szturm
- Department of Physical Therapy, College of Rehabilitation Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Gilles Allali
- Department of Neurology, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| |
Collapse
|
32
|
Drijkoningen D, Leunissen I, Caeyenberghs K, Hoogkamer W, Sunaert S, Duysens J, Swinnen SP. Regional volumes in brain stem and cerebellum are associated with postural impairments in young brain-injured patients. Hum Brain Mapp 2015; 36:4897-909. [PMID: 26441014 DOI: 10.1002/hbm.22958] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 01/08/2023] Open
Abstract
Many patients with traumatic brain injury (TBI) suffer from postural control impairments that can profoundly affect daily life. The cerebellum and brain stem are crucial for the neural control of posture and have been shown to be vulnerable to primary and secondary structural consequences of TBI. The aim of this study was to investigate whether morphometric differences in the brain stem and cerebellum can account for impairments in static and dynamic postural control in TBI. TBI patients (n = 18) and healthy controls (n = 30) completed three challenging postural control tasks on the EquiTest® system (Neurocom). Infratentorial grey matter (GM) and white matter (WM) volumes were analyzed with cerebellum-optimized voxel-based morphometry using the spatially unbiased infratentorial toolbox. Volume loss in TBI patients was revealed in global cerebellar GM, global infratentorial WM, middle cerebellar peduncles, pons and midbrain. In the TBI group and across both groups, lower postural control performance was associated with reduced GM volume in the vermal/paravermal regions of lobules I-IV, V and VI. Moreover, across all participants, worse postural control performance was associated with lower WM volume in the pons, medulla, midbrain, superior and middle cerebellar peduncles and cerebellum. This is the first study in TBI patients to demonstrate an association between postural impairments and reduced volume in specific infratentorial brain areas. Volumetric measures of the brain stem and cerebellum may be valuable prognostic markers of the chronic neural pathology, which complicates rehabilitation of postural control in TBI.
Collapse
Affiliation(s)
- David Drijkoningen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven, Belgium
| | - Inge Leunissen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven, Belgium
| | - Karen Caeyenberghs
- School of Psychology, Faculty of Health Sciences, Australian Catholic University, Melbourne, Victoria, Australia
| | - Wouter Hoogkamer
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven, Belgium
| | - Stefan Sunaert
- KU Leuven, Department of Radiology, University Hospital, Leuven, Belgium
| | - Jacques Duysens
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven, Belgium
| | - Stephan P Swinnen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven, Belgium.,KU Leuven, Leuven Research Institute for Neuroscience & Disease (LIND), Belgium
| |
Collapse
|
33
|
Drijkoningen D, Caeyenberghs K, Vander Linden C, Van Herpe K, Duysens J, Swinnen SP. Associations between Muscle Strength Asymmetry and Impairments in Gait and Posture in Young Brain-Injured Patients. J Neurotrauma 2015; 32:1324-32. [DOI: 10.1089/neu.2014.3787] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- David Drijkoningen
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Belgium
| | - Karen Caeyenberghs
- School of Psychology, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
- Child Rehabilitation Center, Department of Physical Medicine and Rehabilitation, Ghent University Hospital, Ghent, Belgium
| | | | - Katrin Van Herpe
- Leuven Research Institute for Neuroscience & Disease (LIND), Leuven, Belgium
| | - Jacques Duysens
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Belgium
| | - Stephan P. Swinnen
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Belgium
| |
Collapse
|
34
|
Csete G, Bognár A, Csibri P, Kaposvári P, Sáry G. Aging alters visual processing of objects and shapes in inferotemporal cortex in monkeys. Brain Res Bull 2014; 110:76-83. [PMID: 25526896 DOI: 10.1016/j.brainresbull.2014.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 11/21/2014] [Accepted: 11/22/2014] [Indexed: 12/14/2022]
Abstract
Visual perception declines with age. Perceptual deficits may originate not only in the optical system serving vision but also in the neural machinery processing visual information. Since homologies between monkey and human vision permit extrapolation from monkeys to humans, data from young, middle aged and old monkeys were analyzed to show age-related changes in the neuronal activity in the inferotemporal cortex, which is critical for object and shape vision. We found an increased neuronal response latency, and a decrease in the stimulus selectivity in the older animals and suggest that these changes may underlie the perceptual uncertainties found frequently in the elderly.
