1
|
Oberlin LE, Wan L, Kang C, Romano A, Aghjayan S, Lesnovskaya A, Ripperger HS, Drake J, Harrison R, Collins AM, Molina-Hidalgo C, Grove G, Huang H, Kramer A, Hillman CH, Burns JM, Vidoni ED, McAuley E, Kamboh MI, Jakicic JM, Erickson KI. Cardiorespiratory fitness is associated with cognitive function in late adulthood: baseline findings from the IGNITE study. Br J Sports Med 2024:bjsports-2024-108257. [PMID: 39658276 DOI: 10.1136/bjsports-2024-108257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
OBJECTIVES To evaluate the association between cardiorespiratory fitness (CRF) and cognition in a large sample of older adults, and to examine clinical and demographic factors that might moderate these associations. METHODS CRF was measured with a graded exercise test performed on a motorised treadmill. A confirmatory factor analysis was conducted using data from a comprehensive neuropsychological battery to obtain latent factors reflecting core cognitive domains. Linear regression models evaluated the association between CRF and each of the cognitive composites, and potential moderators including demographic factors (age, sex, education), apolipoprotein E ε4 (APOE4) carriage, beta-blocker use and components of maximal effort criteria during CRF testing. RESULTS The sample consisted of 648 adults (mean (SD) age 69.88 (3.75)), including 461 women (71.1%). The highest oxygen consumption obtained during testing (VO2max) was mean (SD) = 21.68 (5.06) mL/kg/min. We derived a five-factor model composed of episodic memory, processing speed, working memory, executive function/attentional control and visuospatial function. Higher CRF was associated with better performance across all five cognitive domains after controlling for covariates. Age and APOE4 carriage did not moderate observed associations. The relationship between CRF and cognitive performance was greater in women, those with fewer years of education and those taking beta-blockers in the domains of processing speed (sex: β=-0.447; p=0.015; education: β=-0.863; p=0.018) and executive function/attentional control (sex: β=-0.417; p=0.022; education β=-0.759; p=0.034; beta-blocker use: β=0.305; p=0.047). CONCLUSION Higher CRF in older adulthood is associated with better cognitive performance across multiple domains susceptible to age-related cognitive decline. Sex, education and use of beta-blockers moderated observed associations within select cognitive domains.
Collapse
Affiliation(s)
- Lauren E Oberlin
- Department of Neuroscience, AdventHealth Orlando, Orlando, Florida, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, New York, USA
| | - Lu Wan
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chaeryon Kang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Allison Romano
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah Aghjayan
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alina Lesnovskaya
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hayley S Ripperger
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jermon Drake
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rae Harrison
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Audrey M Collins
- Department of Neuroscience, AdventHealth Research Institute, Orlando, Florida, USA
| | | | - George Grove
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Haiqing Huang
- Department of Neuroscience, AdventHealth Research Institute, Orlando, Florida, USA
| | - Arthur Kramer
- Center for Cognitive and Brain Health, Northeastern University - Boston Campus, Boston, Massachusetts, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Charles H Hillman
- Center for Cognitive and Brain Health, Northeastern University - Boston Campus, Boston, Massachusetts, USA
- Department of Physical Therapy, Movement, and Rehabilitation Sciences, Northeastern University - Boston Campus, Boston, Massachusetts, USA
- Department of Psychology, Northeastern University, Boston Campus, Boston, Massachusetts, USA
| | - Jeffrey M Burns
- Alzheimer's Disease Research Center, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Eric D Vidoni
- Alzheimer's Disease Research Center, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Edward McAuley
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Health and Kinesiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - M Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John M Jakicic
- Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kirk I Erickson
- Department of Neuroscience, AdventHealth Research Institute, Orlando, Florida, USA
| |
Collapse
|
2
|
Gong Z, Bilgel M, An Y, Bergeron CM, Bergeron J, Zukley L, Ferrucci L, Resnick SM, Bouhrara M. Cerebral white matter myelination is associated with longitudinal changes in processing speed across the adult lifespan. Brain Commun 2024; 6:fcae412. [PMID: 39697833 PMCID: PMC11653079 DOI: 10.1093/braincomms/fcae412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/16/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
Myelin's role in processing speed is pivotal, as it facilitates efficient neural conduction. Its decline could significantly affect cognitive efficiency during ageing. In this work, myelin content was quantified using our advanced MRI method of myelin water fraction mapping. We examined the relationship between myelin water fraction at the time of MRI and retrospective longitudinal change in processing speed among 121 cognitively unimpaired participants, aged 22-94 years, from the Baltimore Longitudinal Study of Aging and the Genetic and Epigenetic Signatures of Translational Aging Laboratory Testing (a mean follow-up duration of 4.3 ± 6.3 years) using linear mixed-effects models, adjusting for demographics. We found that higher myelin water fraction values correlated with longitudinally better-maintained processing speed, with particularly significant associations in several white matter regions. Detailed voxel-wise analysis provided further insight into the specific white matter tracts involved. This research underscores the essential role of myelin in preserving processing speed and highlights its potential as a sensitive biomarker for interventions targeting age-related cognitive decline, thereby offering a foundation for preventative strategies in neurological health.
