1
|
Thumbadoo KM, Dieriks BV, Murray HC, Swanson MEV, Yoo JH, Mehrabi NF, Turner C, Dragunow M, Faull RLM, Curtis MA, Siddique T, Shaw CE, Newell KL, Henden L, Williams KL, Nicholson GA, Scotter EL. Hippocampal aggregation signatures of pathogenic UBQLN2 in amyotrophic lateral sclerosis and frontotemporal dementia. Brain 2024; 147:3547-3561. [PMID: 38703371 PMCID: PMC11449146 DOI: 10.1093/brain/awae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 05/06/2024] Open
Abstract
Pathogenic variants in the UBQLN2 gene cause X-linked dominant amyotrophic lateral sclerosis and/or frontotemporal dementia characterized by ubiquilin 2 aggregates in neurons of the motor cortex, hippocampus and spinal cord. However, ubiquilin 2 neuropathology is also seen in sporadic and familial amyotrophic lateral sclerosis and/or frontotemporal dementia cases not caused by UBQLN2 pathogenic variants, particularly C9orf72-linked cases. This makes the mechanistic role of mutant ubiquilin 2 protein and the value of ubiquilin 2 pathology for predicting genotype unclear. Here we examine a cohort of 44 genotypically diverse amyotrophic lateral sclerosis cases with or without frontotemporal dementia, including eight cases with UBQLN2 variants [resulting in p.S222G, p.P497H, p.P506S, p.T487I (two cases) and p.P497L (three cases)]. Using multiplexed (five-label) fluorescent immunohistochemistry, we mapped the co-localization of ubiquilin 2 with phosphorylated TDP-43, dipeptide repeat aggregates and p62 in the hippocampus of controls (n = 6), or amyotrophic lateral sclerosis with or without frontotemporal dementia in sporadic (n = 20), unknown familial (n = 3), SOD1-linked (n = 1), FUS-linked (n = 1), C9orf72-linked (n = 5) and UBQLN2-linked (n = 8) cases. We differentiate between (i) ubiquilin 2 aggregation together with phosphorylated TDP-43 or dipeptide repeat proteins; and (ii) ubiquilin 2 self-aggregation promoted by UBQLN2 pathogenic variants that cause amyotrophic lateral sclerosis and/or frontotemporal dementia. Overall, we describe a hippocampal protein aggregation signature that fully distinguishes mutant from wild-type ubiquilin 2 in amyotrophic lateral sclerosis with or without frontotemporal dementia, whereby mutant ubiquilin 2 is more prone than wild-type to aggregate independently of driving factors. This neuropathological signature can be used to assess the pathogenicity of UBQLN2 gene variants and to understand the mechanisms of UBQLN2-linked disease.
Collapse
Affiliation(s)
- Kyrah M Thumbadoo
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
| | - Birger V Dieriks
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
| | - Helen C Murray
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
| | - Molly E V Swanson
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
| | - Ji Hun Yoo
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1010, New Zealand
| | - Nasim F Mehrabi
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
| | - Clinton Turner
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland 1010, New Zealand
| | - Michael Dragunow
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1010, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
| | - Teepu Siddique
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Christopher E Shaw
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- UK Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lyndal Henden
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Kelly L Williams
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Garth A Nicholson
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- Northcott Neuroscience Laboratory, Australian and New Zealand Army Corps (ANZAC) Research Institute, Concord, New South Wales 2139, Australia
- Faculty of Medicine, University of Sydney, Sydney, New South Wales 2050, Australia
- Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia
| | - Emma L Scotter
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
2
|
Li H, Xuan T, Xu T, Yang J, Cheng J, Wang Z. SIGMAR1 variants in ALS-PD complex cases: a case report of a novel mutation and literature review. Front Neurol 2023; 14:1242472. [PMID: 37780700 PMCID: PMC10533989 DOI: 10.3389/fneur.2023.1242472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by progressive degeneration of upper and lower motor neurons, with occasional involvement of the extrapyramidal system. Mutations in the sigma non-opioid intracellular receptor 1 (SIGMAR1) gene have been identified as one of the causes of ALS. Here, we present a case of a 49-year-old man diagnosed with ALS-Parkinson's disease (PD) complex. The patient exhibited bradykinesia and tremor, and whole-exome sequencing revealed homozygous mutations in the SIGMAR1 gene (c.446-2A > T). In addition, we conducted an investigation into the clinical and molecular phenotype of previously reported variants of SIGMAR1 associated with ALS. This case report aims to raise awareness among physicians regarding atypical phenotypes of amyotrophic lateral sclerosis and to encourage further research on the factors leading to SIGMAR1 mutations in patients.
