1
|
Delvenne JF, Malloy E. Functional implications of age-related atrophy of the corpus callosum. Neurosci Biobehav Rev 2024; 169:105982. [PMID: 39701505 DOI: 10.1016/j.neubiorev.2024.105982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/08/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
The corpus callosum plays a critical role in inter-hemispheric communication by coordinating the transfer of sensory, motor, cognitive, and emotional information between the two hemispheres. However, as part of the normal aging process, the corpus callosum undergoes significant structural changes, including reductions in both its size and microstructural integrity. These age-related alterations can profoundly impact the brain's ability to coordinate functions across hemispheres, leading to a decline in various aspects of sensory processing, motor coordination, cognitive functioning, and emotional regulation. This review aims to synthesize current research on age-related changes in the corpus callosum, examining the regional differences in atrophy, its underlying causes, and its functional implications. By exploring these aspects, we seek to emphasize the clinical significance of corpus callosum degeneration and its impact on the quality of life in older adults, as well as the potential for early detection and targeted interventions to preserve brain health during aging. Finally, the review calls for further research into the mechanisms underlying corpus callosum atrophy and its broader implications for aging.
Collapse
Affiliation(s)
| | - Ella Malloy
- School of Psychology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
2
|
de la Cruz F, Schumann A, Rieger K, Güllmar D, Reichenbach JR, Bär KJ. White matter differences between younger and older adults revealed by fixel-based analysis. AGING BRAIN 2024; 6:100132. [PMID: 39650611 PMCID: PMC11625364 DOI: 10.1016/j.nbas.2024.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/11/2024] Open
Abstract
The process of healthy aging involves complex alterations in neural structures, with white matter (WM) changes significantly impacting cognitive and motor functions. Conventional methods such as diffusion tensor imaging provide valuable insights, but their limitations in capturing complex WM geometry advocate for more advanced approaches. In this study involving 120 healthy volunteers, we investigated whole-brain WM differences between young and old individuals using a novel technique called fixel-based analysis (FBA). This approach revealed that older adults exhibited reduced FBA-derived metrics in several WM tracts, with frontal areas particularly affected. Surprisingly, age-related differences in FBA-derived measures showed no significant correlation with risk factors such as alcohol consumption, exercise frequency, or pulse pressure but predicted cognitive performance. These findings emphasize FBA's potential in characterizing complex WM changes and the link between cognitive abilities and WM alterations in healthy aging. Overall, this study advances our understanding of age-related neurodegeneration, highlighting the importance of comprehensive assessments that integrate advanced neuroimaging techniques, cognitive evaluation, and demographic factors to gain insights into healthy aging.
Collapse
Affiliation(s)
- Feliberto de la Cruz
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Andy Schumann
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Katrin Rieger
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Daniel Güllmar
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Jürgen R. Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Karl-Jürgen Bär
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| |
Collapse
|
3
|
Sadeghinezhad J, Ebrahimi M, Lehi MH. Volumetric study on sheep brain using stereology technique. Anat Histol Embryol 2024; 53:e13072. [PMID: 38859689 DOI: 10.1111/ahe.13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
Three-dimensional morphometric data better show the structural and functional characteristics of the brain. The objective of this study was to estimate the volume of the cerebral structures of the sheep using design-based stereology. The brains of five sheep were used, fixed in formalin 10% and embedded in agar 6%. An average of 10-12 slab was obtained from each brain. All slabs were stained using Mulligan's method and photographs were recorded. The volume of the brain and its structures were estimated using the Cavalieri's estimator and the point counting system. The total volume was 70604.8 ± 132.45 mm3. The volume fractions of the grey and white matters were calculated as 42.55 ± 0.21% and 24.23 ± 0.51% of the whole brain, respectively. The fractional volume of the caudate nucleus and claustrum were estimated at 2.39 ± 0.08% and at 1.008 ± 0.057% of total brain volume. The volumes of corpus callosum, internal capsule and external capsule were 1.24 ± 0.053%, 3.63 ± 0.22% and 0.698 ± 0.049% of total cerebral volume, respectively. These data could help improve the veterinary comparative neuroanatomy knowledge and development of experimental studies in the field.
Collapse
Affiliation(s)
- Javad Sadeghinezhad
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohamad Ebrahimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehdi Heydari Lehi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Radhakrishnan V, Gallea C, Valabregue R, Krishnan S, Kesavadas C, Thomas B, James P, Menon R, Kishore A. Cerebellar and basal ganglia structural connections in humans: Effect of aging and relation with memory and learning. Front Aging Neurosci 2023; 15:1019239. [PMID: 36776439 PMCID: PMC9908607 DOI: 10.3389/fnagi.2023.1019239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction The cerebellum and basal ganglia were initially considered anatomically distinct regions, each connected via thalamic relays which project to the same cerebral cortical targets, such as the motor cortex. In the last two decades, transneuronal viral transport studies in non-human primates showed bidirectional connections between the cerebellum and basal ganglia at the subcortical level, without involving the cerebral cortical motor areas. These findings have significant implications for our understanding of neurodevelopmental and neurodegenerative diseases. While these subcortical connections were established in smaller studies on humans, their evolution with natural aging is less understood. Methods In this study, we validated and expanded the previous findings of the structural connectivity within the cerebellum-basal ganglia subcortical network, in a larger dataset of 64 subjects, across different age ranges. Tractography and fixel-based analysis were performed on the 3 T diffusion-weighted dataset using Mrtrix3 software, considering fiber density and cross-section as indicators of axonal integrity. Tractography of the well-established cerebello-thalamo-cortical tract was conducted as a control. We tested the relationship between the structural white matter integrity of these connections with aging and with the performance in different domains of Addenbrooke's Cognitive Examination. Results Tractography analysis isolated connections from the dentate nucleus to the contralateral putamen via the thalamus, and reciprocal tracts from the subthalamic nucleus to the contralateral cerebellar cortex via the pontine nuclei. Control tracts of cerebello-thalamo-cortical tracts were also isolated, including associative cerebello-prefrontal tracts. A negative linear relationship was found between the fiber density of both the ascending and descending cerebellum-basal ganglia tracts and age. Considering the cognitive assessments, the fiber density values of cerebello-thalamo-putaminal tracts correlated with the registration/learning domain scores. In addition, the fiber density values of cerebello-frontal and subthalamo-cerebellar (Crus II) tracts correlated with the cognitive assessment scores from the memory domain. Conclusion We validated the structural connectivity within the cerebellum-basal ganglia reciprocal network, in a larger dataset of human subjects, across wider age range. The structural features of the subcortical cerebello-basal ganglia tracts in human subjects display age-related neurodegeneration. Individual morphological variability of cerebellar tracts to the striatum and prefrontal cortex was associated with different cognitive functions, suggesting a functional contribution of cerebellar tracts to cognitive decline with aging. This study offers new perspectives to consider the functional role of these pathways in motor learning and the pathophysiology of movement disorders involving the cerebellum and striatum.