Collapse
Affiliation(s)
- Zhaoyuan Gong
- Magnetic Resonance Physics of Aging and Dementia Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Murat Bilgel
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yang An
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Christopher M Bergeron
- Clinical Research Core, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jan Bergeron
- Clinical Research Core, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Linda Zukley
- Clinical Research Core, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Susan M Resnick
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mustapha Bouhrara
- Magnetic Resonance Physics of Aging and Dementia Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
3
|
Batman GB, Cooper CB, Traylor MK, Ransom KV, Hill EC, Hill BD, Keller JL. Various modalities of resistance exercise promote similar acute cognitive improvements and hemodynamic increases in young, healthy adults. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2024; 7:100363. [PMID: 39252851 PMCID: PMC11381452 DOI: 10.1016/j.cccb.2024.100363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024]
Abstract
The aim was to examine the effects of modalities of acute resistance exercise (RE) on cognition and hemodynamics including internal carotid artery (ICA) blood flow (BF). Twenty adults completed familiarization and experimental visits. One-repetition maximum (1RM) for bilateral leg extension was quantified, and baseline executive functioning was determined from three run-in visits. Subsequent visits included three randomized, volume-equated, acute exercise bouts of 30 %1RM+blood flow restriction (BFR), 30 %1RM, and 70 %1RM. Both 30 %1RM trials completed four sets of exercise (1 × 30, 3 × 15), and the 70 %1RM condition completed four sets of 8 repetitions. BFR was induced with 40 % of the pressure to occlude the femoral arteries. 11 min following each exercise, participants completed the Stroop and Shifting Attention Tests. Baseline and post-exercise values were used to calculate change scores. The resulting mean change scores were evaluated with mixed factorial ANOVAs. A p≤0.05 was considered significant. All measured outcome variables increased in response to exercise. The ANOVAs for cognitive scores indicated no significant (p>0.05) interactions. For cognitive flexibility and executive function index, there were main effects of Sex. Change scores of the females were significantly greater than the males for cognitive flexibility (7.6 ± 5.9 vs. -2.6 ± 8.4 au; p=0.007) and executive function index (7.4 ± 4.6 vs. -2.5 ± 6.5 au; p=0.001). For ICA BF, there was no significant interaction or any main effect. The females exhibited a smaller exercise-induced increase in blood pressure compared to the males (17.7 ± 5.9 vs. 11.0 ± 4.1 mmHg; p=0.010). Each RE modality yielded acute improvements in cognition, but only for females. There were no cognitive improvements related to BFR such that each RE bout yielded similar results.
Collapse
Affiliation(s)
- Genevieve B Batman
- Integrative Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, AL, USA
| | - Christian B Cooper
- Integrative Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, AL, USA
- College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Miranda K Traylor
- Integrative Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, AL, USA
| | - Kyndall V Ransom
- Integrative Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, AL, USA
- Department of Chemistry, College of Arts & Sciences, University of South Alabama, Mobile, AL, USA
| | - Ethan C Hill
- Division of Kinesiology, School of Kinesiology and Physical Therapy, College of Health Professions and Sciences, University of Central Florida, Orlando, FL, USA
- Exercise Physiology Intervention and Collaboration (EPIC) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, USA
| | - Benjamin D Hill
- Department of Psychology, College of Arts & Sciences, University of South Alabama, Mobile, AL, USA
| | - Joshua L Keller
- Integrative Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, AL, USA
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
4
|
Boa Sorte Silva NC, Barha CK, Erickson KI, Kramer AF, Liu-Ambrose T. Physical exercise, cognition, and brain health in aging. Trends Neurosci 2024; 47:402-417. [PMID: 38811309 DOI: 10.1016/j.tins.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 05/31/2024]
Abstract
Exercise training is an important strategy to counteract cognitive and brain health decline during aging. Evidence from systematic reviews and meta-analyses supports the notion of beneficial effects of exercise in cognitively unimpaired and impaired older individuals. However, the effects are often modest, and likely influenced by moderators such as exercise training parameters, sample characteristics, outcome assessments, and control conditions. Here, we discuss evidence on the impact of exercise on cognitive and brain health outcomes in healthy aging and in individuals with or at risk for cognitive impairment and neurodegeneration. We also review neuroplastic adaptations in response to exercise and their potential neurobiological mechanisms. We conclude by highlighting goals for future studies, including addressing unexplored neurobiological mechanisms and the inclusion of under-represented populations.
Collapse
Affiliation(s)
- Nárlon C Boa Sorte Silva
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Aging SMART at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Cindy K Barha
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA; AdventHealth Research Institute, Neuroscience, Orlando, FL, USA
| | - Arthur F Kramer
- Center for Cognitive and Brain Health, Northeastern University, Boston, MA, USA; Beckman Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Teresa Liu-Ambrose
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Aging SMART at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.
| |
Collapse
|
5
|
Ji S, Kang J, Han C, Xu X, Chen M, Chen J, Chhetri JK, Pan J, Chan P. Potential role of APOE ɛ4 allele as a modifier for the association of BDNF Val66Met polymorphisms and cognitive impairment in community-dwelling older adults. Front Aging Neurosci 2024; 16:1330193. [PMID: 38374884 PMCID: PMC10876185 DOI: 10.3389/fnagi.2024.1330193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024] Open
Abstract
Objective To determine whether the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is associated with cognitive impairment (CI) in community-dwelling Chinese older adults, and to investigate whether this relationship is modified by the Apolipoprotein E (APOE) ɛ4 allele. Methods The study is a secondary analysis of 703 participants aged ≥60 years randomly enrolled from the Beijing Longitudinal Study of Aging II prospective cohort. The education-adjusted Mini-Mental State Examination and the Clinical Dementia Rating Scale were used to measure the cognitive performance of the subjects. The main effects and interactions (additive and multiplicative) of the BDNF Met and the APOE ε4 alleles on CI were estimated by logistic regression models. Results In total, 84 out of 703 older adults aged ≥60 years old had CI. No significant difference was observed in the risk of CI between participants with the BDNF Met allele and that of subjects without the BDNF Met allele (p = 0.213; p = 0.164). Individuals carrying both the BDNF Met and APOE ε4 alleles had an almost 1.5-fold increased odds of CI compared with carriers of the BDNF Met allele but without the APOE ε4 allele. The additive association indicated a positive interaction of both BDNF Met and APOE ε4 alleles with wide CIs (p = 0.021; p = 0.018). Conclusion The results suggest that the APOE ε4 allele may be a potential modifier for the association of the BDNF Val66Met polymorphism with CI in community-dwelling older adults.
