1
|
Guan DX, Churchill NW, Fischer CE, Graham SJ, Schweizer TA. Neuroanatomical correlates of distracted straight driving performance: a driving simulator MRI study across the lifespan. Front Aging Neurosci 2024; 16:1369179. [PMID: 38706457 PMCID: PMC11066182 DOI: 10.3389/fnagi.2024.1369179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/28/2024] [Indexed: 05/07/2024] Open
Abstract
Background Driving is the preferred mode of transportation for adults across the healthy age span. However, motor vehicle crashes are among the leading causes of injury and death, especially for older adults, and under distracted driving conditions. Understanding the neuroanatomical basis of driving may inform interventions that minimize crashes. This exploratory study examined the neuroanatomical correlates of undistracted and distracted simulated straight driving. Methods One-hundred-and-thirty-eight participants (40.6% female) aged 17-85 years old (mean and SD = 58.1 ± 19.9 years) performed a simulated driving task involving straight driving and turns at intersections in a city environment using a steering wheel and foot pedals. During some straight driving segments, participants responded to auditory questions to simulate distracted driving. Anatomical T1-weighted MRI was used to quantify grey matter volume and cortical thickness for five brain regions: the middle frontal gyrus (MFG), precentral gyrus (PG), superior temporal cortex (STC), posterior parietal cortex (PPC), and cerebellum. Partial correlations controlling for age and sex were used to explore relationships between neuroanatomical measures and straight driving behavior, including speed, acceleration, lane position, heading angle, and time speeding or off-center. Effects of interest were noted at an unadjusted p-value threshold of 0.05. Results Distracted driving was associated with changes in most measures of straight driving performance. Greater volume and cortical thickness in the PPC and cerebellum were associated with reduced variability in lane position and heading angle during distracted straight driving. Cortical thickness of the MFG, PG, PPC, and STC were associated with speed and acceleration, often in an age-dependent manner. Conclusion Posterior regions were correlated with lane maintenance whereas anterior and posterior regions were correlated with speed and acceleration, especially during distracted driving. The regions involved and their role in straight driving may change with age, particularly during distracted driving as observed in older adults. Further studies should investigate the relationship between distracted driving and the aging brain to inform driving interventions.
Collapse
Affiliation(s)
- Dylan X. Guan
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Nathan W. Churchill
- Neuroscience Research Program, St. Michael’s Hospital, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | - Corinne E. Fischer
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Simon J. Graham
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Tom A. Schweizer
- Neuroscience Research Program, St. Michael’s Hospital, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Faculty of Medicine (Neurosurgery), University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Iskusnykh IY, Zakharova AA, Kryl’skii ED, Popova TN. Aging, Neurodegenerative Disorders, and Cerebellum. Int J Mol Sci 2024; 25:1018. [PMID: 38256091 PMCID: PMC10815822 DOI: 10.3390/ijms25021018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
An important part of the central nervous system (CNS), the cerebellum is involved in motor control, learning, reflex adaptation, and cognition. Diminished cerebellar function results in the motor and cognitive impairment observed in patients with neurodegenerative disorders such as Alzheimer's disease (AD), vascular dementia (VD), Parkinson's disease (PD), Huntington's disease (HD), spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), Friedreich's ataxia (FRDA), and multiple sclerosis (MS), and even during the normal aging process. In most neurodegenerative disorders, impairment mainly occurs as a result of morphological changes over time, although during the early stages of some disorders such as AD, the cerebellum also serves a compensatory function. Biological aging is accompanied by changes in cerebellar circuits, which are predominantly involved in motor control. Despite decades of research, the functional contributions of the cerebellum and the underlying molecular mechanisms in aging and neurodegenerative disorders remain largely unknown. Therefore, this review will highlight the molecular and cellular events in the cerebellum that are disrupted during the process of aging and the development of neurodegenerative disorders. We believe that deeper insights into the pathophysiological mechanisms of the cerebellum during aging and the development of neurodegenerative disorders will be essential for the design of new effective strategies for neuroprotection and the alleviation of some neurodegenerative disorders.