Collapse
Affiliation(s)
- Haining Li
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China
- Diagnosis and Treatment Engineering Technology Research Center of Nervous System Disease of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Tingting Xuan
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Ting Xu
- Department of Neural Electrophysiology, Cardiovascular and Cerebrovascular Disease Hospital, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Juan Yang
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China
- Diagnosis and Treatment Engineering Technology Research Center of Nervous System Disease of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jiang Cheng
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China
- Diagnosis and Treatment Engineering Technology Research Center of Nervous System Disease of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Zhenhai Wang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Ningxia Engineering Technology Research Center for Diagnosis and Treatment of Nervous System Diseases, Neurology Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
3
|
Che XQ, Lin GZ, Liu XH, Wang G, Zhao QH, Ren RJ. Genetic and Neuroimaging Analysis of SIGMAR1 for Frontotemporal Dementia. J Alzheimers Dis 2023; 95:469-475. [PMID: 37545231 DOI: 10.3233/jad-221195] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND Recently, Sigma nonopioid intracellular receptor 1 (SIGMAR1) variants have been shown harboring C9orf72 pathogenic repeat expansions in some frontotemporal dementia (FTD) cases. However, no SIGMAR1 genotype analysis has been reported in a cohort absent of C9orf72 pathogenic repeat expansions to date. OBJECTIVE The present study investigated the contribution of SIGMAR1 independent of C9orf72 gene status to FTD spectrum syndromes. METHODS We directly sequencing the entire coding region and a minimum of 50 bp from each of the flanking introns of SIGMAR1 gene in 82 sporadic FTD patients (female: male = 42 : 40) and 417 controls. For the patient carrying SIGMAR1 variant, a follow-up 3T MR imaging was performed in the study. RESULTS Gene sequencing of SIGMAR1 revealed a rare 3'UTR nucleotide variation rs192856872 in a male patient with semantic dementia independent of C9orf72 gene status. The MR imaging showed asymmetrical atrophy in the anterior temporal lobes and the degeneration extends caudally into the posterior temporal lobes as the disease progresses. ESEFinder analysis showed new SRSF1 and SRSF1-IgM-BRCA1 binding sites with significant scores, which is predicted to affect normal splicing. CONCLUSION We found a novel SIGMAR1 variant independent of C9orf72 gene status associated with semantic dementia phenotype.
Collapse
Affiliation(s)
- Xiang-Qian Che
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Zhen Lin
- Department of Psychiatry, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Hong Liu
- Department of Neurology, Shanghai Putuo District People's Hospital, Shanghai, China
| | - Gang Wang
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian-Hua Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Ru-Jing Ren
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Todd TW, Petrucelli L. Modelling amyotrophic lateral sclerosis in rodents. Nat Rev Neurosci 2022; 23:231-251. [PMID: 35260846 DOI: 10.1038/s41583-022-00564-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
The efficient study of human disease requires the proper tools, one of the most crucial of which is an accurate animal model that faithfully recapitulates the human condition. The study of amyotrophic lateral sclerosis (ALS) is no exception. Although the majority of ALS cases are considered sporadic, most animal models of this disease rely on genetic mutations identified in familial cases. Over the past decade, the number of genes associated with ALS has risen dramatically and, with each new genetic variant, there is a drive to develop associated animal models. Rodent models are of particular importance as they allow for the study of ALS in the context of a living mammal with a comparable CNS. Such models not only help to verify the pathogenicity of novel mutations but also provide critical insight into disease mechanisms and are crucial for the testing of new therapeutics. In this Review, we aim to summarize the full spectrum of ALS rodent models developed to date.
Collapse
Affiliation(s)
- Tiffany W Todd
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA.
| |
Collapse
|
5
|
Aishwarya R, Abdullah CS, Remex NS, Alam S, Morshed M, Nitu S, Hartman B, King J, Bhuiyan MAN, Orr AW, Kevil CG, Bhuiyan MS. Molecular Characterization of Skeletal Muscle Dysfunction in Sigma 1 Receptor (Sigmar1) Knockout Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:160-177. [PMID: 34710383 PMCID: PMC8759042 DOI: 10.1016/j.ajpath.2021.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/11/2021] [Accepted: 10/04/2021] [Indexed: 01/03/2023]
Abstract
Sigma 1 receptor (Sigmar1) is a widely expressed, multitasking molecular chaperone protein that plays functional roles in several cellular processes. Mutations in the Sigmar1 gene are associated with several distal neuropathies with strong manifestation in skeletal muscle dysfunction with phenotypes like muscle wasting and atrophy. However, the physiological function of Sigmar1 in skeletal muscle remains unknown. Herein, the physiological role of Sigmar1 in skeletal muscle structure and function in gastrocnemius, quadriceps, soleus, extensor digitorum longus, and tibialis anterior muscles was determined. Quantification of myofiber cross-sectional area showed altered myofiber size distribution and changes in myofiber type in the skeletal muscle of the Sigmar1-/- mice. Interestingly, ultrastructural analysis by transmission electron microscopy showed the presence of abnormal mitochondria, and immunostaining showed derangements in dystrophin localization in skeletal muscles from Sigmar1-/- mice. In addition, myopathy in Sigmar1-/- mice was associated with an increased number of central nuclei, increased collagen deposition, and fibrosis. Functional studies also showed reduced endurance and exercise capacity in the Sigmar1-/- mice without any changes in voluntary locomotion, markers for muscle denervation, and muscle atrophy. Overall, this study shows, for the first time, a potential physiological function of Sigmar1 in maintaining healthy skeletal muscle structure and function.
