1
|
Zhu Y, Wu Y, Lv X, Wu J, Shen C, Tang Q, Wang G. The relationship between APOE genotype, CSF Tau and cognition across the Alzheimer's disease spectrum, moderation and mediation role of insula network connectivity. CNS Neurosci Ther 2024; 30:e14401. [PMID: 37577852 PMCID: PMC10805399 DOI: 10.1111/cns.14401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023] Open
Abstract
AIMS To investigate whether insula network connectivity modulates the relationship between apolipoprotein E (APOE) ε4 genotype, cerebrospinal fluid (CSF) biomarkers (Aβ, Tau, and pTau) and cognition across Alzheimer's disease (AD) spectrum. METHODS Forty-six cognitive normal (CN), 35 subjective memory complaint (SMC), 41 mild cognitive impairment (MCI), and 32 AD subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were obtained. Multivariable linear regression analyses were conducted to investigate the main effects and interaction of the APOE genotype and disease status on the insula functional connectivity (IFC) network. Mediation and moderation analysis were performed to investigate whether IFC strengths regulate the association between APOE genotype, CSF biomarkers and cognition. Additionally, the support vector machine (SVM) model integrating APOE genotype, CSF biomarkers, and neuroimaging biomarkers (insula volumes and altered regional IFCs) was used to classify the AD spectrum. RESULTS The interactive effect of the APOE genotype and disease on the insula network was found in the left medial superior frontal gyrus (SFGmed.L), right anterior medial prefrontal cortex (aMPFC.R), and bilateral thalamus (THA.B). The functional connectivities (FCs) in the left insula (LIns) connecting with the left posterior middle temporal gyrus (pMTG.L), SFGmed.L, and right lingual gyrus (LING.R) were correlated with cognition. LIns-SFGmed.L and LIns-pMTG.L FCs could moderate the effects of Tau on cognition. Furthermore, LIns-SFGmed.L FC may suppress the association between APOE genotype and cognition. More importantly, the integrated biomarkers from the SVM model yielded strong powers for classifying the AD spectrum. CONCLUSIONS Insula functional connectivity regulated the association between APOE genotype, CSF Tau and cognition and provided stage-dependent biomarkers for early differentiation of the AD spectrum. The present study used a cross-sectional design. Follow-up studies are needed to validate the relationship.
Collapse
Affiliation(s)
- Yao Zhu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Yan Wu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Xinyi Lv
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Jiaonan Wu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Chunzi Shen
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Qiqiang Tang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Guoping Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | | |
Collapse
|
2
|
Tobe M, Nobukawa S, Mizukami K, Kawaguchi M, Higashima M, Tanaka Y, Yamanishi T, Takahashi T. Hub structure in functional network of EEG signals supporting high cognitive functions in older individuals. Front Aging Neurosci 2023; 15:1130428. [PMID: 37139091 PMCID: PMC10149684 DOI: 10.3389/fnagi.2023.1130428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/15/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Maintaining high cognitive functions is desirable for "wellbeing" in old age and is particularly relevant to a super-aging society. According to their individual cognitive functions, optimal intervention for older individuals facilitates the maintenance of cognitive functions. Cognitive function is a result of whole-brain interactions. These interactions are reflected in several measures in graph theory analysis for the topological characteristics of functional connectivity. Betweenness centrality (BC), which can identify the "hub" node, i.e., the most important node affecting whole-brain network activity, may be appropriate for capturing whole-brain interactions. During the past decade, BC has been applied to capture changes in brain networks related to cognitive deficits arising from pathological conditions. In this study, we hypothesized that the hub structure of functional networks would reflect cognitive function, even in healthy elderly individuals. Method To test this hypothesis, based on the BC value of the functional connectivity obtained using the phase lag index from the electroencephalogram under the eyes closed resting state, we examined the relationship between the BC value and cognitive function measured using the Five Cognitive Functions test total score. Results We found a significant positive correlation of BC with cognitive functioning and a significant enhancement in the BC value of individuals with high cognitive functioning, particularly in the frontal theta network. Discussion The hub structure may reflect the sophisticated integration and transmission of information in whole-brain networks to support high-level cognitive function. Our findings may contribute to the development of biomarkers for assessing cognitive function, enabling optimal interventions for maintaining cognitive function in older individuals.
Collapse
Affiliation(s)
- Mayuna Tobe
- Graduate School of Information and Computer Science, Chiba Institute of Technology, Narashino, Japan
| | - Sou Nobukawa
- Graduate School of Information and Computer Science, Chiba Institute of Technology, Narashino, Japan
- Research Center for Mathematical Engineering, Chiba Institute of Technology, Narashino, Japan
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
- *Correspondence: Sou Nobukawa
| | - Kimiko Mizukami
- Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Megumi Kawaguchi
- Department of Nursing, Faculty of Medical Sciences, University of Fukui, Yoshida, Japan
| | | | | | | | - Tetsuya Takahashi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Yoshida, Japan
- Uozu Shinkei Sanatorium, Uozu, Japan
| |
Collapse
|
3
|
Spatiotemporal EEG Dynamics of Prospective Memory in Ageing and Mild Cognitive Impairment. Cognit Comput 2022. [DOI: 10.1007/s12559-022-10075-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Prospective memory (PM, the memory of future intentions) is one of the first complaints of those that develop dementia-related disease. Little is known about the neurophysiology of PM in ageing and those with mild cognitive impairment (MCI). By using a novel artificial neural network to investigate the spatial and temporal features of PM related brain activity, new insights can be uncovered. Young adults (n = 30), healthy older adults (n = 39) and older adults with MCI (n = 27) completed a working memory and two PM (perceptual, conceptual) tasks. Time-locked electroencephalographic potentials (ERPs) from 128-electrodes were analysed using a brain-inspired spiking neural network (SNN) architecture. Local and global connectivity from the SNNs was then evaluated. SNNs outperformed other machine learning methods in classification of brain activity between younger, older and older adults with MCI. SNNs trained using PM related brain activity had better classification accuracy than working memory related brain activity. In general, younger adults exhibited greater local cluster connectivity compared to both older adult groups. Older adults with MCI demonstrated decreased global connectivity in response to working memory and perceptual PM tasks but increased connectivity in the conceptual PM models relative to younger and healthy older adults. SNNs can provide a useful method for differentiating between those with and without MCI. Using brain activity related to PM in combination with SNNs may provide a sensitive biomarker for detecting cognitive decline. Cognitively demanding tasks may increase the amount connectivity in older adults with MCI as a means of compensation.
Collapse
|
4
|
Huang H, Liu Q, Jiang Y, Yang Q, Zhu X, Li Y. Deep Spatio-Temporal Attention-based Recurrent Network from Dynamic Adaptive Functional Connectivity for MCI Identification. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2600-2612. [PMID: 36040940 DOI: 10.1109/tnsre.2022.3202713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Most existing methods of constructing dynamic functional connectivity (dFC) network obtain the connectivity strength via the sliding window correlation (SWC) method, which estimates the connectivity strength at each time segment, rather than at each time point, and thus is difficult to produce accurate dFC network due to the influence of the window type and window width. Furthermore, the deep learning methods may not capture the discriminative spatio-temporal information that is closely related to disease, thus impacting the performance of (mild cognitive impairment) MCI identification. In this paper, a novel spatio-temporal attention-based bidirectional gated recurrent unit (STA-BiGRU) network is proposed to extract inherent spatio-temporal information from a dynamic adaptive functional connectivity (dAFC) network for MCI diagnosis. Specifically, we adopt a group lasso-based Kalman filter algorithm to obtain the dAFC network with more accurate connectivity strength at each time step. Then a spatial attention module with self-attention and a temporal attention module with multiple temporal attention vectors are incorporated into the BiGRU network to extract more discriminative disease-related spatio-temporal information. Finally, the spatio-temporal regularizations are employed to better guide the attention learning of STA-BiGRU network to enhance the robustness of the deep network. Experimental results show that the proposed framework achieves mean accuracies of 90.2%, 90.0%, and 81.5%, respectively, for three MCI classification tasks. This study provides a more effective deep spatio-temporal attention-based recurrent network and obtains good performance and interpretability of deep learning for psychiatry diagnosis research.