Collapse
Affiliation(s)
- Igor Y. Iskusnykh
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Anastasia A. Zakharova
- Department of Medical Biochemistry, Faculty of Biomedicine, Pirogov Russian National Research Medical University, Ostrovitianov St. 1, Moscow 117997, Russia
| | - Evgenii D. Kryl’skii
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya Sq. 1, Voronezh 394018, Russia; (E.D.K.)
| | - Tatyana N. Popova
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya Sq. 1, Voronezh 394018, Russia; (E.D.K.)
| |
Collapse
|
3
|
Ruitenberg MFL, Koppelmans V, Seidler RD, Schomaker J. Developmental and age differences in visuomotor adaptation across the lifespan. PSYCHOLOGICAL RESEARCH 2023; 87:1710-1717. [PMID: 36617621 PMCID: PMC10366290 DOI: 10.1007/s00426-022-01784-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/24/2022] [Indexed: 01/10/2023]
Abstract
In the present cross-sectional study, we examined age and sex differences in sensorimotor adaptation. We tested 253 individuals at a local science museum (NEMO Science Museum, Amsterdam). Participants spanned a wide age range (8-70 years old; 54% male), allowing us to examine effects of both development and healthy aging within a single study. Participants performed a visuomotor adaptation task in which they had to adapt manual joystick movements to rotated visual feedback. We assessed the rate of adaptation following the introduction of the visual perturbation (both for early and later stages of adaptation), and the rate of de-adaptation following its removal. Results showed reliable adaptation patterns which did not differ by sex. We observed a quadratic relationship between age and both early adaptation and de-adaptation rates, with younger and older adults exhibiting the fasted adaptation rates. Our findings suggest that both younger and older age are associated with poorer strategic, cognitive processes involved in adaptation. We propose that developmental and age differences in cognitive functions and brain properties may underlie these effects on sensorimotor functioning.
Collapse
Affiliation(s)
- Marit F L Ruitenberg
- Department of Health, Medical and Neuropsychology, Faculty of Social and Behavioural Sciences, Leiden University, Pieter de La Court Building, P.O. Box 9555, 2300 RB, Leiden, The Netherlands.
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | | | - Rachael D Seidler
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, USA
| | - Judith Schomaker
- Department of Health, Medical and Neuropsychology, Faculty of Social and Behavioural Sciences, Leiden University, Pieter de La Court Building, P.O. Box 9555, 2300 RB, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| |
Collapse
|
4
|
Rogojin A, Gorbet DJ, Sergio LE. Sex differences in the neural underpinnings of unimanual and bimanual control in adults. Exp Brain Res 2023; 241:793-806. [PMID: 36738359 DOI: 10.1007/s00221-023-06561-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023]
Abstract
While many of the movements we make throughout our day involve just one upper limb, most daily movements require a certain degree of coordination between both upper limbs. Historically, sex differences in eye-hand coordination have been observed. As well, there are demonstrated sex-specific differences in hemisphere symmetry, interhemispheric connectivity, and motor cortex organization. While it has been suggested that these anatomical differences may underlie sex-related differences in performance, sex differences in the functional neural correlate underlying bimanual performance have not been explicitly investigated. In the current study we tested the hypothesis that the functional connectivity underlying bimanual movement control differed depending on the sex of an individual. Participants underwent MRI scanning to acquire anatomical and functional brain images. During the functional runs, participants performed unimanual and bimanual coordination tasks using two button boxes. The tasks included pressing the buttons in time to an auditory cue with either their left or their right hand individually (unimanual), or with both hands simultaneously (bimanual). The bimanual task was further divided into either an in-phase (mirror/symmetrical) or anti-phase (parallel/asymmetrical) condition. Participants were provided with extensive training to ensure task comprehension, and performance error rates were found to be equivalent between men and women. A generalized psychophysiological interaction (gPPI) analysis was implemented to examine how functional connectivity in each condition was modulated by sex. In support of our hypothesis, women and men demonstrated differences in the neural correlates underlying unimanual and bimanual movements. In line with previous literature, functional connectivity patterns showed sex-related differences for right- vs left-hand movements. Sex-specific functional connectivity during bimanual movements was not a sum of the functional connectivity underlying right- and left-hand unimanual movements. Further, women generally showed greater interhemispheric functional connectivity across all conditions compared to men and had greater connectivity between task-related cortical areas, while men had greater connectivity involving the cerebellum. Sex differences in brain connectivity were associated with both unimanual and bimanual movement control. Not only do these findings provide novel insight into the fundamentals of how the brain controls bimanual movements in both women and men, they also present potential clinical implications on how bimanual movement training used in rehabilitation can best be tailored to the needs of individuals.