Collapse
Affiliation(s)
- Vineeth Radhakrishnan
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, India
| | - Cecile Gallea
- INSERM, CNRS, Paris Brain Institute, Sorbonne Université, Paris, France
| | - Romain Valabregue
- INSERM, CNRS, Paris Brain Institute, Sorbonne Université, Paris, France
| | - Syam Krishnan
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, India
| | - Chandrasekharan Kesavadas
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, India
| | - Bejoy Thomas
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, India
| | - Praveen James
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, India
| | - Ramshekhar Menon
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Asha Kishore
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, India,Parkinson and Movement Disorder Centre, Department of Neurology, Aster Medcity, Kochi, India,*Correspondence: Asha Kishore, ✉
| |
Collapse
|
5
|
Andrushko JW, Gould L, Renshaw DW, Forrester S, Kelly ME, Linassi G, Mickleborough M, Oates A, Hunter G, Borowsky R, Farthing JP. Ipsilesional Motor Cortex Activation with High-force Unimanual Handgrip Contractions of the Less-affected Limb in Participants with Stroke. Neuroscience 2021; 483:82-94. [PMID: 34920023 DOI: 10.1016/j.neuroscience.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/27/2022]
Abstract
Stroke is a leading cause of severe disability that often presents with unilateral motor impairment. Conventional rehabilitation approaches focus on motor practice of the affected limb and aim to suppress brain activity in the contralesional hemisphere. Conversely, exercise of the less-affected limb promotes contralesional brain activity which is typically viewed as contraindicated in stroke recovery due to the interhemispheric inhibitory influence onto the ipsilesional hemisphere. Yet, high-force unimanual handgrip contractions are known to increase ipsilateral brain activation in control participants, and it remains to be determined if high-force contractions with the less-affected limb would promote ipsilateral brain activation in participants with stroke (i.e., the ipsilesional hemisphere). Therefore, this study aimed to determine how parametric increases in handgrip force during repeated contractions with the less-affected limb impacts brain activity bilaterally in participants with stroke and in a cohort of neurologically intact controls. Participants performed repeated submaximal contractions at 25%, 50%, and 75% of their maximum voluntary contraction during separate functional magnetic resonance imaging brain scans. Brain activation during the tasks was quantified as the present change from resting levels. In this study, higher force contractions were found to increase brain activation in the ipsilesional (stroke)/ipsilateral (controls) hemisphere in both groups (p = .002), but no between group differences were observed. These data suggest that high-force exercise with the less-affected limb may promote ipsilesional cortical plasticity to promote motor recovery of the affected-limb in participants with stroke.
Collapse
Affiliation(s)
- Justin W Andrushko
- College of Kinesiology, University of Saskatchewan, Saskatchewan, Canada
| | - Layla Gould
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| | - Doug W Renshaw
- College of Kinesiology, University of Saskatchewan, Saskatchewan, Canada
| | - Shannon Forrester
- College of Kinesiology, University of Saskatchewan, Saskatchewan, Canada
| | - Michael E Kelly
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| | - Gary Linassi
- Department of Physical Medicine and Rehabilitation, College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| | - Marla Mickleborough
- Department of Psychology, College of Arts and Science, University of Saskatchewan, Saskatchewan, Canada
| | - Alison Oates
- College of Kinesiology, University of Saskatchewan, Saskatchewan, Canada
| | - Gary Hunter
- Department of Medicine, Division of Neurology, College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| | - Ron Borowsky
- Department of Psychology, College of Arts and Science, University of Saskatchewan, Saskatchewan, Canada
| | | |
Collapse
|
6
|
Handedness and midsagittal corpus callosum morphology: a meta-analytic evaluation. Brain Struct Funct 2021; 227:545-559. [PMID: 34851460 PMCID: PMC8843913 DOI: 10.1007/s00429-021-02431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022]
Abstract
Following a series of seminal studies in the 1980s, left or mixed hand preference is widely thought to be associated with a larger corpus callosum than right handedness, influencing the interpretation of findings and various theories related to interhemispheric processing, brain lateralisation, and hand preference. Recent reviews, however, find inconsistencies in the literature and cast doubt on the existence of such an association. The present study was conducted to clarify the relationship between hand preference and callosal morphology in a series of meta-analyses. For this purpose, articles were identified via a search in PubMed and Web Of Science databases. Studies reporting findings relating to handedness (assessed as hand preference) and corpus-callosum morphology in healthy participants were considered eligible. On the basis of a total of k = 24 identified studies and databases, random-effects meta-analyses were conducted considering four different group comparisons: (a) dominantly right- (dRH) and left-hand preference (dLH), (b) consistent right (cRH) and non-cRH preference, (c) cRH with mixed-hand preference (MH), and (d) cRH with consistent left-hand hand preference (cLH). For none of these meta-analyses did we find a significant effect of hand preference, and narrow confidence intervals suggest that the existence of population effects larger than 1% explained variance could be excluded. For example, considering the comparison of dRH and dLH (k = 14 studies; 1910 dRH and 646 dLH participants) the mean effect size was Hedge’s g = 0.016 (95% confidence interval: − 0.12 to 0.15; explained variance: < 0.001%). Thus, the common practice of assuming an increase in callosal connectivity based on mixed or left hand preference is likely invalid.