Collapse
Affiliation(s)
- G Csete
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary; Department of Neurology, Faculty of Medicine, Semmelweis u. 6, H-6725 Szeged, Hungary.
| | - A Bognár
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| | - P Csibri
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| | - P Kaposvári
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| | - Gy Sáry
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| |
Collapse
|
35
|
Yuan J, Blumen HM, Verghese J, Holtzer R. Functional connectivity associated with gait velocity during walking and walking-while-talking in aging: a resting-state fMRI study. Hum Brain Mapp 2014; 36:1484-93. [PMID: 25504964 DOI: 10.1002/hbm.22717] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 11/09/2014] [Accepted: 12/01/2014] [Indexed: 11/09/2022] Open
Abstract
Gait decline is common among older adults and is a risk factor for adverse outcomes. Poor gait performance in dual-task conditions, such as walking while performing a secondary cognitive interference task, is associated with increased risk of frailty, disability, and death. Yet, the functional neural substrates that support locomotion are not well established. We examined the functional connectivity associated with gait velocity in single- (normal pace walking) and dual-task (walking while talking) conditions using resting-state functional Magnetic Resonance Imaging (fMRI). We acquired 6 minutes of resting-state fMRI data in 30 cognitively healthy older adults. Independent components analyses were performed to separate resting-state fMRI data into group-level statistically independent spatial components that correlated with gait velocity in single- and dual-task conditions. Gait velocity in both task conditions was associated with similar functional connectivity in sensorimotor, visual, vestibular, and left fronto-parietal cortical areas. Compared to gait velocity in the single-task condition, the networks associated with gait velocity in the dual-task condition were associated with greater functional connectivity in supplementary motor and prefrontal regions. Our findings show that there are partially overlapping functional networks associated with single- and dual-task walking conditions. These initial findings encourage the future use of resting-state fMRI as tool in developing a comprehensive understanding of age-related mobility impairments.
Collapse
Affiliation(s)
- Jennifer Yuan
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, New York
| | | | | | | |
Collapse
|
36
|
Caeyenberghs K, Siugzdaite R, Drijkoningen D, Marinazzo D, Swinnen SP. Functional Connectivity Density and Balance in Young Patients with Traumatic Axonal Injury. Brain Connect 2014; 5:423-32. [PMID: 25327385 DOI: 10.1089/brain.2014.0293] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our previous study provided some evidence for the relationship between abnormal structural connectivity and poor balance performance in young traumatic axonal injury (TAI) patients. An enhanced understanding of the functional connectivity following TAI may allow targeted treatments geared toward improving brain function and postural control. Twelve patients with TAI and 28 normally developing children (aged 9-19 years) performed the sensory organization test (SOT) protocol of the EquiTest (Neurocom). All participants were scanned using resting-state functional magnetic resonance imaging series along with anatomical scans. We applied "functional connectivity density mapping" (FCDM), a voxel-wise data-driven method that calculates individual functional connectivity maps to obtain both short-range and long-range FCD. Findings revealed that the TAI group scored generally lower than the control group on the SOT, especially when proprioceptive feedback was compromised. Between-group maps noted significantly decreased long-range FCD in the TAI group in frontal and subcortical regions and significantly increased short-range FCD in frontal regions, left inferior parietal, and cerebellar lobules. Moreover, lower balance levels in TAI patients were associated with a lower long-range FCD in left putamen and cerebellar vermis. These findings suggest that long-range connections may be more vulnerable to TAI than short-range connections. Moreover, higher values of short-range FCD may suggest adaptive mechanisms in the TAI group. Finally, this study supports the view that FCDM is a valuable tool for selectively predicting functional motor deficits in TAI patients.