Collapse
Affiliation(s)
- Alica Rogojin
- School of Kinesiology and Health Science, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
- Centre for Vision Research, York University, Toronto, ON, Canada
- Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
| | - Diana J Gorbet
- School of Kinesiology and Health Science, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
- Centre for Vision Research, York University, Toronto, ON, Canada
- Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
| | - Lauren E Sergio
- School of Kinesiology and Health Science, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
- Centre for Vision Research, York University, Toronto, ON, Canada.
- Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada.
| |
Collapse
|
5
|
Koppelmans V, Ruitenberg MF, Schaefer SY, King JB, Hoffman JM, Mejia AF, Tasdizen T, Duff K. Delayed and More Variable Unimanual and Bimanual Finger Tapping in Alzheimer's Disease: Associations with Biomarkers and Applications for Classification. J Alzheimers Dis 2023; 95:1233-1252. [PMID: 37694362 PMCID: PMC10578230 DOI: 10.3233/jad-221297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Despite reports of gross motor problems in mild cognitive impairment (MCI) and Alzheimer's disease (AD), fine motor function has been relatively understudied. OBJECTIVE We examined if finger tapping is affected in AD, related to AD biomarkers, and able to classify MCI or AD. METHODS Forty-seven cognitively normal, 27 amnestic MCI, and 26 AD subjects completed unimanual and bimanual computerized tapping tests. We tested 1) group differences in tapping with permutation models; 2) associations between tapping and biomarkers (PET amyloid-β, hippocampal volume, and APOEɛ4 alleles) with linear regression; and 3) the predictive value of tapping for group classification using machine learning. RESULTS AD subjects had slower reaction time and larger speed variability than controls during all tapping conditions, except for dual tapping. MCI subjects performed worse than controls on reaction time and speed variability for dual and non-dominant hand tapping. Tapping speed and variability were related to hippocampal volume, but not to amyloid-β deposition or APOEɛ4 alleles. Random forest classification (overall accuracy = 70%) discriminated control and AD subjects, but poorly discriminated MCI from controls or AD. CONCLUSIONS MCI and AD are linked to more variable finger tapping with slower reaction time. Associations between finger tapping and hippocampal volume, but not amyloidosis, suggest that tapping deficits are related to neuropathology that presents later during the disease. Considering that tapping performance is able to differentiate between control and AD subjects, it can offer a cost-efficient tool for augmenting existing AD biomarkers.
Collapse
Affiliation(s)
- Vincent Koppelmans
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
- Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA
| | - Marit F.L. Ruitenberg
- Department of Health, Medical and Neuropsychology, Leiden University, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | - Sydney Y. Schaefer
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Jace B. King
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - John M. Hoffman
- Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Amanda F. Mejia
- Department of Statistics, University of Indiana, Bloomington, IN, USA
| | - Tolga Tasdizen
- School of Computing, University of Utah, Salt Lake City, UT, USA
| | - Kevin Duff
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
6
|
Miyaguchi S, Inukai Y, Mitsumoto S, Otsuru N, Onishi H. Gamma-transcranial alternating current stimulation on the cerebellum and supplementary motor area improves bimanual motor skill. Behav Brain Res 2022; 424:113805. [PMID: 35182606 DOI: 10.1016/j.bbr.2022.113805] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/22/2022] [Accepted: 02/14/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Bimanual movements require sophisticated coordination of both hands. For improving bimanual motor skills, previous studies employed non-invasive brain stimulation methods to evaluate their effects on symmetrical and/or gross bimanual motor skills. However, asymmetrical and elaborate movements were not sufficiently improved. Studies using non-invasive brain stimulation have examined the effects of stimulation on the primary and supplementary motor areas (SMA),) but not on the cerebellar regions. OBJECTIVE We investigated whether the transcranial alternating current stimulation (tACS), which modulates oscillations in the cerebral cortex, of the cerebellum and SMA improves bimanual movements. METHODS Bimanual movements were assessed in 22 healthy young adults (mean age: 21.3 ± 1.5 years) via 13 trials of the Purdue Pegboard Test (PPT). A DC stimulator delivered 70Hz tACS (γ-tACS) at 1mA intensity via electrodes placed over the SMA, cerebellum and left shoulder in 5s fade in/out cycles of 5s for a total stimulus duration of 60s for in each trial. Four stimulation conditions were applied and compared for statistical differences. RESULTS The γ-tACS of the cerebellum, γ-tACS of the SMA and simultaneous stimulation of both regions caused significant improvement in PPT performance scores. The γ-tACS of the cerebellum improved PPT performance in all subjects and was more effective than the γ-tACS of the SMA. CONCLUSION The γ-tACS of the cerebellum effectively and reliably improves complex bimanual motor skills. Although the neural mechanisms of the stimulation effect remain unclear, these results can guide the future development of new stimulation methods for improving bimanual motor skills.