Collapse
Affiliation(s)
- Shaozhen Ji
- Department of Neurology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Kang
- Department of Neurology, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Chao Han
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xitong Xu
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Meijie Chen
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jie Chen
- Department of Geriatrics, Shenzhen Hospital, Peking University, Shenzhen, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Jing Pan
- Department of Neurology, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, China
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Farcas A, Hindmarch C, Iftene F. BDNF gene Val66Met polymorphisms as a predictor for clinical presentation in schizophrenia - recent findings. Front Psychiatry 2023; 14:1234220. [PMID: 37886115 PMCID: PMC10598753 DOI: 10.3389/fpsyt.2023.1234220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Schizophrenia is a highly heritable, severe psychiatric disorder that involves dysfunctions in thinking, emotions, and behavior, with a profound impact on a person's ability to function normally in their daily life. Research efforts continue to focus on elucidating possible genetic underlying mechanisms of the disorder. Although the genetic loci identified to date to be significantly associated with schizophrenia risk do not represent disease-causing factors, each one of them could be seen as a possible incremental contributor. Considering the importance of finding new and more efficient pharmacological approaches to target the complex symptomatology of this disorder, in this scoping review, we are focusing on the most recent findings in studies aiming to elucidate the contribution of one of the genetic factors involved - the BDNF gene Val66Met polymorphisms. Here we performed a systematic search in Pubmed, Embase, and Web of Science databases with the search terms: (BDNF gene polymorphism) AND (schizophrenia) for articles published in the last 5 years. To be selected for this review, articles had to report on studies where genotyping for the BDNF Val66Met polymorphism was performed in participants diagnosed with schizophrenia (or schizophrenia spectrum disorders or first-episode psychosis). The search provided 35 results from Pubmed, 134 results from Embase, and 118 results from the Web of Science database. Twenty-two articles were selected to be included in this review, all reporting on studies where an implication of the BDNF Val66Met polymorphisms in the disorder's pathophysiology was sought to be elucidated. These studies looked at BDNF gene Val66Met polymorphism variants, their interactions with other genes of interest, and different facets of the illness. The Met/Met genotype was found to be associated with higher PANSS positive scores. Furthermore, Met/Met homozygous individuals appear to present with worse cognitive function and lower levels of serum BDNF. In the Val/Val genotype carriers, increased BDNF levels were found to correlate with weight gain under Risperidone treatment. However, due to heterogeneous results, the diversity in study populations and studies' small sample sizes, generalizations cannot be made. Our findings emphasize the need for further research dedicated to clarifying the role of gene polymorphisms in antipsychotic treatment to enhance specificity and efficacy in the treatment of schizophrenia.
Collapse
Affiliation(s)
- Adriana Farcas
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
- Providence Care Hospital, Kingston, ON, Canada
| | - Charles Hindmarch
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
- Department of Medicine, Queen’s University, Kingston, ON, Canada
- Queen’s Cardiopulmonary Unit, Translational Institute of Medicine, Queen’s University, Kingston, ON, Canada
| | - Felicia Iftene
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
- Providence Care Hospital, Kingston, ON, Canada
| |
Collapse
|
7
|
Corrone M, Nanev A, Amato I, Bicknell R, Piantella S, Maruff P, van den Buuse M, Wright BJ. The brain-derived neurotrophic factor Val66met polymorphism is associated with better attention and working memory performance and resilience to mild chronic stress. Eur J Neurosci 2023; 58:3903-3916. [PMID: 37740693 DOI: 10.1111/ejn.16153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/25/2023]
Abstract
The val66met polymorphism of the brain-derived neurotrophic factor (BDNF) gene has been identified as a potential moderator for the relationship between chronic stress and executive functioning. However, whether the presence of the met allele increases cognitive vulnerability or resilience to stress has yet to be determined. Given the established effects of autonomic activity and psychological arousal on executive functioning, in the present study, 56 healthy university students completed self-report measures of chronic stress, positive arousal (vigour) and negative arousal (anxiety) and measured heart-rate variability to quantify autonomic activity. Participants then completed a cognitive test battery that measured attention, decision-making, visual learning and working memory. Regression analyses demonstrated that Val/met participants performed better on attention and working memory tasks than Val/val participants, but no differences were seen in decision-making and visual learning. Further, Val/met participants were protected from stress-related differences in attention seen in Val/val participants. Val66met was not associated with physiological or psychological arousal. This study demonstrates that val66met plays an important but selective role in cognitive performance.