Collapse
|
7
|
Watanabe H, Bagarinao E, Maesawa S, Hara K, Kawabata K, Ogura A, Ohdake R, Shima S, Mizutani Y, Ueda A, Ito M, Katsuno M, Sobue G. Characteristics of Neural Network Changes in Normal Aging and Early Dementia. Front Aging Neurosci 2021; 13:747359. [PMID: 34880745 PMCID: PMC8646086 DOI: 10.3389/fnagi.2021.747359] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/18/2021] [Indexed: 12/03/2022] Open
Abstract
To understand the mechanisms underlying preserved and impaired cognitive function in healthy aging and dementia, respectively, the spatial relationships of brain networks and mechanisms of their resilience should be understood. The hub regions of the brain, such as the multisensory integration and default mode networks, are critical for within- and between-network communication, remain well-preserved during aging, and play an essential role in compensatory processes. On the other hand, these brain hubs are the preferred sites for lesions in neurodegenerative dementias, such as Alzheimer's disease. Disrupted primary information processing networks, such as the auditory, visual, and sensorimotor networks, may lead to overactivity of the multisensory integration networks and accumulation of pathological proteins that cause dementia. At the cellular level, the brain hub regions contain many synapses and require a large amount of energy. These regions are rich in ATP-related gene expression and had high glucose metabolism as demonstrated on positron emission tomography (PET). Importantly, the number and function of mitochondria, which are the center of ATP production, decline by about 8% every 10 years. Dementia patients often have dysfunction of the ubiquitin-proteasome and autophagy-lysosome systems, which require large amounts of ATP. If there is low energy supply but the demand is high, the risk of disease can be high. Imbalance between energy supply and demand may cause accumulation of pathological proteins and play an important role in the development of dementia. This energy imbalance may explain why brain hub regions are vulnerable to damage in different dementias. Here, we review (1) the characteristics of gray matter network, white matter network, and resting state functional network changes related to resilience in healthy aging, (2) the mode of resting state functional network disruption in neurodegenerative dementia, and (3) the cellular mechanisms associated with the disruption.
Collapse
Affiliation(s)
- Hirohisa Watanabe
- Department of Neurology, Fujita Health University, Toyoake, Japan
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Epifanio Bagarinao
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Maesawa
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuya Kawabata
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Aya Ogura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Reiko Ohdake
- Department of Neurology, Fujita Health University, Toyoake, Japan
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Sayuri Shima
- Department of Neurology, Fujita Health University, Toyoake, Japan
| | - Yasuaki Mizutani
- Department of Neurology, Fujita Health University, Toyoake, Japan
| | - Akihiro Ueda
- Department of Neurology, Fujita Health University, Toyoake, Japan
| | - Mizuki Ito
- Department of Neurology, Fujita Health University, Toyoake, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
- Aichi Medical University, Nagakute, Japan
| |
Collapse
|
8
|
Roe JM, Vidal-Piñeiro D, Sneve MH, Kompus K, Greve DN, Walhovd KB, Fjell AM, Westerhausen R. Age-Related Differences in Functional Asymmetry During Memory Retrieval Revisited: No Evidence for Contralateral Overactivation or Compensation. Cereb Cortex 2021; 30:1129-1147. [PMID: 31408102 DOI: 10.1093/cercor/bhz153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/31/2022] Open
Abstract
Brain asymmetry is inherent to cognitive processing and seems to reflect processing efficiency. Lower frontal asymmetry is often observed in older adults during memory retrieval, yet it is unclear whether lower asymmetry implies an age-related increase in contralateral recruitment, whether less asymmetry reflects compensation, is limited to frontal regions, or predicts neurocognitive stability or decline. We assessed age-related differences in asymmetry across the entire cerebral cortex, using functional magnetic resonance imaging data from 89 young and 76 older adults during successful retrieval, and surface-based methods allowing direct homotopic comparison of activity between cortical hemispheres . An extensive left-asymmetric network facilitated retrieval in both young and older adults, whereas diverse frontal and parietal regions exhibited lower asymmetry in older adults. However, lower asymmetry was not associated with age-related increases in contralateral recruitment but primarily reflected either less deactivation in contralateral regions reliably signaling retrieval failure in the young or lower recruitment of the dominant hemisphere-suggesting that functional deficits may drive lower asymmetry in older brains, not compensatory activity. Lower asymmetry predicted neither current memory performance nor the extent of memory change across the preceding ~ 8 years in older adults. Together, these findings are inconsistent with a compensation account for lower asymmetry during retrieval and aging.
Collapse
Affiliation(s)
- James M Roe
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0317 Oslo, Norway
| | - Didac Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0317 Oslo, Norway
| | - Markus H Sneve
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0317 Oslo, Norway
| | - Kristiina Kompus
- Department of Biological and Medical Psychology, University of Bergen, 5009 Bergen, Norway
| | - Douglas N Greve
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/ Harvard Medical School, Charlestown, MA 02129, USA.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0317 Oslo, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0317 Oslo, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - René Westerhausen
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
9
|
Westerhausen R, Fjell AM, Kompus K, Schapiro SJ, Sherwood CC, Walhovd KB, Hopkins WD. Comparative morphology of the corpus callosum across the adult lifespan in chimpanzees (Pan troglodytes) and humans. J Comp Neurol 2021; 529:1584-1596. [PMID: 32978976 PMCID: PMC7987726 DOI: 10.1002/cne.25039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
The human corpus callosum exhibits substantial atrophy in old age, which is stronger than what would be predicted from parallel changes in overall brain anatomy. To date, however, it has not been conclusively established whether this accentuated decline represents a common feature of brain aging across species, or whether it is a specific characteristic of the aging human brain. In the present cross-sectional study, we address this question by comparing age-related difference in corpus callosum morphology of chimpanzees and humans. For this purpose, we measured total midsagittal area and regional thickness of the corpus callosum from T1-weighted MRI data from 213 chimpanzees, aged between 9 and 54 years. The results were compared with data drawn from a large-scale human sample which was age-range matched using two strategies: (a) matching by chronological age (human sample size: n = 562), or (b) matching by accounting for differences in longevity and various maturational events between the species (i.e., adjusted human age range: 13.6 to 80.9 years; n = 664). Using generalized additive modeling to fit and compare aging trajectories, we found significant differences between the two species. The chimpanzee aging trajectory compared with the human trajectory was characterized by a slower increase from adolescence to middle adulthood, and by a lack of substantial decline from middle to old adulthood, which, however, was present in humans. Thus, the accentuated decline of the corpus callosum found in aging humans is not a universal characteristic of the aging brain, and appears to be human-specific.