Collapse
Affiliation(s)
- Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Yasuto Inukai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Shuji Mitsumoto
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
7
|
|
8
|
Rurak BK, Rodrigues JP, Power BD, Drummond PD, Vallence AM. Reduced Cerebellar Brain Inhibition Measured Using Dual-Site TMS in Older Than in Younger Adults. THE CEREBELLUM 2021; 21:23-38. [PMID: 33880658 DOI: 10.1007/s12311-021-01267-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 12/30/2022]
Abstract
Dual-site transcranial magnetic stimulation (TMS) can be used to measure the cerebellar inhibitory influence on the primary motor cortex, known as cerebellar brain inhibition (CBI), which is thought to be important for motor control. The aim of this study was to determine whether age-related differences in CBI (measured at rest) were associated with an age-related decline in bilateral motor control measured using the Purdue Pegboard task, the Four Square Step Test, and a 10-m walk. In addition, we examined test re-test reliability of CBI measured using dual-site TMS with a figure-of-eight coil in two sessions. There were three novel findings. First, CBI was less in older than in younger adults, which is likely underpinned by an age-related loss of Purkinje cells. Second, greater CBI was associated with faster 10-m walking performance in older adults, but slower 10-m walking performance in younger adults. Third, moderate intraclass correlation coefficients (ICCs: 0.53) were found for CBI in younger adults; poor ICCs were found for CBI (ICC: 0.40) in older adults. Together, these results have important implications for the use of dual-site TMS to increase our understanding of age- and disease-related changes in cortical motor networks, and the role of functional connectivity in motor control.
Collapse
Affiliation(s)
- B K Rurak
- Discipline of Psychology, College of Science, Health, Engineering, and Education, Murdoch University, Perth, Australia. .,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, 90 South Street, Perth, WA, 6150, Australia.
| | | | - B D Power
- Hollywood Private Hospital, Perth, WA, Australia.,School of Medicine Fremantle, University of Notre Dame Australia, Perth, WA, Australia
| | - P D Drummond
- Discipline of Psychology, College of Science, Health, Engineering, and Education, Murdoch University, Perth, Australia.,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, 90 South Street, Perth, WA, 6150, Australia
| | - A M Vallence
- Discipline of Psychology, College of Science, Health, Engineering, and Education, Murdoch University, Perth, Australia.,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, 90 South Street, Perth, WA, 6150, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
| |
Collapse
|
9
|
Vázquez-Hernández N, Martínez-Torres NI, González-Burgos I. Plastic changes to dendritic spines in the cerebellar and prefrontal cortices underlie the decline in motor coordination and working memory during successful aging. Behav Brain Res 2020; 400:113014. [PMID: 33309738 DOI: 10.1016/j.bbr.2020.113014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 10/22/2022]
Abstract
Old age is the last stage of life and by taking a multidimensional view of aging, Neuroscientists have been able to characterize pathological or successful aging. Psychomotor and cognitive performance are recognized as two major domains of successful aging, with a loss of motor coordination and working memory deficits two of the most characteristic features of elderly people. Dendritic spines in both the cerebellar and prefrontal cortices diminish in aging, yet the plastic changes in dendritic spines have not been related to behavioral performance neither the changes in the cerebellar or prefrontal cortices. As such, motor coordination and visuospatial working memory (vsWM) was evaluated here in aged, 22-month-old rats, calculating the density of spines and the proportion of the different types of spines. These animals performed erratically and slowly in a motor coordination-related paradigm, and the vsWM was resolved deficiently. Spine density was reduced in aged animals, and the proportional density of each of the spine types studied diminished in both the brain regions studied. The loss of dendritic spines and particularly, the changes in the proportional density of the different spine types could underlie, at least in part, the behavioral deficits observed during aging. To our knowledge, this is the first study of the plastic changes in different dendritic spine types that might underlie the behavioral alterations in motor and cognitive abilities associated with aging. Further neurochemical and molecular studies will help better understand the functional significance of the plastic changes to dendritic spines in both successful and pathological aging.