Collapse
Affiliation(s)
- Richa Aishwarya
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Naznin S Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Shafiul Alam
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Mahboob Morshed
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Sadia Nitu
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Brandon Hartman
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Judy King
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | | | - A Wayne Orr
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana; Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Christopher G Kevil
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana; Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Md Shenuarin Bhuiyan
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana; Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana.
| |
Collapse
|
6
|
Aishwarya R, Abdullah CS, Morshed M, Remex NS, Bhuiyan MS. Sigmar1's Molecular, Cellular, and Biological Functions in Regulating Cellular Pathophysiology. Front Physiol 2021; 12:705575. [PMID: 34305655 PMCID: PMC8293995 DOI: 10.3389/fphys.2021.705575] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The Sigma 1 receptor (Sigmar1) is a ubiquitously expressed multifunctional inter-organelle signaling chaperone protein playing a diverse role in cellular survival. Recessive mutation in Sigmar1 have been identified as a causative gene for neuronal and neuromuscular disorder. Since the discovery over 40 years ago, Sigmar1 has been shown to contribute to numerous cellular functions, including ion channel regulation, protein quality control, endoplasmic reticulum-mitochondrial communication, lipid metabolism, mitochondrial function, autophagy activation, and involved in cellular survival. Alterations in Sigmar1’s subcellular localization, expression, and signaling has been implicated in the progression of a wide range of diseases, such as neurodegenerative diseases, ischemic brain injury, cardiovascular diseases, diabetic retinopathy, cancer, and drug addiction. The goal of this review is to summarize the current knowledge of Sigmar1 biology focusing the recent discoveries on Sigmar1’s molecular, cellular, pathophysiological, and biological functions.
Collapse
Affiliation(s)
- Richa Aishwarya
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Mahboob Morshed
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Md Shenuarin Bhuiyan
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States.,Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| |
Collapse
|
7
|
Zhemkov V, Geva M, Hayden MR, Bezprozvanny I. Sigma-1 Receptor (S1R) Interaction with Cholesterol: Mechanisms of S1R Activation and Its Role in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:4082. [PMID: 33920913 PMCID: PMC8071319 DOI: 10.3390/ijms22084082] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
The sigma-1 receptor (S1R) is a 223 amino acid-long transmembrane endoplasmic reticulum (ER) protein. The S1R modulates the activity of multiple effector proteins, but its signaling functions are poorly understood. S1R is associated with cholesterol, and in our recent studies we demonstrated that S1R association with cholesterol induces the formation of S1R clusters. We propose that these S1R-cholesterol interactions enable the formation of cholesterol-enriched microdomains in the ER membrane. We hypothesize that a number of secreted and signaling proteins are recruited and retained in these microdomains. This hypothesis is consistent with the results of an unbiased screen for S1R-interacting partners, which we performed using the engineered ascorbate peroxidase 2 (APEX2) technology. We further propose that S1R agonists enable the disassembly of these cholesterol-enriched microdomains and the release of accumulated proteins such as ion channels, signaling receptors, and trophic factors from the ER. This hypothesis may explain the pleotropic signaling functions of the S1R, consistent with previously observed effects of S1R agonists in various experimental systems.
Collapse
Affiliation(s)
- Vladimir Zhemkov
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Michal Geva
- Prilenia Therapeutics Development LTD, Herzliya 4673304, Israel; (M.G.); (M.R.H.)
| | - Michael R. Hayden
- Prilenia Therapeutics Development LTD, Herzliya 4673304, Israel; (M.G.); (M.R.H.)
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC V6H 3V5, Canada
| | - Ilya Bezprozvanny
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
- Laboratory of Molecular Neurodegeneration, Peter the Great St Petersburg State Polytechnic University, 195251 St. Petersburg, Russia
| |
Collapse
|
8
|
Lara A, Esperante I, Meyer M, Liere P, Di Giorgio N, Schumacher M, Guennoun R, Gargiulo-Monachelli G, De Nicola AF, Gonzalez Deniselle MC. Neuroprotective Effects of Testosterone in Male Wobbler Mouse, a Model of Amyotrophic Lateral Sclerosis. Mol Neurobiol 2021; 58:2088-2106. [PMID: 33411236 DOI: 10.1007/s12035-020-02209-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/12/2020] [Indexed: 11/30/2022]
Abstract
Patients suffering of amyotrophic lateral sclerosis (ALS) present motoneuron degeneration leading to muscle atrophy, dysphagia, and dysarthria. The Wobbler mouse, an animal model of ALS, shows a selective loss of motoneurons, astrocytosis, and microgliosis in the spinal cord. The incidence of ALS is greater in men; however, it increases in women after menopause, suggesting a role of sex steroids in ALS. Testosterone is a complex steroid that exerts its effects directly via androgen (AR) or Sigma-1 receptors and indirectly via estrogen receptors (ER) after aromatization into estradiol. Its reduced-metabolite 5α-dihydrotestosterone acts via AR. This study analyzed the effects of testosterone in male symptomatic Wobblers. Controls or Wobblers received empty or testosterone-filled silastic tubes for 2 months. The cervical spinal cord from testosterone-treated Wobblers showed (1) similar androgen levels to untreated control and (2) increased levels of testosterone, and its 5α-reduced metabolites, 5α- dihydrotestosterone, and 3β-androstanediol, but (3) undetectable levels of estradiol compared to untreated Wobblers. Testosterone-treated controls showed comparable steroid concentrations to its untreated counterpart. In testosterone- treated Wobblers a reduction of AR, ERα, and aromatase and high levels of Sigma-1 receptor mRNAs was demonstrated. Testosterone treatment increased ChAT immunoreactivity and the antiinflammatory mediator TGFβ, while it lessened vacuolated motoneurons, GFAP+ astrogliosis, the density of IBA1+ microgliosis, proinflammatory mediators, and oxidative/nitrosative stress. Clinically, testosterone treatment in Wobblers slowed the progression of paw atrophy and improved rotarod performance. Collectively, our findings indicate an antiinflammatory and protective effect of testosterone in the degenerating spinal cord. These results coincided with a high concentration of androgen-reduced derivatives after testosterone treatment suggesting that the steroid profile may have a beneficial role on disease progression.