Collapse
Affiliation(s)
- René Westerhausen
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
| | - Anders M. Fjell
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - Kristiina Kompus
- Department of Biological and Medical Psychology, University of Bergen, Norway
- Institute of Psychology, University of Tartu, Estonia
| | - Steven J. Schapiro
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, UT MD Anderson Cancer Center, Bastrop, Texas, USA
- Department of Experimental Medicine, University of Copenhagen, Denmark
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - Kristine B. Walhovd
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - William D. Hopkins
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, UT MD Anderson Cancer Center, Bastrop, Texas, USA
| |
Collapse
|
10
|
Corpus callosum morphology across the lifespan in baboons (Papio anubis): A cross-sectional study of relative mid-sagittal surface area and thickness. Neurosci Res 2021; 171:19-26. [PMID: 33744333 DOI: 10.1016/j.neures.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 11/22/2022]
Abstract
The corpus callosum enables integration and coordination of cognitive processing between the cerebral hemispheres. In the aging human brain, these functions are affected by progressive axon and myelin deteriorations, reflected as atrophy of the midsagittal corpus callosum in old age. In non-human primates, these degenerative processes are less pronounced as previous morphometric studies on capuchin monkey, rhesus monkeys, and chimpanzees do not find old-age callosal atrophy. In the present study, we extend these previous findings by studying callosal development of the olive baboon (Papio anubis) across the lifespan and compare it to chimpanzee and human data. For this purpose, total relative (to forebrain volume) midsagittal area, subsectional area, and regional thickness of the corpus callosum were assessed in 91 male and female baboons using non-invasive MRI-based morphometry. The studied age range was 2.5-26.6 years and lifespan trajectories were fitted using general additive modelling. Relative area of the total and anterior corpus callosum showed a positive linear trajectory. That is, both measures increased slowly but continuously from childhood into old age, and no decline was observed in old age. Thus, comparable with all other non-human primates studied to-date, baboons do not show callosal atrophy in old age. This observation lends supports to the notion that atrophy of the corpus callosum is a unique characteristic of human brain aging.
Collapse
|
11
|
Music Playing and Interhemispheric Communication: Older Professional Musicians Outperform Age-Matched Non-Musicians in Fingertip Cross-Localization Test. J Int Neuropsychol Soc 2021; 27:282-292. [PMID: 32967757 DOI: 10.1017/s1355617720000946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Numerous investigations have documented that age-related changes in the integrity of the corpus callosum are associated with age-related decline in the interhemispheric transfer of information. Conversely, there is accumulating evidence for more efficient white matter organization of the corpus callosum in individuals with extensive musical training. However, the relationship between making music and accuracy in interhemispheric transfer remains poorly explored. METHODS To test the hypothesis that musicians show enhanced functional connectivity between the two hemispheres, 65 professional musicians (aged 56-90 years) and 65 age- and sex-matched non-musicians performed the fingertip cross-localization test. In this task, subjects must respond to a tactile stimulus presented to one hand using the ipsilateral (intra-hemispheric test) or contralateral (inter-hemispheric test) hand. Because the transfer of information from one hemisphere to another may imply a loss of accuracy, the value of the difference between the intrahemispheric and interhemispheric tests can be utilized as a reliable measure of the effectiveness of hemispheric interactions. RESULTS Older professional musicians show significantly greater accuracy in tactile interhemispheric transfer than non-musicians who suffer from age-related decline. CONCLUSIONS Musicians have more efficient interhemispheric communication than age-matched non-musicians. This finding is in keeping with studies showing that individuals with extensive musical training have a larger corpus callosum. The results are discussed in relation to relevant data suggesting that music positively influences aging brain plasticity.
Collapse
|
12
|
Lynn JD, Anand C, Arshad M, Homayouni R, Rosenberg DR, Ofen N, Raz N, Stanley JA. Microstructure of Human Corpus Callosum across the Lifespan: Regional Variations in Axon Caliber, Density, and Myelin Content. Cereb Cortex 2021; 31:1032-1045. [PMID: 32995843 PMCID: PMC7906774 DOI: 10.1093/cercor/bhaa272] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
The myeloarchitecture of the corpus callosum (CC) is characterized as a mosaic of distinct differences in fiber density of small- and large-diameter axons along the anterior-posterior axis; however, regional and age differences across the lifespan are not fully understood. Using multiecho T2 magnetic resonance imaging combined with multi-T2 fitting, the myelin water fraction (MWF) and geometric-mean of the intra-/extracellular water T2 (geomT2IEW) in 395 individuals (7-85 years; 41% males) were examined. The approach was validated where regional patterns along the CC closely resembled the histology; MWF matched mean axon diameter and geomT2IEW mirrored the density of large-caliber axons. Across the lifespan, MWF exhibited a quadratic association with age in all 10 CC regions with evidence of a positive linear MWF-age relationship among younger participants and minimal age differences in the remainder of the lifespan. Regarding geomT2IEW, a significant linear age × region interaction reflected positive linear age dependence mostly prominent in the regions with the highest density of small-caliber fibers-genu and splenium. In all, these two indicators characterize distinct attributes that are consistent with histology, which is a first. In addition, these results conform to rapid developmental progression of CC myelination leveling in middle age as well as age-related degradation of axon sheaths in older adults.