Collapse
|
5
|
Wu H, Song Y, Chen S, Ge H, Yan Z, Qi W, Yuan Q, Liang X, Lin X, Chen J. An Activation Likelihood Estimation Meta-Analysis of Specific Functional Alterations in Dorsal Attention Network in Mild Cognitive Impairment. Front Neurosci 2022; 16:876568. [PMID: 35557608 PMCID: PMC9086967 DOI: 10.3389/fnins.2022.876568] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/14/2022] [Indexed: 12/28/2022] Open
Abstract
Background Mild cognitive impairment (MCI) is known as the prodromal stage of the Alzheimer’s disease (AD) spectrum. The recent studies have advised that functional alterations in the dorsal attention network (DAN) could be used as a sensitive marker to forecast the progression from MCI to AD. Therefore, our aim was to investigate specific functional alterations in the DAN in MCI. Methods We systematically searched PubMed, EMBASE, and Web of Science and chose relevant articles based on the three functional indicators, the amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and functional connectivity (FC) in the DAN in MCI. Based on the activation likelihood estimation, we accomplished the aggregation of specific coordinates and the analysis of functional alterations. Results A total of 38 studies were involved in our meta-analysis. By summing up included articles, we acquired specific brain region alterations in the DAN mainly in the superior temporal gyrus (STG), middle temporal gyrus (MTG), superior frontal gyrus (SFG), middle frontal gyrus (MFG), inferior frontal gyrus (IFG), precentral gyrus (preCG), inferior parietal lobule (IPL), superior parietal lobule (SPL). At the same time, the key area that shows anti-interaction with default mode network included the IPL in the DAN. The one showing interactions with executive control network was mainly in the MFG. Finally, the frontoparietal network showed a close connection with DAN especially in the IPL and IFG. Conclusion This study demonstrated abnormal functional markers in the DAN and its interactions with other networks in MCI group, respectively. It provided the foundation for future targeted interventions in preventing the progression of AD. Systematic Review Registration [https://www.crd.york.ac.uk/PROSPERO/], identifier [CRD42021287958].
Collapse
Affiliation(s)
- Huimin Wu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Song
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shanshan Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Honglin Ge
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Zheng Yan
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Wenzhang Qi
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qianqian Yuan
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xuhong Liang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xingjian Lin
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Nardone R, Sebastianelli L, Versace V, Ferrazzoli D, Saltuari L, Trinka E. TMS-EEG Co-Registration in Patients with Mild Cognitive Impairment, Alzheimer's Disease and Other Dementias: A Systematic Review. Brain Sci 2021; 11:brainsci11030303. [PMID: 33673709 PMCID: PMC7997266 DOI: 10.3390/brainsci11030303] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022] Open
Abstract
An established method to assess effective brain connectivity is the combined use of transcranial magnetic stimulation with simultaneous electroencephalography (TMS–EEG) because TMS-induced cortical responses propagate to distant anatomically connected brain areas. Alzheimer’s disease (AD) and other dementias are associated with changes in brain networks and connectivity, but the underlying pathophysiology of these processes is poorly defined. We performed here a systematic review of the studies employing TMS–EEG co-registration in patients with dementias. TMS–EEG studies targeting the motor cortex have revealed a significantly reduced TMS-evoked P30 in AD patients in the temporo-parietal cortex ipsilateral to stimulation side as well as in the contralateral fronto-central area, and we have demonstrated a deep rearrangement of the sensorimotor system even in mild AD patients. TMS–EEG studies targeting other cortical areas showed alterations of effective dorsolateral prefrontal cortex connectivity as well as an inverse correlation between prefrontal-to-parietal connectivity and cognitive impairment. Moreover, TMS–EEG analysis showed a selective increase in precuneus neural activity. TMS–EEG co-registrations can also been used to investigate whether different drugs may affect cognitive functions in patients with dementias.
Collapse
Affiliation(s)
- Raffaele Nardone
- Department of Neurology, Hospital of Merano (SABES-ASDAA), 39012 Merano-Meran, Italy
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, 5020 Salzburg, Austria;
- Spinal Cord Injury and Tissue Regeneration Center, 5020 Salzburg, Austria
- Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, 5020 Salzburg, Austria
- Correspondence: ; Tel.: +473/264553; Fax: +473/264449
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), 39049 Vipiteno-Sterzing, Italy; (L.S.); (V.V.); (D.F.); (L.S.)
- Research Unit for Neurorehabilitation South Tyrol, 39100 Bolzano, Italy
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), 39049 Vipiteno-Sterzing, Italy; (L.S.); (V.V.); (D.F.); (L.S.)
- Research Unit for Neurorehabilitation South Tyrol, 39100 Bolzano, Italy
| | - Davide Ferrazzoli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), 39049 Vipiteno-Sterzing, Italy; (L.S.); (V.V.); (D.F.); (L.S.)
- Research Unit for Neurorehabilitation South Tyrol, 39100 Bolzano, Italy
| | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), 39049 Vipiteno-Sterzing, Italy; (L.S.); (V.V.); (D.F.); (L.S.)
- Research Unit for Neurorehabilitation South Tyrol, 39100 Bolzano, Italy
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, 5020 Salzburg, Austria;
- Centre for Cognitive Neurosciences Salzburg, 5020 Salzburg, Austria
- University for Medical Informatics and Health Technology, UMIT, 6060 Hall in Tirol, Tirol, Austria
| |
Collapse
|
7
|
Lane HY, Tu CH, Lin WC, Lin CH. Brain Activity of Benzoate, a D-Amino Acid Oxidase Inhibitor, in Patients With Mild Cognitive Impairment in a Randomized, Double-Blind, Placebo Controlled Clinical Trial. Int J Neuropsychopharmacol 2021; 24:392-399. [PMID: 33406269 PMCID: PMC8130199 DOI: 10.1093/ijnp/pyab001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Current anti-dementia drugs cannot benefit mild cognitive impairment (MCI). Sodium benzoate (a D-amino acid oxidase [DAO] inhibitor) has been found to improve the cognitive function of patients with early-phase Alzheimer's disease (mild Alzheimer's disease or MCI). However, its effect on brain function remains unknown. This study aimed to evaluate the influence of benzoate on functional magnetic resonance imaging in patients with amnestic MCI. METHODS This was a 24-week, randomized, double-blind, placebo-controlled trial that enrolled 21 patients with amnestic MCI and allocated them randomly to either of 2 treatment groups: (1) benzoate group (250-1500 mg/d), or (2) placebo group. We assessed the patients' working memory, verbal learning and memory, and resting-state functional magnetic resonance imaging and regional homogeneity (ReHo) maps at baseline and endpoint. RESULTS Resting-state ReHo decreased in right orbitofrontal cortex after benzoate treatment but did not change after placebo. Moreover, after benzoate treatment, the change in working memory was positively correlated with the change in ReHo in right precentral gyrus and right middle occipital gyrus; and the change in verbal learning and memory was positively correlated with the change in ReHo in left precuneus. In contrast, after placebo treatment, the change in working memory or in verbal learning and memory was not correlated with the change in ReHo in any brain region. CONCLUSION The current study is the first to our knowledge to demonstrate that a DAO inhibitor, sodium benzoate herein, can alter brain activity as well as cognitive functions in individuals with MCI. The preliminary finding lends supports for DAO inhibition as a novel approach for early dementing processes.