Collapse
Affiliation(s)
- Karen Caeyenberghs
- 1 Department of Physical Therapy and Motor Rehabilitation, Faculty of Medicine and Health Sciences, University of Ghent , Ghent, Belgium .,2 Department of Movement and Sport Sciences, Faculty of Medicine and Health Sciences, University of Ghent , Ghent, Belgium
| | - Roma Siugzdaite
- 3 Department of Data Analysis, Faculty of Psychological and Pedagogical Sciences, University of Ghent , Ghent, Belgium
| | - David Drijkoningen
- 4 Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Belgium
| | - Daniele Marinazzo
- 3 Department of Data Analysis, Faculty of Psychological and Pedagogical Sciences, University of Ghent , Ghent, Belgium
| | - Stephan P Swinnen
- 4 Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Belgium
| |
Collapse
|
37
|
Fling BW, Dutta GG, Schlueter H, Cameron MH, Horak FB. Associations between Proprioceptive Neural Pathway Structural Connectivity and Balance in People with Multiple Sclerosis. Front Hum Neurosci 2014; 8:814. [PMID: 25368564 PMCID: PMC4202774 DOI: 10.3389/fnhum.2014.00814] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/23/2014] [Indexed: 11/17/2022] Open
Abstract
Mobility and balance impairments are a hallmark of multiple sclerosis (MS), affecting nearly half of patients at presentation and resulting in decreased activity and participation, falls, injuries, and reduced quality of life. A growing body of work suggests that balance impairments in people with mild MS are primarily the result of deficits in proprioception, the ability to determine body position in space in the absence of vision. A better understanding of the pathophysiology of balance disturbances in MS is needed to develop evidence-based rehabilitation approaches. The purpose of the current study was to (1) map the cortical proprioceptive pathway in vivo using diffusion-weighted imaging and (2) assess associations between proprioceptive pathway white matter microstructural integrity and performance on clinical and behavioral balance tasks. We hypothesized that people with MS (PwMS) would have reduced integrity of cerebral proprioceptive pathways, and that reduced white matter microstructure within these tracts would be strongly related to proprioceptive-based balance deficits. We found poorer balance control on proprioceptive-based tasks and reduced white matter microstructural integrity of the cortical proprioceptive tracts in PwMS compared with age-matched healthy controls (HC). Microstructural integrity of this pathway in the right hemisphere was also strongly associated with proprioceptive-based balance control in PwMS and controls. Conversely, while white matter integrity of the right hemisphere’s proprioceptive pathway was significantly correlated with overall balance performance in HC, there was no such relationship in PwMS. These results augment existing literature suggesting that balance control in PwMS may become more dependent upon (1) cerebellar-regulated proprioceptive control, (2) the vestibular system, and/or (3) the visual system.
Collapse
Affiliation(s)
- Brett W Fling
- Department of Neurology, School of Medicine, Oregon Health & Science University , Portland, OR , USA ; Portland VA Medical Center , Portland, OR , USA
| | - Geetanjali Gera Dutta
- Department of Neurology, School of Medicine, Oregon Health & Science University , Portland, OR , USA
| | - Heather Schlueter
- Department of Neurology, School of Medicine, Oregon Health & Science University , Portland, OR , USA
| | - Michelle H Cameron
- Department of Neurology, School of Medicine, Oregon Health & Science University , Portland, OR , USA ; Portland VA Medical Center , Portland, OR , USA
| | - Fay B Horak
- Department of Neurology, School of Medicine, Oregon Health & Science University , Portland, OR , USA ; Portland VA Medical Center , Portland, OR , USA
| |
Collapse
|
38
|
Burzynska AZ, Chaddock-Heyman L, Voss MW, Wong CN, Gothe NP, Olson EA, Knecht A, Lewis A, Monti JM, Cooke GE, Wojcicki TR, Fanning J, Chung HD, Awick E, McAuley E, Kramer AF. Physical activity and cardiorespiratory fitness are beneficial for white matter in low-fit older adults. PLoS One 2014; 9:e107413. [PMID: 25229455 PMCID: PMC4167864 DOI: 10.1371/journal.pone.0107413] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 08/12/2014] [Indexed: 01/12/2023] Open
Abstract
Physical activity (PA) and cardiorespiratory fitness (CRF) are associated with better cognitive function in late life, but the neural correlates for these relationships are unclear. To study these correlates, we examined the association of both PA and CRF with measures of white matter (WM) integrity in 88 healthy low-fit adults (age 60–78). Using accelerometry, we objectively measured sedentary behavior, light PA, and moderate to vigorous PA (MV-PA) over a week. We showed that greater MV-PA was related to lower volume of WM lesions. The association between PA and WM microstructural integrity (measured with diffusion tensor imaging) was region-specific: light PA was related to temporal WM, while sedentary behavior was associated with lower integrity in the parahippocampal WM. Our findings highlight that engaging in PA of various intensity in parallel with avoiding sedentariness are important in maintaining WM health in older age, supporting public health recommendations that emphasize the importance of active lifestyle.