Collapse
Affiliation(s)
- N Vázquez-Hernández
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jal, Mexico
| | - N I Martínez-Torres
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jal, Mexico; Centro Universitario del Norte, Universidad de Guadalajara, Colotlán, Jal, Mexico
| | - I González-Burgos
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jal, Mexico.
| |
Collapse
|
10
|
Blauwblomme T, Demertzi A, Tacchela J, Fillon L, Bourgeois M, Losito E, Eisermann M, Marinazzo D, Raimondo F, Alcauter S, Van De Steen F, Colenbier N, Laureys S, Dangouloff‐Ros V, Naccache L, Boddaert N, Nabbout R. Complete hemispherotomy leads to lateralized functional organization and lower level of consciousness in the isolated hemisphere. Epilepsia Open 2020; 5:537-549. [PMID: 33336125 PMCID: PMC7733653 DOI: 10.1002/epi4.12433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/18/2020] [Accepted: 08/22/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To quantify whole-brain functional organization after complete hemispherotomy, characterizing unexplored plasticity pathways and the conscious level of the dissected hemispheres. METHODS Evaluation with multimodal magnetic resonance imaging in two pediatric patients undergoing right hemispherotomy including complete callosotomy with a perithalamic section. Regional cerebral blood flow and fMRI network connectivity assessed the functional integrity of both hemispheres after surgery. The level of consciousness was tested by means of a support vector machine classifier which compared the intrinsic organization of the dissected hemispheres with those of patients suffering from disorders of consciousness. RESULTS After hemispherotomy, both patients showed typical daily functionality. We found no interhemispheric transfer of functional connectivity in either patient as predicted by the operation. The healthy left hemispheres displayed focal blood hyperperfusion in motor and limbic areas, with preserved network-level organization. Unexpectedly, the disconnected right hemispheres showed sustained network organization despite low regional cerebral blood flow. Subcortically, functional connectivity was increased in the left thalamo-cortical loop and between the cerebelli. One patient further showed unusual ipsilateral right cerebello-cortical connectivity, which was explained by the mediation of the vascular system. The healthy left hemisphere had higher probability to be classified as in a minimally conscious state compared to the isolated right hemisphere. SIGNIFICANCE Complete hemispherotomy leads to a lateralized whole-brain organization, with the remaining hemisphere claiming most of the brain's energetic reserves supported by subcortical structures. Our results further underline the contribution of nonneuronal vascular signals on contralateral connectivity, shedding light on the nature of network organization in the isolated tissue. The disconnected hemisphere is characterized by a level of consciousness which is necessary but insufficient for conscious processing, paving the way for more specific inquiries about its role in awareness in the absence of behavioral output.