Collapse
Affiliation(s)
- Jonathan D Lynn
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI 48201, USA
- Institute of Gerontology, Wayne State University, Detroit MI 48202, USA
| | - Chaitali Anand
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI 48201, USA
- Institute of Gerontology, Wayne State University, Detroit MI 48202, USA
| | - Muzamil Arshad
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI 48201, USA
| | - Roya Homayouni
- Institute of Gerontology, Wayne State University, Detroit MI 48202, USA
- Department of Psychology, Wayne State University, Detroit MI 48201, USA
| | - David R Rosenberg
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI 48201, USA
| | - Noa Ofen
- Institute of Gerontology, Wayne State University, Detroit MI 48202, USA
- Department of Psychology, Wayne State University, Detroit MI 48201, USA
- Lifespan Cognitive Neuroscience, Merrill Palmer Skillman Institute, Wayne State University, Detroit MI 14195, USA
| | - Naftali Raz
- Institute of Gerontology, Wayne State University, Detroit MI 48202, USA
- Department of Psychology, Wayne State University, Detroit MI 48201, USA
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin 14195, Germany
| | - Jeffrey A Stanley
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI 48201, USA
| |
Collapse
|
13
|
Rajan S, Brettschneider J, Collingwood JF. Regional segmentation strategy for DTI analysis of human corpus callosum indicates motor function deficit in mild cognitive impairment. J Neurosci Methods 2020; 345:108870. [PMID: 32687851 DOI: 10.1016/j.jneumeth.2020.108870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND The corpus callosum is the largest white matter tract in the human brain, involved in inter-hemispheric transfer and integration of lateralised visual, sensory-motor, language, and cognitive information. Microstructural alterations are implicated in ageing as well as various neurological conditions. NEW METHOD Cross-sectional diffusion-weighted images of 107 healthy adults were used to create a linear regression model of the ageing corpus callosum and its sub-regions to evaluate the impact of analysis by sub-region, and to test for deviations from healthy ageing parameters in 28 subjects with mild cognitive impairment (MCI). Alterations in diffusion properties including fractional anisotropy, mean, radial and axial diffusivities were investigated as a function of age. RESULTS Changes in DTI parameters showed age-dependent regional differences, likely arising from axonal diameter variation across cross-sectional regions of interest in the corpus callosum. Patterns suggestive of degeneration with healthy ageing were observed in all regions. Diffusion parameters in sub-regions projecting to pre-motor, primary, and supplementary motor areas of the brain differed for MCI versus healthy controls, and MCI subjects were more likely than healthy controls to experience a reduction in motor skills. COMPARISON WITH EXISTING METHODS Statistical analyses of the corpus callosum by five manually-defined sub-regions, instead of a single manually-defined region of interest, revealed region-specific changes in microstructure in healthy ageing and MCI, and accounted for clinically-evaluated differences in motor skills between cohorts. CONCLUSION This method will support future studies of corpus callosum, enabling identification and measurement of white matter changes that are undetectable with the single ROI approach.
Collapse
Affiliation(s)
- Surya Rajan
- School of Engineering, University of Warwick, Coventry, UK
| | | | | |
Collapse
|
14
|
Danielsen VM, Vidal-Piñeiro D, Mowinckel AM, Sederevicius D, Fjell AM, Walhovd KB, Westerhausen R. Lifespan trajectories of relative corpus callosum thickness: Regional differences and cognitive relevance. Cortex 2020; 130:127-141. [PMID: 32652340 DOI: 10.1016/j.cortex.2020.05.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 05/11/2020] [Accepted: 05/25/2020] [Indexed: 02/03/2023]
Abstract
The cerebral hemispheres are specialized for different cognitive functions and receive divergent information from the sensory organs, so that the interaction between the hemispheres is a crucial aspect of perception and cognition. At the same time, the major fiber tract responsible for this interaction, the corpus callosum, shows a structural development across the lifespan which is over-proportional. That is, compared to changes in overall forebrain volume, the corpus callosum shows an accentuated growth during childhood, adolescence, and early adulthood, as well as pronounced decline in older age. However, this over-proportionality of growth and decline along with potential consequences for cognition, have been largely overlooked in empirical research. In the present study we systematically address the proportionality of callosal development in a large mixed cross-sectional and longitudinal sample (1867 datasets from 1014 unique participants), covering the human lifespan (age range 4-93 years), and examine the cognitive consequences of the observed changes. Relative corpus callosum thickness was measured at 60 segments along the midsagittal surface, and lifespan trajectories were clustered to identify callosal subsections of comparable lifespan development. While confirming the expected inverted u-shaped lifespan trajectories, we also found substantial regional variation. Compared with anterior clusters, the most posterior sections exhibited an accentuated growth during development which extends well into the third decade of life, and a protracted decline in older age which is delayed by about 10 years (starting mid to late 50s). We further showed that the observed longitudinal changes in relative thickness of the mid splenium significantly mediates age-related changes in tests assessing verbal knowledge and non-verbal visual-spatial abilities across the lifespan. In summary, we demonstrate that analyzing the proportionality of callosal growth and decline offers valuable insight into lifespan development of structural connectivity between the hemispheres, and suggests consequences for the cognitive development of perception and cognition.
Collapse
Affiliation(s)
- V M Danielsen
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
| | - D Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
| | - A M Mowinckel
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
| | - D Sederevicius
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
| | - A M Fjell
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway; Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - K B Walhovd
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway; Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - R Westerhausen
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway.
| |
Collapse
|
15
|
Choy SW, Bagarinao E, Watanabe H, Ho ETW, Maesawa S, Mori D, Hara K, Kawabata K, Yoneyama N, Ohdake R, Imai K, Masuda M, Yokoi T, Ogura A, Taoka T, Koyama S, Tanabe HC, Katsuno M, Wakabayashi T, Kuzuya M, Hoshiyama M, Isoda H, Naganawa S, Ozaki N, Sobue G. Changes in white matter fiber density and morphology across the adult lifespan: A cross-sectional fixel-based analysis. Hum Brain Mapp 2020; 41:3198-3211. [PMID: 32304267 PMCID: PMC7375080 DOI: 10.1002/hbm.25008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022] Open
Abstract
White matter (WM) fiber bundles change dynamically with age. These changes could be driven by alterations in axonal diameter, axonal density, and myelin content. In this study, we applied a novel fixel‐based analysis (FBA) framework to examine these changes throughout the adult lifespan. Using diffusion‐weighted images from a cohort of 293 healthy volunteers (89 males/204 females) from ages 21 to 86 years old, we performed FBA to analyze age‐related changes in microscopic fiber density (FD) and macroscopic fiber morphology (fiber cross section [FC]). Our results showed significant and widespread age‐related alterations in FD and FC across the whole brain. Interestingly, some fiber bundles such as the anterior thalamic radiation, corpus callosum, and superior longitudinal fasciculus only showed significant negative relationship with age in FD values, but not in FC. On the other hand, some segments of the cerebello‐thalamo‐cortical pathway only showed significant negative relationship with age in FC, but not in FD. Analysis at the tract‐level also showed that major fiber tract groups predominantly distributed in the frontal lobe (cingulum, forceps minor) exhibited greater vulnerability to the aging process than the others. Differences in FC and the combined measure of FD and cross section values observed between sexes were mostly driven by differences in brain sizes although male participants tended to exhibit steeper negative linear relationship with age in FD as compared to female participants. Overall, these findings provide further insights into the structural changes the brain's WM undergoes due to the aging process.