Collapse
Affiliation(s)
- Michelle Corrone
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Aleshia Nanev
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Isabella Amato
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Rowena Bicknell
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Stefan Piantella
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Paul Maruff
- Cogstate Ltd, Melbourne, Victoria, Australia
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Bradley J Wright
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Barha CK, Starkey SY, Hsiung GYR, Tam R, Liu-Ambrose T. Aerobic exercise improves executive functions in females, but not males, without the BDNF Val66Met polymorphism. Biol Sex Differ 2023; 14:16. [PMID: 37013586 PMCID: PMC10069071 DOI: 10.1186/s13293-023-00499-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/10/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Aerobic exercise promotes cognitive function in older adults; however, variability exists in the degree of benefit. The brain-derived neurotropic factor (BDNF) Val66Met polymorphism and biological sex are biological factors that have been proposed as important modifiers of exercise efficacy. Therefore, we assessed whether the effect of aerobic exercise on executive functions was dependent on the BDNFval66met genotype and biological sex. METHODS We used data from a single-blind randomized controlled trial in older adults with subcortical ischemic vascular cognitive impairment (NCT01027858). Fifty-eight older adults were randomly assigned to either the 6 months, three times per week progressive aerobic training (AT) group or the usual care plus education control (CON) group. The secondary aim of the parent study included executive functions which were assessed with the Trail Making Test (B-A) and the Digit Symbol Substitution Test at baseline and trial completion at 6 months. RESULTS Analysis of covariance, controlling for baseline global cognition and baseline executive functions performance (Trail Making Test or Digit Symbol Substitution Test), tested the three-way interaction between experimental group (AT, CON), BDNFval66met genotype (Val/Val carrier, Met carrier), and biological sex (female, male). Significant three-way interactions were found for the Trail Making Test (F(1,48) = 4.412, p < 0.04) and Digit Symbol Substitution Test (F(1,47) = 10.833, p < 0.002). Posthoc analyses showed female Val/Val carriers benefited the most from 6 months of AT compared with CON for Trail Making Test and Digit Symbol Substitution Test performance. Compared with CON, AT did not improve Trail Making Test performance in male Val/Val carriers or Digit Symbol Substitution Test performance in female Met carriers. CONCLUSIONS These results suggest that future randomized controlled trials should take into consideration BDNF genotype and biological sex to better understand the beneficial effects of AT on cognitive function in vascular cognitive impairment to maximize the beneficial effects of exercise and help establish exercise as medicine for cognitive health.
Collapse
Affiliation(s)
- Cindy K Barha
- Aging, Mobility, and Cognitive Neuroscience Lab, Department of Physical Therapy, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health C/O Liu-Ambrose Lab, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
- Centre for Hip Health and Mobility, Vancouver, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Samantha Y Starkey
- Aging, Mobility, and Cognitive Neuroscience Lab, Department of Physical Therapy, University of British Columbia, Vancouver, Canada
- Centre for Hip Health and Mobility, Vancouver, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - G Y Robin Hsiung
- Djavad Mowafaghian Centre for Brain Health C/O Liu-Ambrose Lab, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
- Division of Neurology, University of British Columbia, Vancouver, Canada
- Vancouver Coastal Health Research Institute and University of British Columbia Hospital Clinic for Alzheimer Disease and Related Disorders, Vancouver, Canada
| | - Roger Tam
- Djavad Mowafaghian Centre for Brain Health C/O Liu-Ambrose Lab, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Teresa Liu-Ambrose
- Aging, Mobility, and Cognitive Neuroscience Lab, Department of Physical Therapy, University of British Columbia, Vancouver, Canada.
- Djavad Mowafaghian Centre for Brain Health C/O Liu-Ambrose Lab, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada.
- Centre for Hip Health and Mobility, Vancouver, Canada.
| |
Collapse
|
9
|
Zhang X, Meirelles OD, Li Z, Yaffe K, Bryan RN, Qiu C, Launer LJ. Sedentary behavior, brain-derived neurotrophic factor and brain structure in midlife: A longitudinal brain MRI sub-study of the coronary artery risk development in young adults study. FRONTIERS IN DEMENTIA 2023; 2:1110553. [PMID: 39081995 PMCID: PMC11285629 DOI: 10.3389/frdem.2023.1110553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/24/2023] [Indexed: 08/02/2024]
Abstract
Background Brain-derived neurotrophic factor levels are higher in those who are physically active and lower in people with cognitive dysfunction. This study investigated whether brain-derived neurotrophic factor mediated or modified the association of sedentary time to MRI-estimated brain volumes in midlife. Methods Baseline (n = 612) and five-year follow-up (n = 418) data were drawn from the multicenter Coronary Artery Risk Development in Young Adults Brain MRI sub-study, including Black and White participants (aged 50.3 years, 51.6% females, 38.6% Black). Sedentary time (hours per day) was categorized into quartiles with low ≤ 4.3 (reference) and high > 8.4. Outcomes of the study were total brain, white matter, gray matter, hippocampal volumes, and white matter fractional anisotropy at baseline and 5-year percent change from baseline. The study used general linear regression models to examine the mediation and moderation effects of brain-derived neurotrophic factor (natural log transformed) on the associations of sedentary time to brain outcomes. The authors adjusted the regression model for age, sex, race, intracranial volume, education, and vascular factors. Results Cross-sectionally, baseline participants with the highest sedentary time had a lower total brain (-12.2 cc; 95%CI: -20.7, -3.7), gray matter (-7.8 cc; 95%CI: -14.3, -1.3), and hippocampal volume (-0.2 cc; 95%CI: -0.3, 0.0) compared with populations with the lowest sedentary time. The brain-derived neurotrophic factor levels did not mediate the associations between brain measures and sedentary time. Brain-derived neurotrophic factor was found to moderate associations of sedentary time to total brain and white matter volume such that the brain volume difference between high and low sedentary time decreased as brain-derived neurotrophic factor levels increased. Longitudinally, higher baseline brain-derived neurotrophic factor level was associated with less brain volume decline. The longitudinal associations did not differ by sedentary time, and brain-derived neurotrophic factor did not mediate or moderate the association of sedentary time to brain measure changes. Conclusions Higher brain-derived neurotrophic factor levels may buffer the negative effects of sedentary time on the brain.