Collapse
Affiliation(s)
- Hsien-Yuan Lane
- Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan ,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan ,Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| | - Cheng-Hao Tu
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Wei-Che Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chieh-Hsin Lin
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan,Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan,School of Medicine, Chang Gung University, Taoyuan, Taiwan ,Correspondence: Chieh-Hsin Lin, MD, PhD, Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong District, Kaohsiung City, 833, Taiwan ()
| |
Collapse
|
8
|
Zhang Y, Chen X, Liang X, Wang Z, Xie T, Wang X, Shi Y, Zeng W, Wang H. Altered Weibull Degree Distribution in Resting-State Functional Brain Networks Is Associated With Cognitive Decline in Mild Cognitive Impairment. Front Aging Neurosci 2021; 12:599112. [PMID: 33469428 PMCID: PMC7814317 DOI: 10.3389/fnagi.2020.599112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/24/2020] [Indexed: 11/28/2022] Open
Abstract
The topological organization of human brain networks can be mathematically characterized by the connectivity degree distribution of network nodes. However, there is no clear consensus on whether the topological structure of brain networks follows a power law or other probability distributions, and whether it is altered in Alzheimer's disease (AD). Here we employed resting-state functional MRI and graph theory approaches to investigate the fitting of degree distributions of the whole-brain functional networks and seven subnetworks in healthy subjects and individuals with amnestic mild cognitive impairment (aMCI), i.e., the prodromal stage of AD, and whether they are altered and correlated with cognitive performance in patients. Forty-one elderly cognitively healthy controls and 30 aMCI subjects were included. We constructed functional connectivity matrices among brain voxels and examined nodal degree distributions that were fitted by maximum likelihood estimation. In the whole-brain networks and all functional subnetworks, the connectivity degree distributions were fitted better by the Weibull distribution [f(x)~x(β−1)e(−λxβ)] than power law or power law with exponential cutoff. Compared with the healthy control group, the aMCI group showed lower Weibull β parameters (shape factor) in both the whole-brain networks and all seven subnetworks (false-discovery rate-corrected, p < 0.05). These decreases of the Weibull β parameters in the whole-brain networks and all subnetworks except for ventral attention were associated with reduced cognitive performance in individuals with aMCI. Thus, we provided a short-tailed model to capture intrinsic connectivity structure of the human brain functional networks in health and disease.
Collapse
Affiliation(s)
- Yifei Zhang
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Xiaodan Chen
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Xinyuan Liang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Zhijiang Wang
- Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China.,Beijing Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China.,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Teng Xie
- Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China.,Beijing Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China.,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xiao Wang
- Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China.,Beijing Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China.,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yuhu Shi
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Weiming Zeng
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Huali Wang
- Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China.,Beijing Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China.,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
9
|
Franzmeier N, Ren J, Damm A, Monté-Rubio G, Boada M, Ruiz A, Ramirez A, Jessen F, Düzel E, Rodríguez Gómez O, Benzinger T, Goate A, Karch CM, Fagan AM, McDade E, Buerger K, Levin J, Duering M, Dichgans M, Suárez-Calvet M, Haass C, Gordon BA, Lim YY, Masters CL, Janowitz D, Catak C, Wolfsgruber S, Wagner M, Milz E, Moreno-Grau S, Teipel S, Grothe MJ, Kilimann I, Rossor M, Fox N, Laske C, Chhatwal J, Falkai P, Perneczky R, Lee JH, Spottke A, Boecker H, Brosseron F, Fliessbach K, Heneka MT, Nestor P, Peters O, Fuentes M, Menne F, Priller J, Spruth EJ, Franke C, Schneider A, Westerteicher C, Speck O, Wiltfang J, Bartels C, Araque Caballero MÁ, Metzger C, Bittner D, Salloway S, Danek A, Hassenstab J, Yakushev I, Schofield PR, Morris JC, Bateman RJ, Ewers M. The BDNF Val66Met SNP modulates the association between beta-amyloid and hippocampal disconnection in Alzheimer's disease. Mol Psychiatry 2021; 26:614-628. [PMID: 30899092 PMCID: PMC6754794 DOI: 10.1038/s41380-019-0404-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/19/2019] [Accepted: 02/14/2019] [Indexed: 01/29/2023]
Abstract
In Alzheimer's disease (AD), a single-nucleotide polymorphism in the gene encoding brain-derived neurotrophic factor (BDNFVal66Met) is associated with worse impact of primary AD pathology (beta-amyloid, Aβ) on neurodegeneration and cognitive decline, rendering BDNFVal66Met an important modulating factor of cognitive impairment in AD. However, the effect of BDNFVal66Met on functional networks that may underlie cognitive impairment in AD is poorly understood. Using a cross-validation approach, we first explored in subjects with autosomal dominant AD (ADAD) from the Dominantly Inherited Alzheimer Network (DIAN) the effect of BDNFVal66Met on resting-state fMRI assessed functional networks. In seed-based connectivity analysis of six major large-scale networks, we found a stronger decrease of hippocampus (seed) to medial-frontal connectivity in the BDNFVal66Met carriers compared to BDNFVal homozogytes. BDNFVal66Met was not associated with connectivity in any other networks. Next, we tested whether the finding of more pronounced decrease in hippocampal-medial-frontal connectivity in BDNFVal66Met could be also found in elderly subjects with sporadically occurring Aβ, including a group with subjective cognitive decline (N = 149, FACEHBI study) and a group ranging from preclinical to AD dementia (N = 114, DELCODE study). In both of these independently recruited groups, BDNFVal66Met was associated with a stronger effect of more abnormal Aβ-levels (assessed by biofluid-assay or amyloid-PET) on hippocampal-medial-frontal connectivity decreases, controlled for hippocampus volume and other confounds. Lower hippocampal-medial-frontal connectivity was associated with lower global cognitive performance in the DIAN and DELCODE studies. Together these results suggest that BDNFVal66Met is selectively associated with a higher vulnerability of hippocampus-frontal connectivity to primary AD pathology, resulting in greater AD-related cognitive impairment.