Collapse
Affiliation(s)
- Agustina Lara
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Iván Esperante
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Maria Meyer
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Philippe Liere
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, Le Kremlin-Bicêtre, 94276, France
| | - Noelia Di Giorgio
- Laboratory of Neuroendocrinology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, Buenos Aires, 1428, Argentina
| | - Michael Schumacher
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, Le Kremlin-Bicêtre, 94276, France
| | - Rachida Guennoun
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, Le Kremlin-Bicêtre, 94276, France
| | - Gisella Gargiulo-Monachelli
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Alejandro Federico De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina.,Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1121, Buenos Aires, Argentina
| | - Maria Claudia Gonzalez Deniselle
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina. .,Department of Physiology, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, Buenos Aires, 1121, Argentina.
| |
Collapse
|
9
|
Skrzycki M, Kaźmierczak B. The hidden role of the Sigma1 receptor in muscle cells. J Recept Signal Transduct Res 2020; 40:201-208. [PMID: 32054378 DOI: 10.1080/10799893.2020.1727924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 10/25/2022]
Abstract
This review describes the very specific role of Sigma1 receptor in different types of muscle cells. Sigma1 receptor is a transmembrane protein residing in such structures like MAM. It has chaperoning activity supporting function of many proteins, particularly ion channels, including Ca2+ channels. This latter function is of particular meaning for muscle cells, due to their calcium-based/regulated metabolism. Here we discuss new reports pointing to participation of Sigma1 receptor in muscle specific processes like contraction, EC-coupling, calcium currents and in diseases like left ventricular hypertrophy, transverse aortic stenosis and hypertension-induced heart dysfunction.
Collapse
Affiliation(s)
- Michał Skrzycki
- Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | - Beata Kaźmierczak
- Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
10
|
Ryskamp DA, Zhemkov V, Bezprozvanny I. Mutational Analysis of Sigma-1 Receptor's Role in Synaptic Stability. Front Neurosci 2019; 13:1012. [PMID: 31607852 PMCID: PMC6761230 DOI: 10.3389/fnins.2019.01012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/05/2019] [Indexed: 01/01/2023] Open
Abstract
Sigma-1 receptor (S1R) is an endoplasmic reticulum (ER) resident transmembrane protein. In our previous experiments, we demonstrated neuroprotective effects of pridopidine, an agonist of S1R, in cellular and animal models of Huntington’s disease (HD) and Alzheimer’s disease (AD). Consistent with previous observations, deletion of endogenous S1R with CRISPR/Cas9 in cultured hippocampal neurons resulted in fewer mushroom-shaped dendritic spines. Overexpression of human S1R restored mushroom spine density to control levels. In contrast, overexpression of S1R with the Δ31–50 deletion (linked to distal hereditary motor neuropathy) or the E102Q mutation (linked to amyotrophic lateral sclerosis) destabilized mushroom spines. Recently a crystal structure of S1R was determined in lipidic cubic phase. In the present study, we took an advantage of this structural information and performed docking studies with pridopidine and the S1R structural model. We generated a series of S1R point mutations based on residues predicted to be involved in direct association with pridopidine. We discovered that all ligand binding-site mutants were able to compensate for loss of endogenous S1R. However, most of these mutants were not able to support pridopidine-induced rescue of mushroom spines in presenilin-1-mutant cultures. Our mutational analysis was in agreement with in silico docking based on the published S1R crystal structure, with an exception of R119 residue. Our data also suggest that basal S1R activity is required for mature spine stability, whereas agonist-mediated S1R activity is required for stabilization of mushroom spines in the context of disease-causing mutations.