Collapse
Affiliation(s)
- Xuan Zhang
- Laboratory of Epidemiology and Population Sciences Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Osorio D. Meirelles
- Laboratory of Epidemiology and Population Sciences Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Zhiguang Li
- Laboratory of Epidemiology and Population Sciences Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Kristine Yaffe
- Departments of Psychiatry and Behavioral Sciences, Neurology, and Epidemiology, University of California, San Francisco, San Francisco, CA, United States
| | - R. Nick Bryan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Chengxuan Qiu
- Aging Research Center and Center for Alzheimer's Research, Karolinska Institutet, Stockholm, Sweden
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Sciences Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| |
Collapse
|
10
|
Islas-Preciado D, Splinter TFL, Ibrahim M, Black N, Wong S, Lieblich SE, Liu-Ambrose T, Barha CK, Galea LAM. Sex and BDNF Val66Met polymorphism matter for exercise-induced increase in neurogenesis and cognition in middle-aged mice. Horm Behav 2023; 148:105297. [PMID: 36623432 DOI: 10.1016/j.yhbeh.2022.105297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/23/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023]
Abstract
Females show greater benefits of exercise on cognition in both humans and rodents, which may be related to brain-derived neurotrophic factor (BDNF). A single nucleotide polymorphism (SNP), the Val66Met polymorphism, within the human BDNF gene, causes impaired activity-dependent secretion of neuronal BDNF and impairments to some forms of memory. We evaluated whether sex and BDNF genotype (Val66Met polymorphism (Met/Met) versus wild-type (Val/Val)) influenced the ability of voluntary running to enhance cognition and hippocampal neurogenesis in mice. Middle-aged C57BL/6J (13 months) mice were randomly assigned to either a control or an aerobic training (AT) group (running disk access). Mice were trained on the visual discrimination and reversal paradigm in a touchscreen-based technology to evaluate cognitive flexibility. BDNF Met/Met mice had fewer correct responses compared to BDNF Val/Val mice on both cognitive tasks. Female BDNF Val/Val mice showed greater cognitive flexibility compared to male mice regardless of AT. Despite running less than BDNF Val/Val mice, AT improved performance in both cognitive tasks in BDNF Met/Met mice. AT increased neurogenesis in the ventral hippocampus of BDNF Val/Val mice of both sexes and increased the proportion of mature type 3 doublecortin-expressing cells in the dorsal hippocampus of female mice only. Our results indicate AT improved cognitive performance in BDNF Met/Met mice and increased hippocampal neurogenesis in BDNF Val/Val mice in middle age. Furthermore, middle-aged female mice may benefit more from AT than males in terms of neuroplasticity, an effect that was influenced by the BDNF Val66Met polymorphism.
Collapse
Affiliation(s)
- Dannia Islas-Preciado
- Department of Psychology, University of British Columbia, Canada; Dajavad Mowifaghian Centre for Brain Health, University of British Columbia, Canada; Lab de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, México
| | | | - Muna Ibrahim
- Department of Psychology, University of British Columbia, Canada
| | - Natasha Black
- Department of Psychology, University of British Columbia, Canada
| | - Sarah Wong
- Department of Psychology, University of British Columbia, Canada
| | | | - Teresa Liu-Ambrose
- Department of Physical Therapy, University of British Columbia, Canada; Dajavad Mowifaghian Centre for Brain Health, University of British Columbia, Canada
| | - Cindy K Barha
- Department of Physical Therapy, University of British Columbia, Canada; Dajavad Mowifaghian Centre for Brain Health, University of British Columbia, Canada.
| | - Liisa A M Galea
- Department of Psychology, University of British Columbia, Canada; Dajavad Mowifaghian Centre for Brain Health, University of British Columbia, Canada.
| |
Collapse
|
11
|
Galindo C, Nguyen VT, Hill B, Sims N, Heck A, Negron M, Lusk C. Brain-derived neurotrophic factor rs6265 (Val66Met) single nucleotide polymorphism as a master modifier of human pathophysiology. Neural Regen Res 2023. [PMID: 35799516 PMCID: PMC9241394 DOI: 10.4103/1673-5374.343894] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Brain-derived neurotrophic factor is the most prevalent member of the nerve growth factor family. Since its discovery in 1978, this enigmatic molecule has spawned more than 27,000 publications, most of which are focused on neurological disorders. Brain-derived neurotrophic factor is indispensable during embryogenesis and postnatally for the normal development and function of both the central and peripheral nervous systems. It is becoming increasingly clear, however, that brain-derived neurotrophic factor likewise plays crucial roles in a variety of other biological functions independently of sympathetic or parasympathetic involvement. Brain-derived neurotrophic factor is also increasingly recognized as a sophisticated environmental sensor and master coordinator of whole organismal physiology. To that point, we recently found that a common nonsynonymous (Val66→Met) single nucleotide polymorphism in the brain-derived neurotrophic factor gene (rs6265) not only substantially alters basal cardiac transcriptomics in mice but subtly influences heart gene expression and function differentially in males and females. In addition to a short description of recent results from associative neuropsychiatric studies, this review provides an eclectic assortment of research reports that support a modulatory role for rs6265 including and beyond the central nervous system.