Collapse
Affiliation(s)
- Nicolai Franzmeier
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Jinyi Ren
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Alexander Damm
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Gemma Monté-Rubio
- grid.477255.60000 0004 1765 5601Fundació ACE, Alzheimer Treatment and Research Center, Barcelona, Spain
| | - Mercè Boada
- grid.477255.60000 0004 1765 5601Fundació ACE, Alzheimer Treatment and Research Center, Barcelona, Spain ,grid.451322.30000 0004 1770 9462CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Agustín Ruiz
- grid.477255.60000 0004 1765 5601Fundació ACE, Alzheimer Treatment and Research Center, Barcelona, Spain ,grid.451322.30000 0004 1770 9462CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Alfredo Ramirez
- grid.6190.e0000 0000 8580 3777Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany ,grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Frank Jessen
- grid.6190.e0000 0000 8580 3777Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Emrah Düzel
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Octavio Rodríguez Gómez
- grid.477255.60000 0004 1765 5601Fundació ACE, Alzheimer Treatment and Research Center, Barcelona, Spain ,grid.451322.30000 0004 1770 9462CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Tammie Benzinger
- grid.4367.60000 0001 2355 7002Department of Radiology, Washington University in St Louis, St Louis, MO USA ,grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA
| | - Alison Goate
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Ronald M. Loeb Center for Alzheimer’s Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Celeste M. Karch
- grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Psychiatry, Washington University in St Louis, St Louis, MO USA
| | - Anne M. Fagan
- grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Neurology, Washington University in St. Louis, St. Louis, MO USA
| | - Eric McDade
- grid.4367.60000 0001 2355 7002Department of Neurology, Washington University in St. Louis, St. Louis, MO USA
| | - Katharina Buerger
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Johannes Levin
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XDepartment of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Duering
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Martin Dichgans
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Marc Suárez-Calvet
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.430077.7Barcelonabeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Catalonia Spain ,grid.5252.00000 0004 1936 973XFaculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Haass
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XFaculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Brian A. Gordon
- grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Psychological and Brain Sciences, Washington University, St. Louis, MO USA
| | - Yen Ying Lim
- grid.1008.90000 0001 2179 088XThe Florey Institute, The University of Melbourne, Parkville, VIC Australia
| | - Colin L. Masters
- grid.1008.90000 0001 2179 088XThe Florey Institute, The University of Melbourne, Parkville, VIC Australia
| | - Daniel Janowitz
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Cihan Catak
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Steffen Wolfsgruber
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael Wagner
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Esther Milz
- grid.6190.e0000 0000 8580 3777Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Sonia Moreno-Grau
- grid.477255.60000 0004 1765 5601Fundació ACE, Alzheimer Treatment and Research Center, Barcelona, Spain ,grid.451322.30000 0004 1770 9462CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Stefan Teipel
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany ,grid.413108.f0000 0000 9737 0454Department of Psychosomatic Medicine, University Hospital Rostock, Rostock, Germany
| | - Michel J Grothe
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Ingo Kilimann
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Martin Rossor
- grid.83440.3b0000000121901201Dementia Research Centre, University College London, Queen Square, London, UK
| | - Nick Fox
- grid.83440.3b0000000121901201Dementia Research Centre, University College London, Queen Square, London, UK
| | - Christoph Laske
- grid.428620.aHertie Institute for Clinical Brain Research, Tübingen, Germany ,grid.424247.30000 0004 0438 0426Germany and German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Jasmeer Chhatwal
- grid.38142.3c000000041936754XMassachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston, MA USA
| | - Peter Falkai
- grid.5252.00000 0004 1936 973XDepartment of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Robert Perneczky
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany ,grid.5252.00000 0004 1936 973XDepartment of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany ,grid.7445.20000 0001 2113 8111Neuroepidemiology and Ageing Research Unit, School of Public Health, The Imperial College of Science, Technology and Medicine, London, UK
| | - Jae-Hong Lee
- grid.413967.e0000 0001 0842 2126Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Annika Spottke
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ,grid.10388.320000 0001 2240 3300Department of Neurology, University of Bonn, Bonn, Germany
| | - Henning Boecker
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ,grid.10388.320000 0001 2240 3300Department of Radiology, University of Bonn, Bonn, Germany
| | - Frederic Brosseron
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Klaus Fliessbach
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T. Heneka
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Peter Nestor
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany ,grid.1003.20000 0000 9320 7537Queensland Brain Institute, University of Queensland, Brisbane, QLD Australia
| | - Oliver Peters
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Manuel Fuentes
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Felix Menne
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Josef Priller
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Neuropsychiatry, Charité, Berlin, Germany
| | - Eike J. Spruth
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Neuropsychiatry, Charité, Berlin, Germany
| | - Christiana Franke
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Neuropsychiatry, Charité, Berlin, Germany
| | - Anja Schneider
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Christine Westerteicher
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Oliver Speck
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265Leibniz Institute for Neurobiology, Magdeburg, Germany ,grid.452320.20000 0004 0404 7236Center for Behavioral Brain Sciences, Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Department for Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke University, Magdeburg, Germany
| | - Jens Wiltfang
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany ,grid.7450.60000 0001 2364 4210Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany ,grid.7311.40000000123236065iBiMED, Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| | - Claudia Bartels
- grid.7450.60000 0001 2364 4210Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
| | - Miguel Ángel Araque Caballero
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Coraline Metzger
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Daniel Bittner
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Stephen Salloway
- grid.40263.330000 0004 1936 9094Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI USA
| | - Adrian Danek
- grid.5252.00000 0004 1936 973XDepartment of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jason Hassenstab
- grid.4367.60000 0001 2355 7002Department of Neurology, Washington University in St. Louis, St. Louis, MO USA
| | - Igor Yakushev
- grid.6936.a0000000123222966Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| | - Peter R. Schofield
- grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Barker Street Randwick, Sydney, NSW 2031 Australia ,grid.1005.40000 0004 4902 0432School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - John C. Morris
- grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Psychiatry, Washington University in St Louis, St Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Neurology, Washington University in St. Louis, St. Louis, MO USA
| | - Randall J. Bateman
- grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Neurology, Washington University in St. Louis, St. Louis, MO USA
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.
| |
Collapse
|
10
|
Naismith SL, Duffy SL, Cross N, Grunstein R, Terpening Z, Hoyos C, D'Rozario A, Lagopoulos J, Osorio RS, Shine JM, McKinnon AC. Nocturnal Hypoxemia Is Associated with Altered Parahippocampal Functional Brain Connectivity in Older Adults at Risk for Dementia. J Alzheimers Dis 2020; 73:571-584. [PMID: 31815696 DOI: 10.3233/jad-190747] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Obstructive sleep apnea is associated with an increased risk of developing mild cognitive impairment and dementia. Intermittent nocturnal hypoxemia in obstructive sleep apnea is associated with brain changes in key regions that underpin memory. OBJECTIVE To determine whether older adults with severe nocturnal hypoxemia would exhibit reduced functional connectivity within these regions, with associated deficits in memory. METHODS Seventy-two participants 51 years and over underwent polysomnography with continuous blood oxygen saturation recorded via oximetry. The oxygen desaturation index (ODI, 3% dips in oxygen levels per hour) was the primary outcome measure. ODI was split into tertiles, with analyses comparing the lowest and highest tertiles (N = 48). Thirty-five of the 48 participants from these two tertiles had mild cognitive impairment. Participants also underwent resting-state fMRI and comprehensive neuropsychological, medical, and psychiatric assessment. RESULTS The highest ODI tertile group demonstrated significantly reduced connectivity between the left and right parahippocampal cortex, relative to the lowest ODI tertile group (t(42) = -3.26, p = 0.041, beta = -1.99).The highest ODI tertile group also had poorer working memory performance. In the highest ODI tertile group only, higher left-right parahippocampal functional connectivity was associated with poorer visual memory recall (between-groups z = -2.93, p = 0.0034). CONCLUSIONS Older adults with severe nocturnal hypoxemia demonstrate impaired functional connectivity in medial temporal structures, key regions involved in sleep memory processing and implicated in dementia pathophysiology. Oxygen desaturation and functional connectivity in these individuals each relate to cognitive performance. Research is now required to further elucidate these findings.