Collapse
Affiliation(s)
- Shao Wei Choy
- Center for Intelligent Signal and Imaging Research, Universiti Teknologi Petronas, Seri Iskandar, Perak, Malaysia
| | | | - Hirohisa Watanabe
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan.,Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Eric Tatt Wei Ho
- Center for Intelligent Signal and Imaging Research, Universiti Teknologi Petronas, Seri Iskandar, Perak, Malaysia
| | - Satoshi Maesawa
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan.,Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Daisuke Mori
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kazuya Kawabata
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Noritaka Yoneyama
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Reiko Ohdake
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kazunori Imai
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Michihito Masuda
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takamasa Yokoi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Aya Ogura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshiaki Taoka
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shuji Koyama
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan
| | - Hiroki C Tanabe
- Department of Cognitive and Psychological Sciences, Graduate School of Informatics, Nagoya University, Nagoya, Aichi, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshihiko Wakabayashi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masafumi Kuzuya
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine and Institute of Innovation for Future Society, Nagoya University, Nagoya, Aichi, Japan
| | - Minoru Hoshiyama
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan
| | - Haruo Isoda
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Norio Ozaki
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan.,Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Gen Sobue
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
16
|
Kitchen NM, Miall RC. Proprioceptive deficits in inactive older adults are not reflected in fast targeted reaching movements. Exp Brain Res 2019; 237:531-545. [PMID: 30478636 PMCID: PMC6373199 DOI: 10.1007/s00221-018-5440-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/18/2018] [Indexed: 12/11/2022]
Abstract
During normal healthy ageing there is a decline in the ability to control simple movements, characterised by increased reaction times, movement durations and variability. There is also growing evidence of age-related proprioceptive loss which may contribute to these impairments. However, this relationship has not been studied in detail for the upper limb. We recruited 20 younger adults (YAs) and 31 older adults (OAs) who each performed 2 tasks on a 2D robotic manipulandum. The first assessed dynamic proprioceptive acuity using active, multi-joint movements constrained by the robot to a pre-defined path. Participants made perceptual judgements of the lateral position of the unseen arm. The second task required fast, accurate and discrete movements to the same targets in the absence of visual feedback of the hand, and without robotic intervention. We predicted that the variable proprioceptive error (uncertainty range) assessed in Task 1 would be increased in physically inactive OAs and would predict increased movement variability in Task 2. Instead we found that physically inactive OAs had larger systematic proprioceptive errors (bias) than YAs (t[33] = 2.8, p = 0.009), and neither proprioceptive uncertainty nor bias was related to motor performance in either age group (all regression model R2 ≤ 0.06). We suggest that previously reported estimates of proprioceptive decline with ageing may be exaggerated by task demands and that the extent of these deficits is unrelated to control of discrete, rapid movement. The relationship between dynamic proprioceptive acuity and movement control in other tasks with greater emphasis on online feedback is still unclear and warrants further investigation.
Collapse
Affiliation(s)
- Nick M Kitchen
- School of Psychology, University of Birmingham, Birmingham, UK.
- Department of Speech and Hearing Science, University of Washington, Seattle, WA, USA.
| | - R Chris Miall
- School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
17
|
Skumlien M, Sederevicius D, Fjell AM, Walhovd KB, Westerhausen R. Parallel but independent reduction of emotional awareness and corpus callosum connectivity in older age. PLoS One 2018; 13:e0209915. [PMID: 30596756 PMCID: PMC6312250 DOI: 10.1371/journal.pone.0209915] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/13/2018] [Indexed: 11/19/2022] Open
Abstract
Differential functional specialization of the left and right hemispheres for linguistic and emotional functions, respectively, suggest that interhemispheric communication via the corpus callosum is critical for emotional awareness. Accordingly, it has been hypothesized that the age-related decline in callosal connectivity mediates the frequently demonstrated reduction in emotional awareness in older age. The present study tests this hypothesis in a sample of 307 healthy individuals between 20-89 years using combined structural and diffusion-tensor magnetic resonance imaging (MRI) of the corpus callosum. As assumed, inter-hemispheric connectivity (midsagittal callosal area and thickness, as well as fractional anisotropy, FA) and emotional awareness (i.e., increase in externally-oriented thinking, EOT; assessed with the Toronto Alexithymia Scale, TAS-20) were found to be reduced in older (> 60 years) compared to younger participants. Furthermore, relating callosal measures to emotional awareness, FA in the genu of the corpus callosum was found to be negatively correlated with EOT in male participants. Thus, "stronger" structural connectivity (higher FA) was related with higher emotional awareness (lower EOT). However, a formal mediation analysis did not support the notion that age-related decline in emotional awareness is mediated by the corpus callosum. Thus, the observed reduction of emotional awareness and callosal connectivity in older age likely reflects parallel but not inter-dependent processes.
Collapse
Affiliation(s)
- Martine Skumlien
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Donatas Sederevicius
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Anders M. Fjell
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Kristine B. Walhovd
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - René Westerhausen
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| |
Collapse
|
18
|
Køster RN, Jesper R, Bente P. The total number of myelinated nerve fibers is reduced in corpus callosum in brains from patients with Alzheimer's disease. Neurobiol Aging 2018; 69:58-64. [DOI: 10.1016/j.neurobiolaging.2018.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/27/2018] [Accepted: 04/27/2018] [Indexed: 12/11/2022]
|
19
|
Scally B, Burke MR, Bunce D, Delvenne JF. Visual and visuomotor interhemispheric transfer time in older adults. Neurobiol Aging 2018; 65:69-76. [DOI: 10.1016/j.neurobiolaging.2018.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 11/07/2017] [Accepted: 01/09/2018] [Indexed: 12/01/2022]
|
20
|
Delvenne JF, Castronovo J. Reduced inter-hemispheric interference in ageing: Evidence from a divided field Stroop paradigm. Brain Cogn 2018; 122:26-33. [PMID: 29407788 DOI: 10.1016/j.bandc.2018.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 10/26/2017] [Accepted: 01/25/2018] [Indexed: 10/18/2022]
Abstract
One of the most important structural changes that occur in the brain during the course of life relates to the corpus callosum, the largest neural pathway that connects the two cerebral hemispheres. It has been shown that the corpus callosum, and in particular its anterior sections, endures a process of degeneration in ageing. Hence, a primary question is whether such structural changes in the brain of older adults have functional consequences on inter-hemispheric communication. In particular, whether the atrophy of the corpus callosum in ageing may lead to a higher or lower level of inter-hemispheric interference is currently unknown. To investigate this question, we asked young and healthy older adults to perform modified versions of the classic Stroop paradigm in which the target and distracter were spatially separated. Across two experiments, we found that the Stroop effect was significantly reduced in older adults when the two stimuli were distributed in two different hemifields as opposed to the same single hemifield. This new finding suggests that age-related callosal thinning reduces inter-hemispheric interference by facilitating the two hemispheres to process information in parallel.