Collapse
Affiliation(s)
- Daniel A Ryskamp
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Vladimir Zhemkov
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Ilya Bezprozvanny
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, United States.,Laboratory of Molecular Neurodegeneration, Peter the Great Saint Petersburg State Polytechnic University, Saint Petersburg, Russia
| |
Collapse
|
11
|
Ryskamp DA, Korban S, Zhemkov V, Kraskovskaya N, Bezprozvanny I. Neuronal Sigma-1 Receptors: Signaling Functions and Protective Roles in Neurodegenerative Diseases. Front Neurosci 2019; 13:862. [PMID: 31551669 PMCID: PMC6736580 DOI: 10.3389/fnins.2019.00862] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Sigma-1 receptor (S1R) is a multi-functional, ligand-operated protein situated in endoplasmic reticulum (ER) membranes and changes in its function and/or expression have been associated with various neurological disorders including amyotrophic lateral sclerosis/frontotemporal dementia, Alzheimer's (AD) and Huntington's diseases (HD). S1R agonists are broadly neuroprotective and this is achieved through a diversity of S1R-mediated signaling functions that are generally pro-survival and anti-apoptotic; yet, relatively little is known regarding the exact mechanisms of receptor functioning at the molecular level. This review summarizes therapeutically relevant mechanisms by which S1R modulates neurophysiology and implements neuroprotective functions in neurodegenerative diseases. These mechanisms are diverse due to the fact that S1R can bind to and modulate a large range of client proteins, including many ion channels in both ER and plasma membranes. We summarize the effect of S1R on its interaction partners and consider some of the cell type- and disease-specific aspects of these actions. Besides direct protein interactions in the endoplasmic reticulum, S1R is likely to function at the cellular/interorganellar level by altering the activity of several plasmalemmal ion channels through control of trafficking, which may help to reduce excitotoxicity. Moreover, S1R is situated in lipid rafts where it binds cholesterol and regulates lipid and protein trafficking and calcium flux at the mitochondrial-associated membrane (MAM) domain. This may have important implications for MAM stability and function in neurodegenerative diseases as well as cellular bioenergetics. We also summarize the structural and biochemical features of S1R proposed to underlie its activity. In conclusion, S1R is incredibly versatile in its ability to foster neuronal homeostasis in the context of several neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniel A. Ryskamp
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Svetlana Korban
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - Vladimir Zhemkov
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Nina Kraskovskaya
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - Ilya Bezprozvanny
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, United States
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| |
Collapse
|
12
|
Ragagnin AMG, Shadfar S, Vidal M, Jamali MS, Atkin JD. Motor Neuron Susceptibility in ALS/FTD. Front Neurosci 2019; 13:532. [PMID: 31316328 PMCID: PMC6610326 DOI: 10.3389/fnins.2019.00532] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the death of both upper and lower motor neurons (MNs) in the brain, brainstem and spinal cord. The neurodegenerative mechanisms leading to MN loss in ALS are not fully understood. Importantly, the reasons why MNs are specifically targeted in this disorder are unclear, when the proteins associated genetically or pathologically with ALS are expressed ubiquitously. Furthermore, MNs themselves are not affected equally; specific MNs subpopulations are more susceptible than others in both animal models and human patients. Corticospinal MNs and lower somatic MNs, which innervate voluntary muscles, degenerate more readily than specific subgroups of lower MNs, which remain resistant to degeneration, reflecting the clinical manifestations of ALS. In this review, we discuss the possible factors intrinsic to MNs that render them uniquely susceptible to neurodegeneration in ALS. We also speculate why some MN subpopulations are more vulnerable than others, focusing on both their molecular and physiological properties. Finally, we review the anatomical network and neuronal microenvironment as determinants of MN subtype vulnerability and hence the progression of ALS.
Collapse
Affiliation(s)
- Audrey M G Ragagnin
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sina Shadfar
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Marta Vidal
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Md Shafi Jamali
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julie D Atkin
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Parakh S, Perri ER, Jagaraj CJ, Ragagnin AMG, Atkin JD. Rab-dependent cellular trafficking and amyotrophic lateral sclerosis. Crit Rev Biochem Mol Biol 2019; 53:623-651. [PMID: 30741580 DOI: 10.1080/10409238.2018.1553926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rab GTPases are becoming increasingly implicated in neurodegenerative disorders, although their role in amyotrophic lateral sclerosis (ALS) has been somewhat overlooked. However, dysfunction of intracellular transport is gaining increasing attention as a pathogenic mechanism in ALS. Many previous studies have focused axonal trafficking, and the extreme length of axons in motor neurons may contribute to their unique susceptibility in this disorder. In contrast, the role of transport defects within the cell body has been relatively neglected. Similarly, whilst Rab GTPases control all intracellular membrane trafficking events, their role in ALS is poorly understood. Emerging evidence now highlights this family of proteins in ALS, particularly the discovery that C9orf72 functions in intra transport in conjunction with several Rab GTPases. Here, we summarize recent updates on cellular transport defects in ALS, with a focus on Rab GTPases and how their dysfunction may specifically target neurons and contribute to pathophysiology. We discuss the molecular mechanisms associated with dysfunction of Rab proteins in ALS. Finally, we also discuss dysfunction in other modes of transport recently implicated in ALS, including nucleocytoplasmic transport and the ER-mitochondrial contact regions (MAM compartment), and speculate whether these may also involve Rab GTPases.