Collapse
Affiliation(s)
- Sharon L Naismith
- Healthy Brain Ageing Program, School of Psychology, University of Sydney, Sydney, Australia.,Charles Perkins Centre, University of Sydney, Sydney, Australia.,Brain & Mind Centre, University of Sydney, Sydney, Australia.,NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep), Australia
| | - Shantel L Duffy
- Healthy Brain Ageing Program, School of Psychology, University of Sydney, Sydney, Australia.,Charles Perkins Centre, University of Sydney, Sydney, Australia.,Brain & Mind Centre, University of Sydney, Sydney, Australia.,NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep), Australia
| | - Nathan Cross
- Healthy Brain Ageing Program, School of Psychology, University of Sydney, Sydney, Australia.,Brain & Mind Centre, University of Sydney, Sydney, Australia.,Sleep and Circadian Group, Woolcock Institute of Medical Research, Sydney Health Partners, Sydney, Australia
| | - Ron Grunstein
- Sleep and Circadian Group, Woolcock Institute of Medical Research, Sydney Health Partners, Sydney, Australia.,NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep), Australia
| | - Zoe Terpening
- Healthy Brain Ageing Program, School of Psychology, University of Sydney, Sydney, Australia.,Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Camilla Hoyos
- Healthy Brain Ageing Program, School of Psychology, University of Sydney, Sydney, Australia.,Brain & Mind Centre, University of Sydney, Sydney, Australia.,Sleep and Circadian Group, Woolcock Institute of Medical Research, Sydney Health Partners, Sydney, Australia.,NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep), Australia
| | - Angela D'Rozario
- Healthy Brain Ageing Program, School of Psychology, University of Sydney, Sydney, Australia.,Brain & Mind Centre, University of Sydney, Sydney, Australia.,Sleep and Circadian Group, Woolcock Institute of Medical Research, Sydney Health Partners, Sydney, Australia.,NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep), Australia
| | - Jim Lagopoulos
- Sunshine Coast Mind and Neuroscience Thompson Institute University of Sunshine Coast, Queensland, Australia
| | - Ricardo S Osorio
- Department of Psychiatry, Sleep Aging and Memory Lab, NYU School of Medicine, New York, NY, USA.,Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - James M Shine
- Brain & Mind Centre, University of Sydney, Sydney, Australia
| | - Andrew C McKinnon
- Healthy Brain Ageing Program, School of Psychology, University of Sydney, Sydney, Australia.,Brain & Mind Centre, University of Sydney, Sydney, Australia.,NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep), Australia
| |
Collapse
|
11
|
Turriziani P, Smirni D, Mangano GR, Zappalà G, Giustiniani A, Cipolotti L, Oliveri M. Low-Frequency Repetitive Transcranial Magnetic Stimulation of the Right Dorsolateral Prefrontal Cortex Enhances Recognition Memory in Alzheimer's Disease. J Alzheimers Dis 2020; 72:613-622. [PMID: 31609693 DOI: 10.3233/jad-190888] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The lack of effective pharmacological or behavioral interventions for memory impairments associated with Alzheimer's disease (AD) emphasizes the need for the investigation of approaches based on neuromodulation. OBJECTIVE This study examined the effects of inhibitory repetitive transcranial magnetic stimulation (rTMS) of prefrontal cortex on recognition memory in AD patients. METHODS In a first experiment, 24 mild AD patients received sham and real 1Hz rTMS over the left and right dorsolateral prefrontal cortex (DLPFC), in different sessions, between encoding and retrieval phases of a non-verbal recognition memory task. In a second experiment, another group of 14 AD patients underwent sham controlled repeated sessions of 1Hz rTMS of the right DLPFC across a two week treatment. Non-verbal recognition memory task was performed at baseline, at the end of the two weeks period and at a follow up of 1 month. RESULTS Right real rTMS significantly improved memory performance compared to right sham rTMS (p = 0.001). Left real rTMS left the memory performance unchanged as compared with left sham rTMS (p = 0.46). The two sham conditions did not differ between each other (p = 0.24). In the second experiment, AD patients treated with real rTMS showed an improvement of memory performance at the end of the two weeks treatment (p = 0.0009), that persisted at 1-month follow-up (p = 0.002). CONCLUSION These findings provide evidence that inhibitory rTMS over the right DLPFC can improve recognition memory function in AD patients. They also suggest the importance of a new approach of non-invasive brain stimulation as a promising treatment in AD.
Collapse
Affiliation(s)
- Patrizia Turriziani
- Department of Psychology, Educational Sciences and Human Movement, University of Palermo, Palermo, Italy.,NeuroTeam Life and Science, Palermo, Italy
| | - Daniela Smirni
- Department of Psychology, Educational Sciences and Human Movement, University of Palermo, Palermo, Italy.,NeuroTeam Life and Science, Palermo, Italy
| | - Giuseppa Renata Mangano
- Department of Psychology, Educational Sciences and Human Movement, University of Palermo, Palermo, Italy.,NeuroTeam Life and Science, Palermo, Italy
| | - Giuseppe Zappalà
- Unità di Neurologia Cognitiva e Riabilitazione, ARNAS Garibaldi, Catania, Italy
| | - Andreina Giustiniani
- Department of Psychology, Educational Sciences and Human Movement, University of Palermo, Palermo, Italy.,NEUROFARBA Department, University of Firenze, Firenze, Italy
| | - Lisa Cipolotti
- Department of Neuropsychology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Massimiliano Oliveri
- Department of Psychology, Educational Sciences and Human Movement, University of Palermo, Palermo, Italy.,NeuroTeam Life and Science, Palermo, Italy
| |
Collapse
|
12
|
Zhu Y, Gong L, He C, Wang Q, Ren Q, Xie C. Default Mode Network Connectivity Moderates the Relationship Between the APOE Genotype and Cognition and Individualizes Identification Across the Alzheimer's Disease Spectrum. J Alzheimers Dis 2020; 70:843-860. [PMID: 31282419 DOI: 10.3233/jad-190254] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although previous studies have investigated the effects of the apolipoprotein E (APOE) ɛ4 genotype on the default mode network (DMN) in the Alzheimer's disease (AD) spectrum, it is still unclear how the APOE genotype regulates the DMN and subsequently affects cognitive decline in the AD spectrum. One hundred sixty-nine subjects with resting-state functional magnetic resonance imaging data and neuropsychological test scores were selected from the Alzheimer's Disease Neuroimaging Initiative. The main effects and interaction of the APOE genotype and disease status on the DMN were explored. A moderation analysis was performed to investigate the relationship among the APOE genotype, DMN connectivity, and cognition. Additionally, the pair-wised DMN connectivity was used to classify AD spectrum, and the classification accuracy was validated. Compared to APOEɛ4 non-carriers, APOEɛ4 carriers showed the opposite trajectory of DMN connectivity across the AD spectrum. Specifically, the strengths in the posterior cingulate cortex (PCC) connecting with the right precuneus, insular, and fusiform area (FFA) were positively correlated with Mini-Mental State Examination (MMSE) scores in APOEɛ4 non-carriers but not in APOEɛ4 carriers. Furthermore, PCC-right FFA connectivity could moderate the effects of the APOE genotype on MMSE scores across the disease groups. More importantly, using a receiver operating characteristic analysis, these altered connectivities yielded strong classification powers in a pathological stage-dependent manner in the AD spectrum. These findings first identified the intrinsic DMN connectivity moderating the effect of the APOE genotype on cognition and provided a pathological stage-dependent neuroimaging biomarker for early differentiation of the AD spectrum.