Collapse
|
12
|
Huang X, Xie Z, Wang C, Wang S. Elevated Peripheral Brain-Derived Neurotrophic Factor Level Associated With Decreasing Insulin Secretion May Forecast Memory Dysfunction in Patients With Long-Term Type 2 Diabetes. Front Physiol 2022; 12:686838. [PMID: 35111074 PMCID: PMC8801615 DOI: 10.3389/fphys.2021.686838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022] Open
Abstract
Background With the progressive course of diabetes and the decline in islet function, the cognitive dysfunction of patients aggravated. Objective We aimed to investigate the roles of brain-derived neurotrophic factor (BDNF) and the Val66Met polymorphism in mild cognitive impairment (MCI) in patients with type 2 diabetes mellitus (T2DM). Methods A total of 169 Chinese patients with T2DM were involved and divided into long-term (diabetes duration >10 years) and short-term (diabetes duration ≤10 years) diabetes, and in each group, the patients were separated as MCI and the control. Demographic characteristics, clinical variables, and cognitive performances were assessed. The plasma BDNF level was measured via enzyme-linked immunosorbent assay. The Val66Met polymorphisms were analyzed. Results Long-term T2DM have lower 2 h postprandial C-peptide (p < 0.05). The BDNF level was slightly higher in patients with MCI than in the controls in each duration group without statistical significance. The relationship of BDNF to Montreal Cognitive Assessment was not proven either. However, in the long-term diabetes group, BDNF concentration remained as an independent factor of logical memory test (β = −0.27; p < 0.05), and they were negatively correlated (r = −0.267; p = 0.022); BDNF was also negatively correlated with fasting C-peptide (r = −0.260; p = 0.022), 2 h postprandial C-peptide (r = −0.251; p = 0.028), and homeostasis model assessment of insulin resistance (r = −0.312; p = 0.006). In genotypic groups, BDNF Val/Val performed better in logical memory test than Met/Met and Val/Met. Conclusion Elevated peripheral BDNF level associated with declined islet function, when combined with its Val66Met polymorphism, may forecast memory dysfunction in patients with long-term T2DM.
Collapse
Affiliation(s)
- Xi Huang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Zuolin Xie
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
| | - Chenchen Wang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
| | - Shaohua Wang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Nanjing Medical University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- *Correspondence: Shaohua Wang,
| |
Collapse
|
13
|
Udeh-Momoh C, Watermeyer T. Female specific risk factors for the development of Alzheimer's disease neuropathology and cognitive impairment: Call for a precision medicine approach. Ageing Res Rev 2021; 71:101459. [PMID: 34508876 DOI: 10.1016/j.arr.2021.101459] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/13/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) includes a long asymptomatic stage, which precedes the formal diagnosis of dementia. AD biomarker models provide a framework for precision medicine approaches during this stage. However, such approaches have ignored the possible influence of sex on cognition and brain health, despite female sex noted as a major risk factor. Since AD-related changes may emerge in midlife, intervention efforts are being redirected around this period. Midlife coincides with several endocrinological changes, such as the menopausal transition experienced by women. In this narrative review, we discuss evidence for sex-differences in AD neuropathological burden and outline key endocrinological mechanisms for both sexes, focussing on hormonal events throughout the lifespan that may influence female susceptibility to AD neuropathology and dementia onset. We further consider common non-modifiable (genetic) and modifiable (lifestyle and health) risk factors, highlighting possible sex-dependent differential effects for the AD disease course. Finally, we evaluate the studies selected for this review demonstrating sex-differences in cognitive, pathological and health factors, summarising the state of sex differences in AD risk factors. We further provide recommendations for targeted research on female-specific risk factors, to inform personalised strategies for AD-prevention and the promotion of female brain health.
Collapse
|
14
|
Martens L, Herrmann L, Colic L, Li M, Richter A, Behnisch G, Stork O, Seidenbecher C, Schott BH, Walter M. Met carriers of the BDNF Val66Met polymorphism show reduced Glx/NAA in the pregenual ACC in two independent cohorts. Sci Rep 2021; 11:6742. [PMID: 33762638 PMCID: PMC7990923 DOI: 10.1038/s41598-021-86220-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
The Met allele of the Val66Met SNP of the BDNF gene (rs6265) is associated with impaired activity-dependent release of brain-derived neurotrophic factor (BDNF), resulting in reduced synaptic plasticity, impaired glutamatergic neurotransmission, and morphological changes. While previous work has demonstrated Val66Met effects on magnetic resonance spectroscopy (MRS) markers of either glutamatergic metabolism (Glx) or neuronal integrity (NAA), no study has investigated Val66Met effects on these related processes simultaneously. As these metabolites share a metabolic pathway, the Glx/NAA ratio may be a more sensitive marker of changes associated with the Val66Met SNP. This ratio is increased in psychiatric disorders linked to decreased functioning in the anterior cingulate cortex (ACC). In this study, we investigated the correlation of the Val66Met polymorphism of the BDNF gene with Glx/NAA in the pregenual anterior cingulate cortex (pgACC) using MRS at 3 Tesla (T) (n = 30, all males) and 7 T (n = 98, 40 females). In both cohorts, Met carriers had lower Glx/NAA compared to Val homozygotes. Follow-up analyses using absolute quantification revealed that the Met carriers do not show decreased pgACC glutamate or glutamine levels, but instead show increased NAA compared to the Val homozygotes. This finding may in part explain conflicting evidence for Val66Met as a risk factor for developing psychiatric illnesses.