Collapse
Affiliation(s)
- S Parakh
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| | - E R Perri
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| | - C J Jagaraj
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia
| | - A M G Ragagnin
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia
| | - J D Atkin
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| |
Collapse
|
14
|
Izumi Y, Morino H, Miyamoto R, Matsuda Y, Ohsawa R, Kurashige T, Shimatani Y, Kaji R, Kawakami H. Compound heterozygote mutations in the SIGMAR1 gene in an oldest-old patient with amyotrophic lateral sclerosis. Geriatr Gerontol Int 2018; 18:1519-1520. [PMID: 30311446 DOI: 10.1111/ggi.13506] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/19/2018] [Accepted: 07/04/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Yuishin Izumi
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroyuki Morino
- Department of Epidemiology, Research Institute for Radiation Biology & Medicine, Hiroshima University, Hiroshima, Japan
| | - Ryosuke Miyamoto
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
- Department of Epidemiology, Research Institute for Radiation Biology & Medicine, Hiroshima University, Hiroshima, Japan
| | - Yukiko Matsuda
- Department of Epidemiology, Research Institute for Radiation Biology & Medicine, Hiroshima University, Hiroshima, Japan
| | - Ryosuke Ohsawa
- Department of Epidemiology, Research Institute for Radiation Biology & Medicine, Hiroshima University, Hiroshima, Japan
| | - Takashi Kurashige
- Department of Neurology, National Hospital Organization Kure Medical Center, Hiroshima, Japan
| | - Yoshimitsu Shimatani
- Department of Neurology, Tokushima Prefectural Central Hospital, Tokushima, Japan
| | - Ryuji Kaji
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hideshi Kawakami
- Department of Epidemiology, Research Institute for Radiation Biology & Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
15
|
Analysis of ATXN2 trinucleotide repeats in Korean patients with amyotrophic lateral sclerosis. Neurobiol Aging 2018; 67:201.e5-201.e8. [DOI: 10.1016/j.neurobiolaging.2018.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/19/2018] [Accepted: 03/16/2018] [Indexed: 11/20/2022]
|
16
|
Nandhagopal R, Meftah D, Al-Kalbani S, Scott P. Recessive distal motor neuropathy with pyramidal signs in an Omani kindred: underlying novel mutation in the SIGMAR1 gene. Eur J Neurol 2018; 25:395-403. [PMID: 29115704 DOI: 10.1111/ene.13519] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 11/02/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND PURPOSE Distal hereditary motor neuropathy (dHMN) due to sigma non-opioid intracellular receptor 1 (SIGMAR1) gene mutation (OMIM 601978.0003) is a rare neuromuscular disorder characterized by prominent amyotrophic distal limb weakness and co-existing pyramidal signs initially described in a Chinese family recently. We report an extended consanguineous Omani family segregating dHMN with pyramidal signs in an autosomal recessive pattern and describe a novel mutation in the SIGMAR1 gene underlying this motor phenotype. We also provide an update on the reported phenotypic profile of SIGMAR1 mutations. METHODS We utilized homozygosity mapping and whole-exome sequencing of leucocyte DNA obtained from three affected members of an Omani family who manifested with a length-dependent motor neuropathy and pyramidal signs. RESULTS We identified a novel C>T transition at nucleotide position 238 (c.238C>T) in exon 2 of the SIGMAR1 gene. Sanger sequencing and segregation analysis confirmed the presence of two copies of the variant in the affected subjects, unlike the unaffected healthy parents/sibling who carried, at most, a single copy. The T allele is predicted to cause a truncating mutation (p.Gln80*), probably flagging the mRNA for nonsense-mediated decay leading to a complete loss of function, thereby potentially contributing to the disease process. CONCLUSIONS Our finding expands the spectrum of SIGMAR1 mutations causing recessive dHMN and indicates that this disorder is pan-ethnic. SIGMAR1 mutation should be included in the diagnostic panel of a dHMN, especially if there are co-existing pyramidal signs and autosomal recessive inheritance.