Collapse
Affiliation(s)
- Yao Zhu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Liang Gong
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Cancan He
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Qing Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Qingguo Ren
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | | |
Collapse
|
13
|
Xue C, Yuan B, Yue Y, Xu J, Wang S, Wu M, Ji N, Zhou X, Zhao Y, Rao J, Yang W, Xiao C, Chen J. Distinct Disruptive Patterns of Default Mode Subnetwork Connectivity Across the Spectrum of Preclinical Alzheimer's Disease. Front Aging Neurosci 2019; 11:307. [PMID: 31798440 PMCID: PMC6863958 DOI: 10.3389/fnagi.2019.00307] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/25/2019] [Indexed: 12/28/2022] Open
Abstract
Background: The early progression continuum of Alzheimer’s disease (AD) has been considered to advance through subjective cognitive decline (SCD), non-amnestic mild cognitive impairment (naMCI), and amnestic mild cognitive impairment (aMCI). Altered functional connectivity (FC) in the default mode network (DMN) is regarded as a hallmark of AD. Furthermore, the DMN can be divided into two subnetworks, the anterior and posterior subnetworks. However, little is known about distinct disruptive patterns in the subsystems of the DMN across the preclinical AD spectrum. This study investigated the connectivity patterns of anterior DMN (aDMN) and posterior DMN (pDMN) across the preclinical AD spectrum. Methods: Resting-state functional magnetic resonance imaging (rs-fMRI) was used to investigate the FC in the DMN subnetworks in 20 healthy controls (HC), eight SCD, 11 naMCI, and 28 aMCI patients. Moreover, a correlation analysis was used to examine associations between the altered connectivity of the DMN subnetworks and the neurocognitive performance. Results: Compared to the HC, SCD patients showed increased FC in the bilateral superior frontal gyrus (SFG), naMCI patients showed increased FC in the left inferior parietal lobule (IPL), and aMCI patients showed increased FC in the bilateral IPL in the aDMN; while SCD patients showed decreased FC in the precuneus, naMCI patients showed increased FC in the left middle temporal gyrus (MTG), and aMCI patients also showed increased FC in the right middle frontal gyrus (MFG) in the pDMN. Notably, the FC between the ventromedial prefrontal cortex (vmPFC) and the left MFG and the IPL in the aDMN was associated with episodic memory in the SCD and aMCI groups. Interestingly, the FC between the posterior cingulated cortex (PCC) and several regions in the pDMN was associated with other cognitive functions in the SCD and naMCI groups. Conclusions: This study demonstrates that the three preclinical stages of AD exhibit distinct FC alternations in the DMN subnetworks. Furthermore, the patient group data showed that the altered FC involves cognitive function. These findings can provide novel insights for tailored clinical intervention across the preclinical AD spectrum.
Collapse
Affiliation(s)
- Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Baoyu Yuan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yingying Yue
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jiani Xu
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Siyu Wang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Meilin Wu
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Nanxi Ji
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Xingzhi Zhou
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Yilin Zhao
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Jiang Rao
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Wenjie Yang
- Department of Rehabilitation, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Chaoyong Xiao
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Meusel LAC, Greenwood CE, Maione A, Tchistiakova E, MacIntosh BJ, Anderson ND. Cardiovascular risk and encoding-related hippocampal connectivity in older adults. BMC Neurosci 2019; 20:37. [PMID: 31366391 PMCID: PMC6668059 DOI: 10.1186/s12868-019-0518-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 07/16/2019] [Indexed: 01/10/2023] Open
Abstract
Background Cardiovascular conditions contribute to brain volume loss, reduced cerebrovascular health, and increased dementia risk in aging adults. Altered hippocampal connectivity has also been observed in individuals with cardiovascular conditions, yet the functional consequences of these changes remain unclear. In the present study, we collected functional magnetic resonance imaging data during memory encoding and used a psychophysiological interaction analysis to examine whether cardiovascular burden, indexed using the Framingham risk score, was associated with encoding-related hippocampal connectivity and task performance in cognitively-intact older adults between 65 and 85 years of age. Our goal was to better understand the early functional consequences of vascular and metabolic dysfunction in those at risk for cognitive decline. Results High Framingham risk scores were associated with lower total brain volumes. In addition, those with high Framingham risk scores showed an altered relationship between left hippocampal-medial prefrontal coupling and task performance compared to those with low Framingham risk scores. Specifically, we found a significant interaction of Framingham risk and learning on connectivity between the left hippocampus and primarily left midline prefrontal regions comprising the left ventral anterior cingulate cortex and medial prefrontal cortex. Those with lower Framingham risk scores showed a pattern of weaker connectivity between left hippocampal and medial prefrontal regions associated with better task performance. Those with higher Framingham risk scores showed the opposite pattern; stronger connectivity was associated with better performance. Conclusions Findings from the current study show that amongst older adults with cardiovascular conditions, higher Framingham risk is associated with lower brain volume and altered left hippocampal-medial prefrontal coupling during task performance compared to those with lower Framingham risk scores. This may reflect a compensatory mechanism in support of memory function and suggests that older adults with elevated cardiovascular risk are vulnerable to early Alzheimer disease-like dysfunction within the episodic memory system.
Collapse
Affiliation(s)
- Liesel-Ann C Meusel
- Rotman Research Institute, Baycrest, 3560 Bathurst Street, Toronto, ON, M6A 2E1, Canada
| | - Carol E Greenwood
- Rotman Research Institute, Baycrest, 3560 Bathurst Street, Toronto, ON, M6A 2E1, Canada.,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Andrea Maione
- Rotman Research Institute, Baycrest, 3560 Bathurst Street, Toronto, ON, M6A 2E1, Canada
| | - Ekaterina Tchistiakova
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nicole D Anderson
- Rotman Research Institute, Baycrest, 3560 Bathurst Street, Toronto, ON, M6A 2E1, Canada. .,Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
15
|
|
16
|
Bagattini C, Mutanen TP, Fracassi C, Manenti R, Cotelli M, Ilmoniemi RJ, Miniussi C, Bortoletto M. Predicting Alzheimer's disease severity by means of TMS-EEG coregistration. Neurobiol Aging 2019; 80:38-45. [PMID: 31077959 DOI: 10.1016/j.neurobiolaging.2019.04.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
Clinical manifestations of Alzheimer's disease (AD) are associated with a breakdown in large-scale communication, such that AD may be considered as a "disconnection syndrome." An established method to test effective connectivity is the combination of transcranial magnetic stimulation with electroencephalography (TMS-EEG) because the TMS-induced cortical response propagates to distant anatomically connected regions. To investigate whether prefrontal connectivity alterations may predict disease severity, we explored the relationship of dorsolateral prefrontal cortex connectivity (derived from TMS-EEG) with cognitive decline (measured with Mini Mental State Examination and a face-name association memory task) in 26 patients with AD. The amplitude of TMS-EEG evoked component P30, which was found to be generated in the right superior parietal cortex, predicted Mini Mental State Examination and face-name memory scores: higher P30 amplitudes predicted poorer cognitive and memory performances. The present results indicate that advancing disease severity might be associated with effective connectivity increase involving long-distance frontoparietal connections, which might represent a maladaptive pathogenic mechanism reflecting a damaged excitatory-inhibitory balance between anterior and posterior regions.