Collapse
Affiliation(s)
- Louise Martens
- University Department of Psychiatry and Psychotherapy, Tübingen, Germany.,Graduate Training Center, IMPRS, Tübingen, Germany.,Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Luisa Herrmann
- University Department of Psychiatry and Psychotherapy, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Lejla Colic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Clinical Affective Neuroscience Laboratory, Magdeburg, Germany.,Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Clinical Affective Neuroscience Laboratory, Magdeburg, Germany
| | - Anni Richter
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | | | - Oliver Stork
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-Von-Guericke-University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Constanze Seidenbecher
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Björn H Schott
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Martin Walter
- University Department of Psychiatry and Psychotherapy, Tübingen, Germany. .,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany. .,Clinical Affective Neuroscience Laboratory, Magdeburg, Germany.
| |
Collapse
|
15
|
Robinson JL, Yanes JA, Reid MA, Murphy JE, Busler JN, Mumford PW, Young KC, Pietrzkowski ZJ, Nemzer BV, Hunter JM, Beck DT. Neurophysiological Effects of Whole Coffee Cherry Extract in Older Adults with Subjective Cognitive Impairment: A Randomized, Double-Blind, Placebo-Controlled, Cross-Over Pilot Study. Antioxidants (Basel) 2021; 10:144. [PMID: 33498314 PMCID: PMC7909261 DOI: 10.3390/antiox10020144] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Bioactive plant-based compounds have shown promise as protective agents across multiple domains including improvements in neurological and psychological measures. Methodological challenges have limited our understanding of the neurophysiological changes associated with polyphenol-rich supplements such as whole coffee cherry extract (WCCE). In the current study, we (1) compared 100 mg of WCCE to a placebo using an acute, randomized, double-blind, within-subject, cross-over design, and we (2) conducted a phytochemical analysis of WCCE. The primary objective of the study was to determine the neurophysiological and behavioral changes that resulted from the acute administration of WCCE. We hypothesized that WCCE would increase brain-derived neurotrophic factor (BDNF) and glutamate levels while also increasing neurofunctional measures in cognitive brain regions. Furthermore, we expected there to be increased behavioral performance associated with WCCE, as measured by reaction time and accuracy. Participants underwent four neuroimaging scans (pre- and post-WCCE and placebo) to assess neurofunctional/metabolic outcomes using functional magnetic resonance imaging and magnetic resonance spectroscopy. The results suggest that polyphenol-rich WCCE is associated with decreased reaction time and may protect against cognitive errors on tasks of working memory and response inhibition. Behavioral findings were concomitant with neurofunctional changes in structures involved in decision-making and attention. Specifically, we found increased functional connectivity between the anterior cingulate and regions involved in sensory and decision-making networks. Additionally, we observed increased BDNF and an increased glutamate/gamma-aminobutyric acid (GABA) ratio following WCCE administration. These results suggest that WCCE is associated with acute neurophysiological changes supportive of faster reaction times and increased, sustained attention.
Collapse
Affiliation(s)
- Jennifer L. Robinson
- Department of Psychology, Auburn University, Auburn, AL 36849, USA; (J.A.Y.); (J.E.M.); (J.N.B.)
- Auburn University MRI Research Center, Auburn University, Auburn, AL 36849, USA;
- Alabama Advanced Imaging Consortium, Auburn University, Auburn, AL 36849, USA
- Initiative for the Center for Neuroscience, Auburn University, Auburn, AL 36849, USA;
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849, USA
| | - Julio A. Yanes
- Department of Psychology, Auburn University, Auburn, AL 36849, USA; (J.A.Y.); (J.E.M.); (J.N.B.)
- Auburn University MRI Research Center, Auburn University, Auburn, AL 36849, USA;
- Alabama Advanced Imaging Consortium, Auburn University, Auburn, AL 36849, USA
- Initiative for the Center for Neuroscience, Auburn University, Auburn, AL 36849, USA;
| | - Meredith A. Reid
- Auburn University MRI Research Center, Auburn University, Auburn, AL 36849, USA;
- Alabama Advanced Imaging Consortium, Auburn University, Auburn, AL 36849, USA
- Initiative for the Center for Neuroscience, Auburn University, Auburn, AL 36849, USA;
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849, USA
| | - Jerry E. Murphy
- Department of Psychology, Auburn University, Auburn, AL 36849, USA; (J.A.Y.); (J.E.M.); (J.N.B.)
| | - Jessica N. Busler
- Department of Psychology, Auburn University, Auburn, AL 36849, USA; (J.A.Y.); (J.E.M.); (J.N.B.)
- Auburn University MRI Research Center, Auburn University, Auburn, AL 36849, USA;
- Alabama Advanced Imaging Consortium, Auburn University, Auburn, AL 36849, USA
- Initiative for the Center for Neuroscience, Auburn University, Auburn, AL 36849, USA;
| | - Petey W. Mumford
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (P.W.M.); (K.C.Y.)
| | - Kaelin C. Young
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (P.W.M.); (K.C.Y.)