Collapse
Affiliation(s)
- Agnieszka Zofia Burzynska
- The Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, United States of America
- * E-mail:
| | - Laura Chaddock-Heyman
- The Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, United States of America
| | - Michelle W. Voss
- Department of Psychology, University of Iowa, Iowa City, Iowa, United States of America
| | - Chelsea N. Wong
- The Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, United States of America
| | - Neha P. Gothe
- Department of Kinesiology and Community Health, University of Illinois, Urbana, Illinois, United States of America
| | - Erin A. Olson
- Department of Kinesiology and Community Health, University of Illinois, Urbana, Illinois, United States of America
| | - Anya Knecht
- The Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, United States of America
| | - Andrew Lewis
- The Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, United States of America
| | - Jim M. Monti
- The Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, United States of America
| | - Gillian E. Cooke
- The Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, United States of America
| | - Thomas R. Wojcicki
- Department of Kinesiology and Community Health, University of Illinois, Urbana, Illinois, United States of America
| | - Jason Fanning
- Department of Kinesiology and Community Health, University of Illinois, Urbana, Illinois, United States of America
| | - Hyondo David Chung
- Department of Kinesiology and Community Health, University of Illinois, Urbana, Illinois, United States of America
| | - Elisabeth Awick
- Department of Kinesiology and Community Health, University of Illinois, Urbana, Illinois, United States of America
| | - Edward McAuley
- The Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, United States of America
- Department of Kinesiology and Community Health, University of Illinois, Urbana, Illinois, United States of America
| | - Arthur F. Kramer
- The Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
39
|
Solesio‐Jofre E, Serbruyns L, Woolley DG, Mantini D, Beets IAM, Swinnen SP. Aging effects on the resting state motor network and interlimb coordination. Hum Brain Mapp 2014; 35:3945-61. [PMID: 24453170 PMCID: PMC6869293 DOI: 10.1002/hbm.22450] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/29/2013] [Accepted: 12/02/2013] [Indexed: 01/14/2023] Open
Abstract
Both increases and decreases in resting state functional connectivity have been previously observed within the motor network during aging. Moreover, the relationship between altered functional connectivity and age-related declines in bimanual coordination remains unclear. Here, we explored the developmental dynamics of the resting brain within a task-specific motor network in a sample of 128 healthy participants, aged 18-80 years. We found that age-related increases in functional connectivity between interhemispheric dorsal and ventral premotor areas were associated with poorer performance on a novel bimanual visuomotor task. Additionally, a control analysis performed on the default mode network confirmed that our age-related increases in functional connectivity were specific to the motor system. Our findings suggest that increases in functional connectivity within the resting state motor network with aging reflect a loss of functional specialization that may not only occur in the active brain but also in the resting brain.