Collapse
Affiliation(s)
- Chiara Bagattini
- Cognitive Neuroscience Section, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Tuomas P Mutanen
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow, UK
| | - Claudia Fracassi
- Cognitive Neuroscience Section, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Rosa Manenti
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Maria Cotelli
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Carlo Miniussi
- Cognitive Neuroscience Section, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Center for Mind/Brain Sciences- CIMeC, University of Trento, Rovereto, Italy
| | - Marta Bortoletto
- Cognitive Neuroscience Section, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
17
|
Wu H, Zhou R, Zhao L, Qiu J, Guo C. Neural bases underlying the association between balanced time perspective and trait anxiety. Behav Brain Res 2019; 359:206-214. [PMID: 30408512 DOI: 10.1016/j.bbr.2018.10.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 11/19/2022]
Abstract
The aims of present study were to investigate the association between balanced time perspective (BTP) and trait anxiety, and the neural substrates underlying this association using voxel-based morphometry (VBM) and resting-state functional connectivity (RSFC) methods. 140 college students (83 females) ranging in age from 17 to 25 years were assessed on deviation from the balanced time perspective (DBTP) and trait anxiety. Behavioral analyses found BTP could significantly predict trait anxiety after controlling age and gender. Whole-brain VBM analyses found that DBTP was positively correlated with gray matter volume (GMV) in the parahippocampal gyrus (PHG) and precuneus, while trait anxiety positively correlated with GMV in the PHG. Considering the overlapping region in the PHG, we further defined the overlapping region as the seed, and calculated seed-to-voxel-based functional connectivity in resting-state. RSFC results showed that DBTP was positively associated with the RSFC between the PHG and medial prefrontal cortex (mPFC), posterior cingulate cortex (PCC), and precuneus, whereas negatively correlated with the RSFC between the PHG and cuneus. Trait anxiety was also positively correlated with the RSFC between the PHG and PCC while negatively correlated with the RSFC between the PHG and cuneus. Mediation analysis further found GMV in the overlapping PHG and PHG-PCC, PHG-cuneus functional connectivity played significantly mediating roles in the relation between DBTP and trait anxiety. In sum, our research suggests the structural features of the PHG and its connectivity with PCC and cuneus may be the neural bases underlying the association between BTP and trait anxiety.
Collapse
Affiliation(s)
- Huimin Wu
- The Lab of Mental Health and Social Adaptation, Faculty of Psychology, Southwest University, Chongqing, China; Research Center of Mental Health Education, Southwest University, Chongqing, China
| | - Renhui Zhou
- The Lab of Mental Health and Social Adaptation, Faculty of Psychology, Southwest University, Chongqing, China; Research Center of Mental Health Education, Southwest University, Chongqing, China
| | - Le Zhao
- School of Education, Beijing Normal University, Zhuhai, China
| | - Junjie Qiu
- School of Educational Science, Lingnan Normal University, Zhanjiang, China
| | - Cheng Guo
- The Lab of Mental Health and Social Adaptation, Faculty of Psychology, Southwest University, Chongqing, China; Research Center of Mental Health Education, Southwest University, Chongqing, China.
| |
Collapse
|
18
|
Simon-Vermot L, Taylor ANW, Araque Caballero MÀ, Franzmeier N, Buerger K, Catak C, Janowitz D, Kambeitz-Ilankovic LM, Ertl-Wagner B, Duering M, Ewers M. Correspondence Between Resting-State and Episodic Memory-Task Related Networks in Elderly Subjects. Front Aging Neurosci 2018; 10:362. [PMID: 30467476 PMCID: PMC6236026 DOI: 10.3389/fnagi.2018.00362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/22/2018] [Indexed: 11/14/2022] Open
Abstract
Resting-state fMRI studies demonstrated temporally synchronous fluctuations in brain activity among ensembles of brain regions, suggesting the existence of intrinsic functional networks. A spatial match between some of the resting-state networks and regional brain activation during cognitive tasks has been noted, suggesting that resting-state networks support particular cognitive abilities. However, the spatial match and predictive value of any resting-state network and regional brain activation during episodic memory is only poorly understood. In order to address this research gap, we obtained fMRI acquired both during rest and a face-name association task in 38 healthy elderly subjects. In separate independent component analyses, networks of correlated brain activity during rest or the episodic memory task were identified. For the independent components identified for task-based fMRI, the design matrix of successful encoding or retrieval trials was regressed against the time course of each of the component to identify significantly activated networks. Spatial regression was used to assess the match of resting-state networks against those related to successful memory encoding or retrieval. We found that resting-state networks covering the medial temporal, middle temporal, and frontal areas showed increased activity during successful encoding. Resting-state networks located within posterior brain regions showed increased activity during successful recognition. However, the level of resting-state network connectivity was not predictive of the task-related activity in these networks. These results suggest that a circumscribed number of functional networks detectable during rest become engaged during successful episodic memory. However, higher intrinsic connectivity at rest may not translate into higher network expression during episodic memory.
Collapse
Affiliation(s)
- Lee Simon-Vermot
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University, Munich, Germany
| | | | - Miguel À Araque Caballero
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University, Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University, Munich, Germany
| | - Katharina Buerger
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University, Munich, Germany.,German Center for Neurodegenerative Diseases, Munich, Germany
| | - Cihan Catak
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University, Munich, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University, Munich, Germany
| | | | - Birgit Ertl-Wagner
- Institute for Clinical Radiology, Klinikum der Universität München, Ludwig Maximilian University, Munich, Germany
| | - Marco Duering
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University, Munich, Germany
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
19
|
Bayram E, Caldwell JZK, Banks SJ. Current understanding of magnetic resonance imaging biomarkers and memory in Alzheimer's disease. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2018; 4:395-413. [PMID: 30229130 PMCID: PMC6140335 DOI: 10.1016/j.trci.2018.04.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Alzheimer's disease (AD) is caused by a cascade of changes to brain integrity. Neuroimaging biomarkers are important in diagnosis and monitoring the effects of interventions. As memory impairments are among the first symptoms of AD, the relationship between imaging findings and memory deficits is important in biomarker research. The most established magnetic resonance imaging (MRI) finding is hippocampal atrophy, which is related to memory decline and currently used as a diagnostic criterion for AD. While the medial temporal lobes are impacted early by the spread of neurofibrillary tangles, other networks and regional changes can be found quite early in the progression. Atrophy in several frontal and parietal regions, cortical thinning, and white matter alterations correlate with memory deficits in early AD. Changes in activation and connectivity have been detected by functional MRI (fMRI). Task-based fMRI studies have revealed medial temporal lobe hypoactivation, parietal hyperactivation, and frontal hyperactivation in AD during memory tasks, and activation patterns of these regions are also altered in preclinical and prodromal AD. Resting state fMRI has revealed alterations in default mode network activity related to memory in early AD. These studies are limited in part due to the historic inclusion of patients who had suspected AD but likely did not have the disorder. Modern biomarkers allow for more diagnostic certainty, allowing better understanding of neuroimaging markers in true AD, even in the preclinical stage. Larger patient cohorts, comparison of candidate imaging biomarkers to more established biomarkers, and inclusion of more detailed neuropsychological batteries to assess multiple aspects of memory are needed to better understand the memory deficit in AD and help develop new biomarkers. This article reviews MRI findings related to episodic memory impairments in AD and introduces a new study with multimodal imaging and comprehensive neuropsychiatric evaluation to overcome current limitations.
Collapse
Affiliation(s)
- Ece Bayram
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Jessica Z K Caldwell
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Sarah J Banks
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| |
Collapse
|
20
|
Franzmeier N, Hartmann JC, Taylor ANW, Araque Caballero MÁ, Simon-Vermot L, Buerger K, Kambeitz-Ilankovic LM, Ertl-Wagner B, Mueller C, Catak C, Janowitz D, Stahl R, Dichgans M, Duering M, Ewers M. Left Frontal Hub Connectivity during Memory Performance Supports Reserve in Aging and Mild Cognitive Impairment. J Alzheimers Dis 2018; 59:1381-1392. [PMID: 28731448 PMCID: PMC5611800 DOI: 10.3233/jad-170360] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Reserve in aging and Alzheimer's disease (AD) is defined as maintaining cognition at a relatively high level in the presence of neurodegeneration, an ability often associated with higher education among other life factors. Recent evidence suggests that higher resting-state functional connectivity within the frontoparietal control network, specifically the left frontal cortex (LFC) hub, contributes to higher reserve. Following up these previous resting-state fMRI findings, we probed memory-task related functional connectivity of the LFC hub as a neural substrate of reserve. In elderly controls (CN, n = 37) and patients with mild cognitive impairment (MCI, n = 17), we assessed global connectivity of the LFC hub during successful face-name association learning, using generalized psychophysiological interaction analyses. Reserve was quantified as residualized memory performance, accounted for gender and proxies of neurodegeneration (age, hippocampus atrophy, and APOE genotype). We found that greater education was associated with higher LFC-connectivity in both CN and MCI during successful memory. Furthermore, higher LFC-connectivity predicted higher residualized memory (i.e., reserve). These results suggest that higher LFC-connectivity contributes to reserve in both healthy and pathological aging.