Collapse
|
21
|
Shoraka AR, Otzel DM, M Zilli E, Finney GR, Doty L, Falchook AD, Heilman KM. Effects of aging on action-intentional programming. AGING NEUROPSYCHOLOGY AND COGNITION 2017; 25:244-258. [PMID: 28264637 DOI: 10.1080/13825585.2017.1287854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Action-intentional programs control "when" we initiate, inhibit, continue, and stop motor actions. The purpose of this study was to learn if there are changes in the action-intentional system with healthy aging, and if these changes are asymmetrical (right versus left upper limb) or related to impaired interhemispheric communication. METHODS We administered tests of action-intention to 41 middle-aged and older adults (61.9 ± 12.3 years). RESULTS Regression analyses revealed that older age predicted a decrement in performance for tests of crossed motor response inhibition as well as slower motor initiation with the left hand. CONCLUSION Changes in action-intention with aging appear to be related to alterations of interhemispheric communication and/or age-related right hemisphere dysfunction; however, further research is needed to identify the mechanisms for age-related changes in the brain networks that mediate action-intention.
Collapse
Affiliation(s)
- Ali R Shoraka
- b Geriatric Research Education and Clinical Center of the Malcom Randall Veterans Affairs Medical Center , Gainesville , FL , USA.,c Department of Neurology and Center for Neuropsychological Studies , University of Florida , Gainesville , FL , USA
| | - Dana M Otzel
- b Geriatric Research Education and Clinical Center of the Malcom Randall Veterans Affairs Medical Center , Gainesville , FL , USA
| | - Eduardo M Zilli
- c Department of Neurology and Center for Neuropsychological Studies , University of Florida , Gainesville , FL , USA
| | - Glen R Finney
- c Department of Neurology and Center for Neuropsychological Studies , University of Florida , Gainesville , FL , USA
| | - Leilani Doty
- c Department of Neurology and Center for Neuropsychological Studies , University of Florida , Gainesville , FL , USA.,d Florida Department of Elder Affairs , Alzheimer's Disease Initiative, University of Florida Cognitive and Memory Disorder Clinics , Gainesville , FL , USA.,e National Institutes of Health/National Institute of Aging, 1Florida ADRC (Alzheimer's Disease Research Center) , Gainesville , FL , USA
| | - Adam D Falchook
- a Brain Rehabilitation Research Center of the Malcom Randall Veterans Affairs Medical Center , Gainesville , FL , USA.,c Department of Neurology and Center for Neuropsychological Studies , University of Florida , Gainesville , FL , USA
| | - Kenneth M Heilman
- a Brain Rehabilitation Research Center of the Malcom Randall Veterans Affairs Medical Center , Gainesville , FL , USA.,b Geriatric Research Education and Clinical Center of the Malcom Randall Veterans Affairs Medical Center , Gainesville , FL , USA.,c Department of Neurology and Center for Neuropsychological Studies , University of Florida , Gainesville , FL , USA.,d Florida Department of Elder Affairs , Alzheimer's Disease Initiative, University of Florida Cognitive and Memory Disorder Clinics , Gainesville , FL , USA
| |
Collapse
|
22
|
Vidal-Piñeiro D, Walhovd KB, Storsve AB, Grydeland H, Rohani DA, Fjell AM. Accelerated longitudinal gray/white matter contrast decline in aging in lightly myelinated cortical regions. Hum Brain Mapp 2016; 37:3669-84. [PMID: 27228371 DOI: 10.1002/hbm.23267] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 12/12/2022] Open
Abstract
Highly myelinated cortical regions seem to develop early and are more robust to age-related decline. By use of different magnetic resonance imaging (MRI) measures such as contrast between T1- and T2-weighted MRI scans (T1w/T2w) it is now possible to assess correlates of myelin content in vivo. Further, previous studies indicate that gray/white matter contrast (GWC) become blurred as individuals' age, apparently reflecting age-related changes in myelin structure. Here we address whether longitudinal changes in GWC are dependent on initial myelin content within tissue as defined by baseline T1w/T2w contrast, and hypothesize that lightly myelinated regions undergo more decline longitudinally. A sample of 207 healthy adult participants (range: 20-84 years) was scanned twice (interscan interval: 3.6 years). Results showed widespread longitudinal reductions of GWC throughout the cortical surface, especially in the frontal cortices, mainly driven by intensity decay in the white matter. Annual rate of GWC blurring showed acceleration with age in temporal and medial prefrontal regions. Moreover, the anatomical distribution of increased rate of GWC decline with advancing age was strongly related to baseline levels of intracortical myelin. This study provides a first evidence of accelerated regional GWC blurring with advancing age, relates GWC patterns to cortical myeloarchitectonics and supports the hypothesis of increased age-related vulnerability of lightly myelinated areas. Hum Brain Mapp 37:3669-3684, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Didac Vidal-Piñeiro
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Kristine B Walhovd
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Andreas B Storsve
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Håkon Grydeland
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Darius A Rohani
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Anders M Fjell
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
23
|
Bender AR, Völkle MC, Raz N. Differential aging of cerebral white matter in middle-aged and older adults: A seven-year follow-up. Neuroimage 2016; 125:74-83. [PMID: 26481675 PMCID: PMC4691398 DOI: 10.1016/j.neuroimage.2015.10.030] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/30/2015] [Accepted: 10/12/2015] [Indexed: 11/22/2022] Open
Abstract
The few extant reports of longitudinal white matter (WM) changes in healthy aging, using diffusion tensor imaging (DTI), reveal substantial differences in change across brain regions and DTI indices. According to the "last-in-first-out" hypothesis of brain aging late-developing WM tracts may be particularly vulnerable to advanced age. To test this hypothesis we compared age-related changes in association, commissural and projection WM fiber regions using a skeletonized, region of interest DTI approach. Using linear mixed effect models, we evaluated the influences of age and vascular risk at baseline on seven-year changes in three indices of WM integrity and organization (axial diffusivity, AD, radial diffusivity, RD, and fractional anisotropy, FA) in healthy middle-aged and older adults (mean age=65.4, SD=9.0years). Association fibers showed the most pronounced declines over time. Advanced age was associated with greater longitudinal changes in RD and FA, independent of fiber type. Furthermore, older age was associated with longitudinal RD increases in late-developing, but not early-developing projection fibers. These findings demonstrate the increased vulnerability of later developing WM regions and support the "last-in-first-out" hypothesis of brain aging.