Collapse
Affiliation(s)
- Thomas Blauwblomme
- Assistance Publique Hôpitaux de ParisHôpital Necker‐Enfants MaladesParisFrance
- Université de ParisParisFrance
- INSERM U1163Institut ImagineParisFrance
| | - Athena Demertzi
- GIGA‐Consciousness, Physiology of Cognition Research LabGIGA InstituteUniversity of LiègeLiègeBelgium
- INSERMU1127ParisFrance
- Institut du Cerveau et de la Moelle EpinièreHôpital Pitié‐SalpêtrièreParisFrance
| | | | | | - Marie Bourgeois
- Assistance Publique Hôpitaux de ParisHôpital Necker‐Enfants MaladesParisFrance
| | - Emma Losito
- Assistance Publique Hôpitaux de ParisHôpital Necker‐Enfants MaladesParisFrance
| | - Monika Eisermann
- Assistance Publique Hôpitaux de ParisHôpital Necker‐Enfants MaladesParisFrance
| | - Daniele Marinazzo
- Department of Data AnalysisFaculty of Psychological and Educational SciencesUniversity of GhentGhentBelgium
| | - Federico Raimondo
- Institut du Cerveau et de la Moelle EpinièreHôpital Pitié‐SalpêtrièreParisFrance
- GIGA‐Consciousness, Coma Science GroupGIGA InstituteUniversity of LiègeLiègeBelgium
| | - Sarael Alcauter
- Instituto de NeurobiologíaUniversidad Nacional Autónoma de MéxicoQuerétaroMéxico
| | - Frederik Van De Steen
- GIGA‐Consciousness, Physiology of Cognition Research LabGIGA InstituteUniversity of LiègeLiègeBelgium
| | - Nigel Colenbier
- GIGA‐Consciousness, Physiology of Cognition Research LabGIGA InstituteUniversity of LiègeLiègeBelgium
| | - Steven Laureys
- GIGA‐Consciousness, Coma Science GroupGIGA InstituteUniversity of LiègeLiègeBelgium
| | - Volodia Dangouloff‐Ros
- Assistance Publique Hôpitaux de ParisHôpital Necker‐Enfants MaladesParisFrance
- Université de ParisParisFrance
- INSERM U1163Institut ImagineParisFrance
| | - Lionel Naccache
- INSERMU1127ParisFrance
- Institut du Cerveau et de la Moelle EpinièreHôpital Pitié‐SalpêtrièreParisFrance
| | - Nathalie Boddaert
- Assistance Publique Hôpitaux de ParisHôpital Necker‐Enfants MaladesParisFrance
- Université de ParisParisFrance
- INSERM U1163Institut ImagineParisFrance
| | - Rima Nabbout
- Assistance Publique Hôpitaux de ParisHôpital Necker‐Enfants MaladesParisFrance
- Université de ParisParisFrance
- INSERM U1163Institut ImagineParisFrance
| |
Collapse
|
11
|
Zivari Adab H, Chalavi S, Monteiro TS, Gooijers J, Dhollander T, Mantini D, Swinnen SP. Fiber-specific variations in anterior transcallosal white matter structure contribute to age-related differences in motor performance. Neuroimage 2020; 209:116530. [PMID: 31931154 DOI: 10.1016/j.neuroimage.2020.116530] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/11/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Age-related differences in bimanual motor performance have been extensively documented, but their underlying neural mechanisms remain less clear. Studies applying diffusion MRI in the aging population have revealed evidence for age-related white matter variations in the corpus callosum (CC) which are related to bimanual motor performance. However, the diffusion tensor model used in those studies is confounded by partial volume effects in voxels with complex fiber geometries which are present in up to 90% of white matter voxels, including the bilateral projections of the CC. A recently developed whole-brain analysis framework, known as fixel-based analysis (FBA), enables comprehensive statistical analyses of white matter quantitative measures in the presence of such complex fiber geometries. To investigate the contribution of age-related fiber-specific white matter variations to age-related differences in bimanual performance, a cross-sectional lifespan sample of healthy human adults (N = 95; 20-75 years of age) performed a bimanual tracking task. Furthermore, diffusion MRI data were acquired and the FBA metrics associated with fiber density, cross-section, and combined fiber density and cross-section were estimated. Whole-brain FBA revealed significant negative associations between age and fiber density, cross-section, and combined metrics of multiple white matter tracts, including the bilateral projections of the CC, indicative of white matter micro- and macrostructural degradation with age. More importantly, mediation analyses demonstrated that age-related variations in the combined (fiber density and cross-section) metric of the genu, but not splenium, of the CC contributed to the observed age-related differences in bimanual coordination performance. These findings highlight the contribution of variations in interhemispheric communication between prefrontal (non-motor) cortices to age-related differences in motor performance.