Collapse
Affiliation(s)
- Nicolai Franzmeier
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Julia C Hartmann
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | | | - Miguel Á Araque Caballero
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Lee Simon-Vermot
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Katharina Buerger
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
| | | | - Birgit Ertl-Wagner
- Institute for Clinical Radiology, Klinikum der Universität München, Ludwig-Maximilian University, Munich, Germany
| | - Claudia Mueller
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Cihan Catak
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Robert Stahl
- Institute for Clinical Radiology, Klinikum der Universität München, Ludwig-Maximilian University, Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Marco Duering
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| |
Collapse
|
21
|
Zhou J, Liu S, Ng KK, Wang J. Applications of Resting-State Functional Connectivity to Neurodegenerative Disease. Neuroimaging Clin N Am 2017; 27:663-683. [DOI: 10.1016/j.nic.2017.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Abstract
PURPOSE OF REVIEW Despite signs of cortical and subcortical loss, patients with prodromal and early-stage neurodegenerative disease are able to perform at a level comparable to the normal population. It is presumed that the onset of compensatory processes, that is changes in brain activation within a function-specific network or in the recruitment of a region outside of the task-network, underlies this maintenance of normal performance. However, in most studies to date, increased brain activity is not correlated with indices of both disease and performance and what appears to be compensation could simply be a symptom of neurodegeneration. RECENT FINDINGS MRI studies have explored compensation in neurodegenerative disease, claiming that compensation is evident across a number of disorders, including Alzheimer's and Parkinson's disease, but generally always in early stages; after this point, compensation is generally no longer able to operate under the severe burden of disease. However, none of these studies explicitly adopted a particular model of compensation. Thus, we also discuss our recent attempts to operationalize compensation for empirical testing. SUMMARY There is clear evidence of compensatory processes in the early stages of neurodegenerative disease. However, for a more complete understanding, this requires more explicit empirical modelling.
Collapse
Affiliation(s)
- Sarah Gregory
- Huntington’s Disease Research Centre, UCL Institute of Neurology, London, UK
- Wellcome Trust Centre for Neuroimaging, University College London, London, UK
| | - Jeffrey. D Long
- Departments of Psychiatry and Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Sarah J. Tabrizi
- Huntington’s Disease Research Centre, UCL Institute of Neurology, London, UK
| | - Geraint Rees
- Wellcome Trust Centre for Neuroimaging, University College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
23
|
Local-to-remote cortical connectivity in amnestic mild cognitive impairment. Neurobiol Aging 2017; 56:138-149. [DOI: 10.1016/j.neurobiolaging.2017.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 04/02/2017] [Accepted: 04/18/2017] [Indexed: 11/23/2022]
|
24
|
Zhang H, Lee A, Qiu A. A posterior-to-anterior shift of brain functional dynamics in aging. Brain Struct Funct 2017; 222:3665-3676. [PMID: 28417233 DOI: 10.1007/s00429-017-1425-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 04/10/2017] [Indexed: 10/19/2022]
Abstract
Convergent evidence from task-based functional magnetic resonance imaging (fMRI) studies suggests a posterior-to-anterior shift as an adaptive compensatory scaffolding mechanism for aging. This study aimed to investigate whether brain functional dynamics at rest follow the same scaffolding mechanism for aging using a large Chinese sample aged from 22 to 79 years (n = 277). We defined a probability of brain regions being hubs over a period of time to characterize functional hub dynamic, and defined variability of the functional connectivity to characterize dynamic functional connectivity using resting-state fMRI. Our results revealed that both functional hub dynamics and dynamic functional connectivity posited an age-related posterior-to-anterior shift. Specifically, the posterior brain region showed attenuated dynamics, while the anterior brain regions showed augmented dynamics in aging. Interestingly, our analysis further indicated that the age-related episodic memory decline was associated with the age-related decrease in the brain functional dynamics of the posterior regions. Hence, these findings provided a new dimension to view the scaffolding mechanism for aging based on the brain functional dynamics.
Collapse
Affiliation(s)
- Han Zhang
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Annie Lee
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore. .,Clinical Imaging Research Center, National University of Singapore, Singapore, 117456, Singapore. .,Singapore Institute for Clinical Sciences, The Agency for Science, Technology and Research, Singapore, 117609, Singapore.
| |
Collapse
|
25
|
Hirjak D, Wolf RC, Remmele B, Seidl U, Thomann AK, Kubera KM, Schröder J, Maier-Hein KH, Thomann PA. Hippocampal formation alterations differently contribute to autobiographic memory deficits in mild cognitive impairment and Alzheimer's disease. Hippocampus 2017; 27:702-715. [PMID: 28281317 DOI: 10.1002/hipo.22726] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 12/17/2022]
Abstract
Autobiographical memory (AM) is part of declarative memory and includes both semantic and episodic aspects. AM deficits are among the major complaints of patients with Alzheimer's disease (AD) even in early or preclinical stages. Previous MRI studies in AD patients have showed that deficits in semantic and episodic AM are associated with hippocampal alterations. However, the question which specific hippocampal subfields and adjacent extrahippocampal structures contribute to deficits of AM in individuals with mild cognitive impairment (MCI) and AD patients has not been investigated so far. Hundred and seven participants (38 AD patients, 38 MCI individuals and 31 healthy controls [HC]) underwent MRI at 3 Tesla. AM was assessed with a semi-structured interview (E-AGI). FreeSurfer 5.3 was used for hippocampal parcellation. Semantic and episodic AM scores were related to the volume of 5 hippocampal subfields and cortical thickness in the parahippocampal and entorhinal cortex. Both semantic and episodic AM deficits were associated with bilateral hippocampal alterations. These associations referred mainly to CA1, CA2-3, presubiculum, and subiculum atrophy. Episodic, but not semantic AM loss was associated with cortical thickness reduction of the bilateral parahippocampal and enthorinal cortex. In MCI individuals, episodic, but not semantic AM deficits were associated with alterations of the CA1, presubiculum and subiculum. Our findings support the crucial role of CA1, presubiculum, and subiculum in episodic memory. The present results implicate that in MCI individuals, semantic and episodic AM deficits are subserved by distinct neuronal systems.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Germany
| | - Robert C Wolf
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Germany
| | - Barbara Remmele
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Germany
| | - Ulrich Seidl
- Department of Psychiatry, Center for Mental Health, Stuttgart, Germany
| | - Anne K Thomann
- Department of Internal Medicine II, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Katharina M Kubera
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Germany
| | | | - Klaus H Maier-Hein
- Medical Image Computing Group, Division Medical and Biological Informatics, German Cancer Research Center (DKFZ), Germany
| | - Philipp A Thomann
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Germany
- Center for Mental Health, Odenwald District Healthcare Center, Albert-Schweitzer-Straße 10-20, Erbach, 64711, Germany
| |
Collapse
|