Collapse
Affiliation(s)
- Elena Solesio‐Jofre
- Motor Control LaboratoryMovement Control and Neuroplasticity Research GroupKU Leuven, Tervuurse Vest 1013001LeuvenBelgium
| | - Leen Serbruyns
- Motor Control LaboratoryMovement Control and Neuroplasticity Research GroupKU Leuven, Tervuurse Vest 1013001LeuvenBelgium
| | - Daniel G. Woolley
- Motor Control LaboratoryMovement Control and Neuroplasticity Research GroupKU Leuven, Tervuurse Vest 1013001LeuvenBelgium
| | - Dante Mantini
- Department of Health Sciences and TechnologyETH ZurichWinterthurerstrasse 1908057ZurichSwitzerland
- Department of Experimental PsychologyUniversity of Oxford9 South Parks Road, OX1 3UD OxfordUnited Kingdom
- Laboratory for Neuro‐ and PsychophysiologyDepartment of NeurosciencesKU Leuven, Herestraat 493000LeuvenBelgium
| | - Iseult A. M. Beets
- Motor Control LaboratoryMovement Control and Neuroplasticity Research GroupKU Leuven, Tervuurse Vest 1013001LeuvenBelgium
| | - Stephan P. Swinnen
- Motor Control LaboratoryMovement Control and Neuroplasticity Research GroupKU Leuven, Tervuurse Vest 1013001LeuvenBelgium
- Leuven Research Institute for Neuroscience & Disease (LIND)KU LeuvenBelgium
| |
Collapse
|
40
|
Bruijn SM, Van Impe A, Duysens J, Swinnen SP. White matter microstructural organization and gait stability in older adults. Front Aging Neurosci 2014; 6:104. [PMID: 24959139 PMCID: PMC4051125 DOI: 10.3389/fnagi.2014.00104] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 05/14/2014] [Indexed: 11/17/2022] Open
Abstract
Understanding age-related decline in gait stability and the role of alterations in brain structure is crucial. Here, we studied the relationship between white matter microstructural organization using Diffusion Tensor Imaging (DTI) and advanced gait stability measures in 15 healthy young adults (range 18–30 years) and 25 healthy older adults (range 62–82 years). Among the different gait stability measures, only stride time and the maximum Lyapunov exponent (which quantifies how well participants are able to attenuate small perturbations) were found to decline with age. White matter microstructural organization (FA) was lower throughout the brain in older adults. We found a strong correlation between FA in the left anterior thalamic radiation and left corticospinal tract on the one hand, and step width and safety margin (indicative of how close participants are to falling over) on the other. These findings suggest that white matter FA in tracts connecting subcortical and prefrontal areas is associated with the implementation of an effective stabilization strategy during gait.
Collapse
Affiliation(s)
- Sjoerd M Bruijn
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven Leuven, Belgium ; Faculty of Human Movement Sciences, Research Institute MOVE, VU University Amsterdam, Netherlands ; Department of Orthopedics, First Affiliated Hospital of Fujian Medical University Fuzhou, China
| | - Annouchka Van Impe
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven Leuven, Belgium
| | - Jacques Duysens
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven Leuven, Belgium ; Department of Research, Development and Education, Sint Maartenskliniek Nijmegen, Netherlands
| | - Stephan P Swinnen
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven Leuven, Belgium ; Leuven Research Institute for Neuroscience & Disease Leuven, Belgium
| |
Collapse
|
41
|
Holtzer R, Epstein N, Mahoney JR, Izzetoglu M, Blumen HM. Neuroimaging of mobility in aging: a targeted review. J Gerontol A Biol Sci Med Sci 2014; 69:1375-88. [PMID: 24739495 DOI: 10.1093/gerona/glu052] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The relationship between mobility and cognition in aging is well established, but the relationship between mobility and the structure and function of the aging brain is relatively unknown. This, in part, is attributed to the technological limitations of most neuroimaging procedures, which require the individual to be immobile or in a supine position. Herein, we provide a targeted review of neuroimaging studies of mobility in aging to promote (i) a better understanding of this relationship, (ii) future research in this area, and (iii) development of applications for improving mobility. METHODS A systematic search of peer-reviewed studies was performed using PubMed. Search terms included (i) aging, older adults, or elderly; (ii) gait, walking, balance, or mobility; and (iii) magnetic resonance imaging, voxel-based morphometry, fluid-attenuated inversion recovery, diffusion tensor imaging, positron emission tomography, functional magnetic resonance imaging, electroencephalography, event-related potential, and functional near-infrared spectroscopy. RESULTS Poor mobility outcomes were reliably associated with reduced gray and white matter volume. Fewer studies examined the relationship between changes in task-related brain activation and mobility performance. Extant findings, however, showed that activation patterns in the cerebellum, basal ganglia, parietal and frontal cortices were related to mobility. Increased involvement of the prefrontal cortex was evident in both imagined walking conditions and conditions where the cognitive demands of locomotion were increased. CONCLUSIONS Cortical control of gait in aging is bilateral, widespread, and dependent on the integrity of both gray and white matter.