Collapse
Affiliation(s)
- Andrew R Bender
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Germany.
| | - Manuel C Völkle
- Department of Psychology, Humboldt University, Max Planck Institute for Human Development, Germany; Center for Lifespan Psychology, Max Planck Institute for Human Development, Germany
| | - Naftali Raz
- Institute of Gerontology & Department of Psychology, Wayne State University, USA
| |
Collapse
|
24
|
Schulte T, Maddah M, Müller-Oehring EM, Rohlfing T, Pfefferbaum A, Sullivan EV. Fiber tract-driven topographical mapping (FTTM) reveals microstructural relevance for interhemispheric visuomotor function in the aging brain. Neuroimage 2013; 77:195-206. [PMID: 23567886 PMCID: PMC3762255 DOI: 10.1016/j.neuroimage.2013.03.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/06/2013] [Accepted: 03/18/2013] [Indexed: 01/06/2023] Open
Abstract
We present a novel approach - DTI-based fiber tract-driven topographical mapping (FTTM) - to map and measure the influence of age on the integrity of interhemispheric fibers and challenge their selective functions with measures of interhemispheric integration of lateralized information. This approach enabled identification of spatially specific topographical maps of scalar diffusion measures and their relation to measures of visuomotor performance. Relative to younger adults, older adults showed lower fiber integrity indices in anterior than posterior callosal fibers. FTTM analysis identified a dissociation in the microstructural-function associates between age groups: in younger adults, genu fiber integrity correlated with interhemispheric transfer time, whereas in older adults, body fiber integrity was correlated with interhemispheric transfer time with topographical specificity along left-lateralized callosal fiber trajectories. Neural co-activation from redundant targets was evidenced by fMRI-derived bilateral extrastriate cortex activation in both groups, and a group difference emerged for a pontine activation cluster that was differently modulated by response hand in older than younger adults. Bilateral processing advantages in older but not younger adults further correlated with fiber integrity in transverse pontine fibers that branch into the right cerebellar cortex, thereby supporting a role for the pons in interhemispheric facilitation. In conclusion, in the face of compromised anterior callosal fibers, older adults appear to use alternative pathways to accomplish visuomotor interhemispheric information transfer and integration for lateralized processing. This shift from youthful associations may indicate recruitment of compensatory mechanisms involving medial corpus callosum fibers and subcortical pathways.
Collapse
Affiliation(s)
- Tilman Schulte
- SRI International, Neuroscience Program, 333 Ravenswood Ave, Menlo Park, CA 94025, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Parikh PJ, Cole KJ. Transfer of learning between hands to handle a novel object in old age. Exp Brain Res 2013; 227:9-18. [PMID: 23595702 DOI: 10.1007/s00221-013-3451-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 02/12/2013] [Indexed: 10/27/2022]
Abstract
Transferring information about object weight between hands for use in scaling prehension forces likely depends on the integrity of the structures linking the two sides of the brain. It is unknown whether healthy older adults, who demonstrate a modest decline in this connectivity, transfer fingertip force scaling for object weight between hands. In the present study, healthy older and young adults performed two tasks: gripping and lifting an object, and a ballistic finger abduction movement. For the grip and lift task, participants practiced lifting a novel object using a precision pinch grip with the right hand (RH) and then did so again with the left hand (LH). For the ballistic task, participants were trained to maximally accelerate the right index finger by abducting it. On the grip and lift task, all participants appeared to overestimate the object weight during the 1st RH lift, followed by a progressive reduction on successive lifts. This adaptation was transferred to the LH in both groups on their first lift and remained stable over subsequent lifts. In contrast, the training-induced peak abduction acceleration on the ballistic task transferred poorly to the LH in older with considerably better transfer in young adults. We conclude that the memory representations scaling the lift force for the grip and lift task generalized to the untrained hand, while the greater acceleration that was acquired during practice of the ballistic task showed an incomplete transfer to the opposite hand. These differences may indicate task-dependent interhemispheric transfer of learning in old age.
Collapse
Affiliation(s)
- Pranav J Parikh
- Motor Control Laboratories, Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
26
|
Fabricius K, Jacobsen JS, Pakkenberg B. Effect of age on neocortical brain cells in 90+ year old human females--a cell counting study. Neurobiol Aging 2012; 34:91-9. [PMID: 22878165 DOI: 10.1016/j.neurobiolaging.2012.06.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 06/04/2012] [Accepted: 06/07/2012] [Indexed: 11/26/2022]
Abstract
An increasing number of people are living past the age of 100 years, but little is known about what differentiates centenarians from the rest of the population. In this study, brains from female subjects in 3 different age groups, 65-75 years (n = 8), 76-85 years (n = 8), and 94-105 years (n = 7), were examined to estimate the total number of neocortical neurons, astrocytes, oligodendrocytes, and microglia. There was no statistically significant difference in the mean number of neocortical neurons between the 3 groups: 17.9 × 10(9) (CV = SD/mean = 0.15) in the youngest group, 18.1 × 10(9) (CV = 0.22) in the second group, and 16.32 × 10(9) (CV = 0.24) in the oldest group. However, there was a significant difference in the total number of neocortical glial cells between the youngest (41.0 × 10(9)) and oldest (29.0 × 10(9)) age groups (p = 0.013). The significance was probably driven by a significant difference in the total number of neocortical oligodendrocytes that differed significantly between the youngest (27.5 × 10(9)) and oldest (18.1. × 10(9), p = 0.006) age groups. In conclusion, very old individuals have brain neuron numbers comparable with younger individuals, which may be encouraging for those who live into the "fourth age" and may contribute to the longevity of this exceptional group of people.
Collapse
Affiliation(s)
- Katrine Fabricius
- Research Laboratory for Stereology and Neuroscience, Bispebjerg University Hospital, Copenhagen, Denmark
| | | | | |
Collapse
|