Collapse
Affiliation(s)
- R Nandhagopal
- Department of Medicine - Neurology Unit, Sultan Qaboos University Hospital, Muscat, Oman
| | - D Meftah
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| | - S Al-Kalbani
- Molecular Genetics and Genomics Laboratory, Sultan Qaboos University Hospital, Muscat, Oman
| | - P Scott
- Molecular Genetics and Genomics Laboratory, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
17
|
Huang X, Shen S, Fan D. No Evidence for Pathogenic Role of UBQLN2 Mutations in Sporadic Amyotrophic Lateral Sclerosis in the Mainland Chinese Population. PLoS One 2017; 12:e0170943. [PMID: 28125704 PMCID: PMC5268382 DOI: 10.1371/journal.pone.0170943] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/12/2017] [Indexed: 12/13/2022] Open
Abstract
Mutations in the UBQLN2 gene, which encodes a member of the ubiquitin-like protein family (ubiquilin-2), have been identified in patients with dominant X-linked amyotrophic lateral sclerosis (ALS) and ALS with frontotemporal dementia (FTD). We analyzed mutations in the UBQLN2 gene in a Chinese cohort of 515 patients with sporadic ALS (sALS). A novel missense mutation (p.M392V) was detected in one sALS patient. The p.M392V mutation substitutes a highly conserved residue, has not been reported in the population databases, and previously, at the same residue, a missense mutation p.M392I was detected in two Turkey ALS patients and was considered to be pathogenic, so the M392V is a variant of uncertain significance (VOUS) for ALS. We also found a deletion mutation (p.P500_G502del), which seems to be benign. In conclusion, our data suggest that mutations in the UBQLN2 gene are rare in Chinese sALS patients.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Shen Shen
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
18
|
Abstract
The sigma-1 (σ1) receptor has been associated with regulation of intracellular Ca2+ homeostasis, several cellular signaling pathways, and inter-organelle communication, in part through its chaperone activity. In vivo, agonists of the σ1 receptor enhance brain plasticity, with particularly well-described impact on learning and memory. Under pathological conditions, σ1 receptor agonists can induce cytoprotective responses. These protective responses comprise various complementary pathways that appear to be differentially engaged according to pathological mechanism. Recent studies have highlighted the efficacy of drugs that act through the σ1 receptor to mitigate symptoms associated with neurodegenerative disorders with distinct mechanisms of pathogenesis. Here, we will review genetic and pharmacological evidence of σ1 receptor engagement in learning and memory disorders, cognitive impairment, and neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, and Huntington's disease.
Collapse
Affiliation(s)
- Tangui Maurice
- INSERM U1198, University of Montpellier, Montpellier, 34095, France.
| | - Nino Goguadze
- INSERM U1198, University of Montpellier, Montpellier, 34095, France
- Institute of Chemical Biology, Ilia State University, Tbilisi, 0162, Georgia
| |
Collapse
|
19
|
Kim YE, Oh KW, Noh MY, Nahm M, Park J, Lim SM, Jang JH, Cho EH, Ki CS, Lee S, Kim SH. Genetic and functional analysis of TBK1 variants in Korean patients with sporadic amyotrophic lateral sclerosis. Neurobiol Aging 2016; 50:170.e1-170.e6. [PMID: 27939697 DOI: 10.1016/j.neurobiolaging.2016.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/11/2016] [Accepted: 11/11/2016] [Indexed: 11/29/2022]
Abstract
The TANK-binding kinase 1 (TBK1) gene has recently been identified as a novel causative gene of amyotrophic lateral sclerosis (ALS). This study aims to determine the frequency and spectrum of TBK1 variants and their functional implications in Korean patients with sporadic ALS (sALS). TBK1 sequences were analyzed in 129 consecutive patients with sALS using either multigene panel or exome sequencing. One frameshift (c.1414delA) and 3 missense variants of uncertain significance in TBK1 were found in 4 patients each. In vitro functional studies revealed that the c.1414delA (p.Ile472Serfs*8) variant was associated with reduced mRNA expression of TBK1. Moreover, protein expression of this variant in patient-derived fibroblasts disrupted binding to autophagy adapter proteins and inhibited the function of TBK1 in HEK293T cells. In contrast, the 3 other missense variants of uncertain significance showed normal mRNA expression and no abnormalities in protein function. Based on these findings, the frequency of pathogenic TBK1 variants in Korean sALS patients was estimated to be 0.8% (1/129). In conclusion, pathogenic variants in TBK1 are rare but could be responsible for sALS in a small number of Korean patients.
Collapse
Affiliation(s)
| | - Ki-Wook Oh
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea; Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea
| | - Min-Young Noh
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea; Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea
| | - Minyeop Nahm
- Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea
| | - Jinseok Park
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea; Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea
| | - Su Min Lim
- Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea
| | | | - Eun-Hae Cho
- Green Cross Genome, Yongin, Republic of Korea
| | - Chang-Seok Ki
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Seungbok Lee
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seung Hyun Kim
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea; Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Gregianin E, Pallafacchina G, Zanin S, Crippa V, Rusmini P, Poletti A, Fang M, Li Z, Diano L, Petrucci A, Lispi L, Cavallaro T, Fabrizi GM, Muglia M, Boaretto F, Vettori A, Rizzuto R, Mostacciuolo ML, Vazza G. Loss-of-function mutations in the SIGMAR1 gene cause distal hereditary motor neuropathy by impairing ER-mitochondria tethering and Ca2+ signalling. Hum Mol Genet 2016; 25:3741-3753. [PMID: 27402882 DOI: 10.1093/hmg/ddw220] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 01/14/2023] Open
Abstract
Distal hereditary motor neuropathies (dHMNs) are clinically and genetically heterogeneous neurological conditions characterized by degeneration of the lower motor neurons. So far, 18 dHMN genes have been identified, however, about 80% of dHMN cases remain without a molecular diagnosis. By a combination of autozygosity mapping, identity-by-descent segment detection and whole-exome sequencing approaches, we identified two novel homozygous mutations in the SIGMAR1 gene (p.E138Q and p.E150K) in two distinct Italian families affected by an autosomal recessive form of HMN. Functional analyses in several neuronal cell lines strongly support the pathogenicity of the mutations and provide insights into the underlying pathomechanisms involving the regulation of ER-mitochondria tethering, Ca2+ homeostasis and autophagy. Indeed, in vitro, both mutations reduce cell viability, the formation of abnormal protein aggregates preventing the correct targeting of sigma-1R protein to the mitochondria-associated ER membrane (MAM) and thus impinging on the global Ca2+ signalling. Our data definitively demonstrate the involvement of SIGMAR1 in motor neuron maintenance and survival by correlating, for the first time in the Caucasian population, mutations in this gene to distal motor dysfunction and highlight the chaperone activity of sigma-1R at the MAM as a critical aspect in dHMN pathology.