Collapse
Affiliation(s)
- Hamed Zivari Adab
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.
| | - Sima Chalavi
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Thiago S Monteiro
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Jolien Gooijers
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Thijs Dhollander
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Cuypers K, Verstraelen S, Maes C, Hermans L, Hehl M, Heise KF, Chalavi S, Mikkelsen M, Edden R, Levin O, Sunaert S, Meesen R, Mantini D, Swinnen SP. Task-related measures of short-interval intracortical inhibition and GABA levels in healthy young and older adults: A multimodal TMS-MRS study. Neuroimage 2019; 208:116470. [PMID: 31863914 PMCID: PMC9652063 DOI: 10.1016/j.neuroimage.2019.116470] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/05/2019] [Accepted: 12/15/2019] [Indexed: 01/15/2023] Open
Abstract
Establishing the associations between magnetic resonance spectroscopy (MRS)-assessed gamma-aminobutyric acid (GABA) levels and transcranial magnetic stimulation (TMS)-derived ‘task-related’ modulations in GABAA receptor-mediated inhibition and how these associations change with advancing age is a topic of interest in the field of human neuroscience. In this study, we identified the relationship between GABA levels and task-related modulations in GABAA receptor-mediated inhibition in the dominant (left) and non-dominant (right) sensorimotor (SM) cortices. GABA levels were measured using edited MRS and task-related GABAA receptor-mediated inhibition was measured using a short-interval intracortical inhibition (SICI) TMS protocol during the preparation and premotor period of a choice reaction time (CRT) task in 25 young (aged 18–33 years) and 25 older (aged 60–74 years) adults. Our results demonstrated that GABA levels in both SM voxels were lower in older adults as compared to younger adults; and higher SM GABA levels in the dominant as compared to the non-dominant SM voxel pointed to a lateralization effect, irrespective of age group. Furthermore, older adults showed decreased GABAA receptor-mediated inhibition in the preparation phase of the CRT task within the dominant primary motor cortex (M1), as compared to young adults. Finally, results from an exploratory correlation analysis pointed towards positive relationships between MRS-assessed GABA levels and TMS-derived task-related SICI measures. However, after correction for multiple comparisons none of the correlations remained significant.
Collapse
Affiliation(s)
- K Cuypers
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium; REVAL Research Institute, Hasselt University, Agoralaan, Building A, 3590, Diepenbeek, Belgium.
| | - S Verstraelen
- REVAL Research Institute, Hasselt University, Agoralaan, Building A, 3590, Diepenbeek, Belgium
| | - C Maes
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - L Hermans
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - M Hehl
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - K-F Heise
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - S Chalavi
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - M Mikkelsen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - R Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - O Levin
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - S Sunaert
- Department of Imaging and Pathology, University Hospitals Leuven, Leuven, Belgium; Department of Radiology, University Hospitals Leuven, Gasthuisberg, UZ, Leuven, Belgium
| | - R Meesen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium; REVAL Research Institute, Hasselt University, Agoralaan, Building A, 3590, Diepenbeek, Belgium
| | - D Mantini
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium; Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - S P Swinnen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium; KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
| |
Collapse
|
13
|
Kang N, Roberts LM, Aziz C, Cauraugh JH. Age-related deficits in bilateral motor synergies and force coordination. BMC Geriatr 2019; 19:287. [PMID: 31651243 PMCID: PMC6814115 DOI: 10.1186/s12877-019-1285-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 09/20/2019] [Indexed: 11/21/2022] Open
Abstract
Background Ageing may cause impairments in executing bilateral movement control. This study investigated age-related changes in interlimb force coordination across multiple trials by quantifying bilateral motor synergies based on the uncontrolled manifold hypothesis. Participants completed the trials with and without visual feedback. Methods Twenty healthy individuals (10 older adults and 10 young adults) performed 12 isometric force control trials for the two vision conditions at 5% of maximal voluntary contraction. All dependent variables were analyzed in two-way mixed model (Group × Vision Condition; 2 × 2) ANOVAs with repeated measures on the last factor. Results The analyses revealed that older adults had greater mean force produced by two hands in both vision conditions (i.e., yes and no visual feedback). Across both vision conditions, the older adult group showed greater asymmetrical force variability (i.e., standard deviation of non-dominant hand > standard deviation of dominant hand) and revealed more positive correlation coefficients between forces produced by two hands as compared with the young adult group. Finally, an index of bilateral motor synergies was significantly greater in young adults than older adults when visual feedback was available. Conclusion The current findings indicate that deficits in interlimb force coordination across multiple trials appeared in older adults.