Collapse
Affiliation(s)
- Roee Holtzer
- Department of Neurology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York. Ferkauf Graduate School of Psychology of Yeshiva University, Bronx, New York.
| | - Noah Epstein
- Ferkauf Graduate School of Psychology of Yeshiva University, Bronx, New York
| | - Jeannette R Mahoney
- Department of Neurology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York
| | - Meltem Izzetoglu
- Drexel University School of Biomedical Engineering, Philadelphia, Pennsylvania
| | - Helena M Blumen
- Department of Medicine, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York
| |
Collapse
|
42
|
Hsu CL, Voss MW, Handy TC, Davis JC, Nagamatsu LS, Chan A, Bolandzadeh N, Liu-Ambrose T. Disruptions in brain networks of older fallers are associated with subsequent cognitive decline: a 12-month prospective exploratory study. PLoS One 2014; 9:e93673. [PMID: 24699668 PMCID: PMC3977422 DOI: 10.1371/journal.pone.0093673] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 03/07/2014] [Indexed: 11/24/2022] Open
Abstract
Cognitive impairment and impaired mobility are major public health concerns. There is growing recognition that impaired mobility is an early biomarker of cognitive impairment and dementia. The neural basis for this association is currently unclear. We propose disrupted functional connectivity as a potential mechanism. In this 12-month prospective exploratory study, we compared functional connectivity of four brain networks– the default mode network (DMN), fronto-executive network (FEN), fronto-parietal network (FPN), and the primary motor sensory network (SMN) – between community-dwelling older adults with ≥ two falls in the last 12 months and their non-falling counterparts (≤ one fall in the last 12 months). Functional connectivity was examined both at rest and during a simple motor tapping task. Compared with non-fallers, fallers showed more connectivity between the DMN and FPN during right finger tapping (p = 0.04), and significantly less functional connectivity between the SMN and FPN during rest (p≤0.05). Less connectivity between the SMN and FPN during rest was significantly associated with greater decline in both cognitive function and mobility over the12-month period (r = −0.32 and 0.33 respectively; p≤0.04). Thus, a recent history of multiple falls among older adults without a diagnosis of dementia may indicate sub-clinical changes in brain function and increased risk for subsequent decline.
Collapse
Affiliation(s)
- Chun Liang Hsu
- Aging, Mobility, and Cognitive Neuroscience Lab, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
- Brain Research Center, University of British Columbia, Vancouver, British Columbia, Canada
- Center for Hip Health and Mobility, Vancouver, British Columbia, Canada
| | - Michelle W. Voss
- Health, Brain, & Cognition Lab, University of Iowa, Iowa City, Iowa, United States of America
- Department of Psychology, University of Iowa, Iowa City, Iowa, United States of America
| | - Todd C. Handy
- Centre for Clinical Epidemiology and Evaluation, University of British Columbia & Vancouver Coastal Health Research Institute (VCHRI), Vancouver, British Columbia, Canada
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer C. Davis
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
- Brain Research Center, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Clinical Epidemiology and Evaluation, University of British Columbia & Vancouver Coastal Health Research Institute (VCHRI), Vancouver, British Columbia, Canada
| | - Lindsay S. Nagamatsu
- Aging, Mobility, and Cognitive Neuroscience Lab, University of British Columbia, Vancouver, British Columbia, Canada
- Brain Research Center, University of British Columbia, Vancouver, British Columbia, Canada
- Center for Hip Health and Mobility, Vancouver, British Columbia, Canada
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alison Chan
- Aging, Mobility, and Cognitive Neuroscience Lab, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
- Brain Research Center, University of British Columbia, Vancouver, British Columbia, Canada
- Center for Hip Health and Mobility, Vancouver, British Columbia, Canada
| | - Niousha Bolandzadeh
- Aging, Mobility, and Cognitive Neuroscience Lab, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
- Brain Research Center, University of British Columbia, Vancouver, British Columbia, Canada
- Center for Hip Health and Mobility, Vancouver, British Columbia, Canada
| | - Teresa Liu-Ambrose
- Aging, Mobility, and Cognitive Neuroscience Lab, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
- Brain Research Center, University of British Columbia, Vancouver, British Columbia, Canada
- Center for Hip Health and Mobility, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
43
|
Papegaaij S, Taube W, Baudry S, Otten E, Hortobágyi T. Aging causes a reorganization of cortical and spinal control of posture. Front Aging Neurosci 2014; 6:28. [PMID: 24624082 PMCID: PMC3939445 DOI: 10.3389/fnagi.2014.00028] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/13/2014] [Indexed: 11/13/2022] Open
Abstract
Classical studies in animal preparations suggest a strong role for spinal control of posture. In humans it is now established that the cerebral cortex contributes to postural control of unperturbed and perturbed standing. The age-related degeneration and accompanying functional changes in the brain, reported so far mainly in conjunction with simple manual motor tasks, may also affect the mechanisms that control complex motor tasks involving posture. This review outlines the age-related structural and functional changes at spinal and cortical levels and provides a mechanistic analysis of how such changes may be linked to the behaviorally manifest postural deficits in old adults. The emerging picture is that the age-related reorganization in motor control during voluntary tasks, characterized by differential modulation of spinal reflexes, greater cortical activation and cortical disinhibition, is also present during postural tasks. We discuss the possibility that this reorganization underlies the increased coactivation and dual task interference reported in elderly. Finally, we propose a model for future studies to unravel the structure-function-behavior relations in postural control and aging.