Collapse
Affiliation(s)
| | - Giorgia Pallafacchina
- Department of Biomedical Sciences, University of Padova and CNR Neuroscience Institute, Padova, Italy
| | - Sofia Zanin
- Department of Biomedical Sciences, University of Padova and CNR Neuroscience Institute, Padova, Italy
| | - Valeria Crippa
- Experimental Neurobiology Lab, IRCCS "C. Mondino" National Neurological Institute, Pavia, Italy
| | - Paola Rusmini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Angelo Poletti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Mingyan Fang
- Department of Science & Technology, BGI-Shenzhen, Shenzhen, China
| | - Zhouxuan Li
- Department of Science & Technology, BGI-Shenzhen, Shenzhen, China
| | - Laura Diano
- Medical Genetics, University Hospital "Tor Vergata", Roma, Italy
| | - Antonio Petrucci
- Neuromuscular and Rare Neurological Diseases Centre Neurology & Neurophysiopathology Unit, ASO San Camillo-Forlanini Hospital of Rome, Rome, Italy
| | - Ludovico Lispi
- Neuromuscular and Rare Neurological Diseases Centre Neurology & Neurophysiopathology Unit, ASO San Camillo-Forlanini Hospital of Rome, Rome, Italy
| | - Tiziana Cavallaro
- Section of Neuropathology, Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Gian M Fabrizi
- Section of Neuropathology, Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Maria Muglia
- CNR Institute of Neurological Sciences, Mangone, Cosenza, Italy
| | | | | | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova and CNR Neuroscience Institute, Padova, Italy
| | | | | |
Collapse
|
21
|
Su TP, Su TC, Nakamura Y, Tsai SY. The Sigma-1 Receptor as a Pluripotent Modulator in Living Systems. Trends Pharmacol Sci 2016; 37:262-278. [PMID: 26869505 PMCID: PMC4811735 DOI: 10.1016/j.tips.2016.01.003] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/03/2016] [Accepted: 01/05/2016] [Indexed: 01/21/2023]
Abstract
The sigma-1 receptor (Sig-1R) is an endoplasmic reticulum (ER) protein that resides specifically in the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM), an interface between ER and mitochondria. In addition to being able to translocate to the plasma membrane (PM) to interact with ion channels and other receptors, Sig-1R also occurs at the nuclear envelope, where it recruits chromatin-remodeling factors to affect the transcription of genes. Sig-1Rs have also been reported to interact with other membranous or soluble proteins at other loci, including the cytosol, and to be involved in several central nervous system (CNS) diseases. Here, we propose that Sig-1R is a pluripotent modulator with resultant multiple functional manifestations in living systems.
Collapse
Affiliation(s)
- Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA.
| | - Tzu-Chieh Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA
| | - Yoki Nakamura
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA
| | - Shang-Yi Tsai
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA
| |
Collapse
|
22
|
Identification of mutations in Korean patients with amyotrophic lateral sclerosis using multigene panel testing. Neurobiol Aging 2015; 37:209.e9-209.e16. [PMID: 26601740 DOI: 10.1016/j.neurobiolaging.2015.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 08/25/2015] [Accepted: 09/19/2015] [Indexed: 11/23/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease involving motor neurons. Because a growing number of genes have been identified as the genetic etiology of ALS, simultaneous screening of mutations in multiple genes is likely to be more efficient than gene-by-gene testing. In this study, we performed a multigene panel testing by using targeted capture of 18 ALS-related genes followed by next-generation sequencing. Using this technique, we tried to identify mutations in 4 index patients with familial ALS and 148 sporadic ALS in Korean population and identified 4 known mutations in SOD1, ALS2, MAPT, and SQSTM1 genes, respectively, and 28 variants of uncertain significance in 9 genes. Among the 28 variants of uncertain significance, 6 missense variants were found in highly conserved residues and were consistently predicted to be deleterious by in silico analyses. These results suggest that multigene panel testing is an effective approach for mutation screening in ALS-related genes. Moreover, the relatively low frequency of mutations in known ALS genes implies marked genetic heterogeneity at least in Korean patients with ALS.
Collapse
|
23
|
Defining the genetic connection linking amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (FTD). Trends Genet 2015; 31:263-73. [DOI: 10.1016/j.tig.2015.03.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/10/2015] [Accepted: 03/10/2015] [Indexed: 12/11/2022]
|