Collapse
Affiliation(s)
- Nyeonju Kang
- Division of Sport Science and Sport Science Institute, Incheon, South Korea.,Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea.,Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611-8206, USA
| | - Lisa M Roberts
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611-8206, USA.,Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Clara Aziz
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611-8206, USA
| | - James H Cauraugh
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611-8206, USA.
| |
Collapse
|
14
|
Ruitenberg MFL, Cassady KE, Reuter-Lorenz PA, Tommerdahl M, Seidler RD. Age-Related Reductions in Tactile and Motor Inhibitory Function Start Early but Are Independent. Front Aging Neurosci 2019; 11:193. [PMID: 31417396 PMCID: PMC6682653 DOI: 10.3389/fnagi.2019.00193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/15/2019] [Indexed: 11/13/2022] Open
Abstract
Aging is associated with declines in motor and somatosensory function. Some of these motor declines have been linked to age-related reductions in inhibitory function. Here we examined whether tactile surround inhibition also changes with age and whether these changes are associated with those in the motor domain. We tested a group of 56 participants spanning a wide age range (18-76 years old), allowing us to examine when age differences emerge across the lifespan. Participants performed tactile and motor tasks that have previously been linked to inter- and intra-hemispheric inhibition in the somatosensory and motor systems. The results showed that aging is associated with reductions in inhibitory function in both the tactile and motor systems starting around 40 years of age; however, age effects in the two systems were not correlated. The independent effects of age on tactile and motor inhibitory function suggest that distinct mechanisms may underlie age-related reductions in inhibition in the somatosensory and motor systems.
Collapse
Affiliation(s)
- Marit F L Ruitenberg
- Department of Experimental Psychology, Ghent University, Ghent, Belgium.,Department of Health, Medical and Neuropsychology, Leiden University, Leiden, Netherlands
| | - Kaitlin E Cassady
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | | | - Mark Tommerdahl
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, United States
| | - Rachael D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
15
|
fMRI data processing in MRTOOL: to what extent does anatomical registration affect the reliability of functional results? Brain Imaging Behav 2018; 13:1538-1553. [PMID: 30467743 DOI: 10.1007/s11682-018-9986-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Spatial registration is an essential step in the analysis of fMRI data because it enables between-subject analyses of brain activity, measured either during task performance or in the resting state. In this study, we investigated how anatomical registration with MRTOOL affects the reliability of task-related fMRI activity. We used as a benchmark the results from two other spatial registration methods implemented in SPM12: the Unified Segmentation algorithm and the DARTEL toolbox. Structural alignment accuracy and the impact on functional activation maps were assessed with high-resolution T1-weighted images and a set of task-related functional volumes acquired in 10 healthy volunteers. Our findings confirmed that anatomical registration is a crucial step in fMRI data processing, contributing significantly to the total inter-subject variance of the activation maps. MRTOOL and DARTEL provided greater registration accuracy than Unified Segmentation. Although DARTEL had superior gray matter and white matter tissue alignment than MRTOOL, there were no significant differences between DARTEL and MRTOOL in test-retest reliability. Likewise, we found only limited differences in BOLD activation morphology between MRTOOL and DARTEL. The test-retest reliability of task-related responses was comparable between MRTOOL and DARTEL, and both proved superior to Unified Segmentation. We conclude that MRTOOL, which is suitable for single-subject processing of structural and functional MR images, is a valid alternative to other SPM12-based approaches that are intended for group analysis. MRTOOL now includes a normalization module for fMRI data and is freely available to the scientific community.
Collapse
|