- Edward Via College of Osteopathic Medicine, Auburn, AL 36830, USA
| | | | - Boris V. Nemzer
- VDF FutureCeuticals, Inc., 2692 N. State Route 1-17, Momence, IL 60954, USA; (B.V.N.); (J.M.H.)
| | - John M. Hunter
- VDF FutureCeuticals, Inc., 2692 N. State Route 1-17, Momence, IL 60954, USA; (B.V.N.); (J.M.H.)
| | - Darren T. Beck
- Initiative for the Center for Neuroscience, Auburn University, Auburn, AL 36849, USA;
- Edward Via College of Osteopathic Medicine, Auburn, AL 36830, USA
| |
Collapse
|
16
|
Barha CK, Falck RS, Skou ST, Liu-Ambrose T. Personalising exercise recommendations for healthy cognition and mobility in ageing: time to consider one's pre-existing function and genotype (Part 2). Br J Sports Med 2020; 55:301-303. [PMID: 33023881 DOI: 10.1136/bjsports-2020-102865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Cindy K Barha
- Physical Therapy, Facutly of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan S Falck
- Physical Therapy, Facutly of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Søren T Skou
- Research Unit for Musculoskeletal Function and Physiotherapy, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.,Department of Physiotherapy and Occupational Therapy, Næstved-Slagelse-Ringsted Hospitals, Slagelse, Denmark
| | - Teresa Liu-Ambrose
- Physical Therapy, Facutly of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Bessi V, Mazzeo S, Bagnoli S, Padiglioni S, Carraro M, Piaceri I, Bracco L, Sorbi S, Nacmias B. The implication of BDNF Val66Met polymorphism in progression from subjective cognitive decline to mild cognitive impairment and Alzheimer's disease: a 9-year follow-up study. Eur Arch Psychiatry Clin Neurosci 2020; 270:471-482. [PMID: 31560105 DOI: 10.1007/s00406-019-01069-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
Abstract
Brain-derived natriuretic factor (BDNF) Val66Met polymorphism has been frequently reported to be associated with Alzheimer's disease (AD) with contrasting results. Numerous studies showed that Met allele increased the risk of AD only in women, while other studies have found worse cognitive performance in Val/Val carriers. We aimed to inquire the effects of Val66Met polymorphism on the progression from subjective cognitive decline (SCD) to mild cognitive impairment (MCI) and from MCI to AD and to ascertain if this effect is modulated by demographic and cognitive variables. For this purpose, we followed up 74 subjects (48 SCD, 26 MCI) for a mean time of 9 years. All participants underwent extensive neuropsychological assessment, cognitive reserve estimation, BDNF and apolipoprotein E (ApoE) genotype analysis at baseline. Personality traits and leisure activities were assessed in a subgroup. Each patient underwent clinical-neuropsychological follow-up, during which 18 out of 48 SCD subjects progressed to MCI and 14 out of 26 MCI subjects progressed to AD. We found that Val66Met increased the risk of progression from SCD to MCI and from MCI to AD only in women. Nevertheless, Val/Val carriers who progressed from SCD to MCI had a shorter conversion time compared to Met carriers. We concluded that Val66Met polymorphism might play different roles depending on sex and stage of the disease.
Collapse
Affiliation(s)
- Valentina Bessi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Azienda Ospedaliero-Universitaria Careggi. Largo Brambilla, 3, 50134, Florence, Italy.
| | - Salvatore Mazzeo
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Azienda Ospedaliero-Universitaria Careggi. Largo Brambilla, 3, 50134, Florence, Italy
| | - Silvia Bagnoli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Azienda Ospedaliero-Universitaria Careggi. Largo Brambilla, 3, 50134, Florence, Italy
| | - Sonia Padiglioni
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Azienda Ospedaliero-Universitaria Careggi. Largo Brambilla, 3, 50134, Florence, Italy
| | - Marco Carraro
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Azienda Ospedaliero-Universitaria Careggi. Largo Brambilla, 3, 50134, Florence, Italy
| | - Irene Piaceri
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Azienda Ospedaliero-Universitaria Careggi. Largo Brambilla, 3, 50134, Florence, Italy
| | - Laura Bracco
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Azienda Ospedaliero-Universitaria Careggi. Largo Brambilla, 3, 50134, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Azienda Ospedaliero-Universitaria Careggi. Largo Brambilla, 3, 50134, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Azienda Ospedaliero-Universitaria Careggi. Largo Brambilla, 3, 50134, Florence, Italy
| |
Collapse
|
18
|
Herold F, Müller P, Gronwald T, Müller NG. Dose-Response Matters! - A Perspective on the Exercise Prescription in Exercise-Cognition Research. Front Psychol 2019; 10:2338. [PMID: 31736815 PMCID: PMC6839278 DOI: 10.3389/fpsyg.2019.02338] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/01/2019] [Indexed: 01/03/2023] Open
Abstract
In general, it is well recognized that both acute physical exercises and regular physical training influence brain plasticity and cognitive functions positively. However, growing evidence shows that the same physical exercises induce very heterogeneous outcomes across individuals. In an attempt to better understand this interindividual heterogeneity in response to acute and regular physical exercising, most research, so far, has focused on non-modifiable factors such as sex and different genotypes, while relatively little attention has been paid to exercise prescription as a modifiable factor. With an adapted exercise prescription, dosage can be made comparable across individuals, a procedure that is necessary to better understand the dose-response relationship in exercise-cognition research. This improved understanding of dose-response relationships could help to design more efficient physical training approaches against, for instance, cognitive decline.
Collapse
Affiliation(s)
- Fabian Herold
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Patrick Müller
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Department of Neurology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Thomas Gronwald
- Department Performance, Neuroscience, Therapy and Health, Medical School Hamburg, University of Applied Sciences and Medical University, Hamburg, Germany
| | - Notger G. Müller
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Department of Neurology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|