Collapse
Affiliation(s)
- Selma Papegaaij
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| | - Wolfgang Taube
- Movement and Sports Science, Department of Medicine, University of Fribourg Fribourg, Switzerland
| | - Stéphane Baudry
- Laboratory of Applied Biology, Faculty for Motor Sciences, Université Libre de Bruxelles Brussels, Belgium
| | - Egbert Otten
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| | - Tibor Hortobágyi
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen Groningen, Netherlands ; Faculty of Health and Life Sciences, Northumbria University Newcastle Upon Tyne, UK
| |
Collapse
|
44
|
Ogama N, Sakurai T, Shimizu A, Toba K. Regional White Matter Lesions Predict Falls in Patients With Amnestic Mild Cognitive Impairment and Alzheimer's Disease. J Am Med Dir Assoc 2014; 15:36-41. [DOI: 10.1016/j.jamda.2013.11.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/24/2013] [Accepted: 11/04/2013] [Indexed: 10/25/2022]
|
45
|
Bennett IJ, Madden DJ. Disconnected aging: cerebral white matter integrity and age-related differences in cognition. Neuroscience 2013; 276:187-205. [PMID: 24280637 DOI: 10.1016/j.neuroscience.2013.11.026] [Citation(s) in RCA: 307] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/08/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022]
Abstract
Cognition arises as a result of coordinated processing among distributed brain regions and disruptions to communication within these neural networks can result in cognitive dysfunction. Cortical disconnection may thus contribute to the declines in some aspects of cognitive functioning observed in healthy aging. Diffusion tensor imaging (DTI) is ideally suited for the study of cortical disconnection as it provides indices of structural integrity within interconnected neural networks. The current review summarizes results of previous DTI aging research with the aim of identifying consistent patterns of age-related differences in white matter integrity, and of relationships between measures of white matter integrity and behavioral performance as a function of adult age. We outline a number of future directions that will broaden our current understanding of these brain-behavior relationships in aging. Specifically, future research should aim to (1) investigate multiple models of age-brain-behavior relationships; (2) determine the tract-specificity versus global effect of aging on white matter integrity; (3) assess the relative contribution of normal variation in white matter integrity versus white matter lesions to age-related differences in cognition; (4) improve the definition of specific aspects of cognitive functioning related to age-related differences in white matter integrity using information processing tasks; and (5) combine multiple imaging modalities (e.g., resting-state and task-related functional magnetic resonance imaging; fMRI) with DTI to clarify the role of cerebral white matter integrity in cognitive aging.
Collapse
Affiliation(s)
- I J Bennett
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, United States
| | - D J Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, United States; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, United States.
| |
Collapse
|
46
|
Boisgontier MP, Beets IAM, Duysens J, Nieuwboer A, Krampe RT, Swinnen SP. Age-related differences in attentional cost associated with postural dual tasks: increased recruitment of generic cognitive resources in older adults. Neurosci Biobehav Rev 2013; 37:1824-37. [PMID: 23911924 DOI: 10.1016/j.neubiorev.2013.07.014] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/17/2013] [Accepted: 07/24/2013] [Indexed: 10/26/2022]
Abstract
Dual-task designs have been used widely to study the degree of automatic and controlled processing involved in postural stability of young and older adults. However, several unexplained discrepancies in the results weaken this literature. To resolve this problem, a careful selection of dual-task studies that met certain methodological criteria are considered with respect to reported interactions of age (young vs. older adults)×task (single vs. dual task) in stable and unstable postural conditions. Our review shows that older adults are able to perform a postural dual task as well as younger adults in stable conditions. However, when the complexity of the postural task is increased by dynamic conditions (surface and surround), performance in postural, concurrent, or both tasks is more affected in older relative to young adults. In light of neuroimaging studies and new conceptual frameworks, these results demonstrate an age-related increase of controlled processing of standing associated with greater intermittent adjustments.
Collapse
Affiliation(s)
- Matthieu P Boisgontier
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, KU Leuven, Tervuurse vest 101, B-3000 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
47
|
Heitger MH, Goble DJ, Dhollander T, Dupont P, Caeyenberghs K, Leemans A, Sunaert S, Swinnen SP. Bimanual motor coordination in older adults is associated with increased functional brain connectivity--a graph-theoretical analysis. PLoS One 2013; 8:e62133. [PMID: 23637982 PMCID: PMC3639273 DOI: 10.1371/journal.pone.0062133] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 03/19/2013] [Indexed: 11/19/2022] Open
Abstract
In bimanual coordination, older and younger adults activate a common cerebral network but the elderly also have additional activation in a secondary network of brain areas to master task performance. It remains unclear whether the functional connectivity within these primary and secondary motor networks differs between the old and the young and whether task difficulty modulates connectivity. We applied graph-theoretical network analysis (GTNA) to task-driven fMRI data in 16 elderly and 16 young participants using a bimanual coordination task including in-phase and anti-phase flexion/extension wrist movements. Network nodes for the GTNA comprised task-relevant brain areas as defined by fMRI activation foci. The elderly matched the motor performance of the young but showed an increased functional connectivity in both networks across a wide range of connectivity metrics, i.e., higher mean connectivity degree, connection strength, network density and efficiency, together with shorter mean communication path length between the network nodes and also a lower betweenness centrality. More difficult movements showed an increased connectivity in both groups. The network connectivity of both groups had “small world” character. The present findings indicate (a) that bimanual coordination in the aging brain is associated with a higher functional connectivity even between areas also activated in young adults, independently from task difficulty, and (b) that adequate motor coordination in the context of task-driven bimanual control in older adults may not be solely due to additional neural recruitment but also to aging-related changes of functional relationships between brain regions.
Collapse
Affiliation(s)
- Marcus H Heitger
- Motor Control Laboratory, Research Center for Movement Control and Neuroplasticity, Group Biomedical Sciences, KU Leuven, Leuven-Heverlee, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Aging and inhibitory control of action: cortico-subthalamic connection strength predicts stopping performance. J Neurosci 2012; 32:8401-12. [PMID: 22699920 DOI: 10.1523/jneurosci.6360-11.2012] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Diffusion weighted imaging (DWI) studies in humans have shown that seniors exhibit reduced white matter integrity compared with young adults, with the most pronounced change occurring in frontal white matter. It is generally assumed that this structural deterioration underlies inhibitory control deficits in old age, but specific evidence from a structural neuroscience perspective is lacking. Cognitive action control is thought to rely on an interconnected network consisting of right inferior frontal cortex (r-IFC), pre-supplementary motor area (preSMA), and the subthalamic nucleus (STN). Here we performed probabilistic DWI tractography to delineate this cognitive control network and had the same individuals (20 young, 20 older adults) perform a task probing both response inhibition and action reprogramming. We hypothesized that structural integrity (fractional anisotropy) and connection strength within this network would be predictive of individual and age-related differences in task performance. We show that the integrity of r-IFC white matter is an age-independent predictor of stop-signal reaction time (SSRT). We further provide evidence that the integrity of white matter projecting to STN predicts both outright stopping (SSRT) and transient braking of response initiation to buy time for action reprogramming (stopping interference effects). These associations remain even after controlling for Go task performance, demonstrating specificity to the Stop component of this task. Finally, a multiple regression analysis reveals bilateral preSMA-STN tract strength as a significant predictor of SSRT in older adults. Our data link age-related decline in inhibitory control with structural decline of STN projections.
Collapse
|