1
|
Al Rawi S, Simpson L, Agnarsdóttir G, McDonald NQ, Chernuha V, Elpeleg O, Zeviani M, Barker RA, Spiegel R, Laman H. Study of an FBXO7 patient mutation reveals Fbxo7 and PI31 co-regulate proteasomes and mitochondria. FEBS J 2024; 291:2565-2589. [PMID: 38466799 DOI: 10.1111/febs.17114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/18/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Mutations in FBXO7 have been discovered to be associated with an atypical parkinsonism. We report here a new homozygous missense mutation in a paediatric patient that causes an L250P substitution in the dimerisation domain of Fbxo7. This alteration selectively ablates the Fbxo7-PI31 interaction and causes a significant reduction in Fbxo7 and PI31 levels in patient cells. Consistent with their association with proteasomes, patient fibroblasts have reduced proteasome activity and proteasome subunits. We also show PI31 interacts with the MiD49/51 fission adaptor proteins, and unexpectedly, PI31 acts to facilitate SCFFbxo7-mediated ubiquitination of MiD49. The L250P mutation reduces the SCFFbxo7 ligase-mediated ubiquitination of a subset of its known substrates. Although MiD49/51 expression was reduced in patient cells, there was no effect on the mitochondrial network. However, patient cells show reduced levels of mitochondrial function and mitophagy, higher levels of ROS and are less viable under stress. Our study demonstrates that Fbxo7 and PI31 regulate proteasomes and mitochondria and reveals a new function for PI31 in enhancing the SCFFbxo7 E3 ubiquitin ligase activity.
Collapse
Affiliation(s)
- Sara Al Rawi
- Department of Pathology, University of Cambridge, UK
| | - Lorna Simpson
- Department of Pathology, University of Cambridge, UK
| | | | - Neil Q McDonald
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London, UK
- Department of Biological Sciences, Institute of Structural and Molecular Biology, London, UK
| | - Veronika Chernuha
- Pediatric Neurology Institute, Dana-Dwek Children's Hospital, Tel Aviv Medical Centre and Sackler Faculty of Medicine, Israel
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Massimo Zeviani
- Mitochondrial Biology Unit, The MRC and University of Cambridge, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, UK
| | - Ronen Spiegel
- Pediatric Department, Emek Medical Center, Afula, Israel
| | - Heike Laman
- Department of Pathology, University of Cambridge, UK
| |
Collapse
|
2
|
Andrews SV, Kukkle PL, Menon R, Geetha TS, Goyal V, Kandadai RM, Kumar H, Borgohain R, Mukherjee A, Wadia PM, Yadav R, Desai S, Kumar N, Joshi D, Murugan S, Biswas A, Pal PK, Oliver M, Nair S, Kayalvizhi A, Samson PL, Deshmukh M, Bassi A, Sandeep C, Mandloi N, Davis OB, Roberts MA, Leto DE, Henry AG, Di Paolo G, Muthane U, Das SK, Peterson AS, Sandmann T, Gupta R, Ramprasad VL. The Genetic Drivers of Juvenile, Young, and Early-Onset Parkinson's Disease in India. Mov Disord 2024; 39:339-349. [PMID: 38014556 DOI: 10.1002/mds.29676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Recent studies have advanced our understanding of the genetic drivers of Parkinson's disease (PD). Rare variants in more than 20 genes are considered causal for PD, and the latest PD genome-wide association study (GWAS) identified 90 independent risk loci. However, there remains a gap in our understanding of PD genetics outside of the European populations in which the vast majority of these studies were focused. OBJECTIVE The aim was to identify genetic risk factors for PD in a South Asian population. METHODS A total of 674 PD subjects predominantly with age of onset (AoO) ≤50 years (encompassing juvenile, young, or early-onset PD) were recruited from 10 specialty movement disorder centers across India over a 2-year period; 1376 control subjects were selected from the reference population GenomeAsia, Phase 2. We performed various case-only and case-control genetic analyses for PD diagnosis and AoO. RESULTS A genome-wide significant signal for PD diagnosis was identified in the SNCA region, strongly colocalizing with SNCA region signal from European PD GWAS. PD cases with pathogenic mutations in PD genes exhibited, on average, lower PD polygenic risk scores than PD cases lacking any PD gene mutations. Gene burden studies of rare, predicted deleterious variants identified BSN, encoding the presynaptic protein Bassoon that has been previously associated with neurodegenerative disease. CONCLUSIONS This study constitutes the largest genetic investigation of PD in a South Asian population to date. Future work should seek to expand sample numbers in this population to enable improved statistical power to detect PD genes in this understudied group. © 2023 Denali Therapeutics and The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Shan V Andrews
- Denali Therapeutics, South San Francisco, California, USA
| | - Prashanth L Kukkle
- Manipal Hospital, Bangalore, India
- Parkinson's Disease and Movement Disorders Clinic, Bangalore, India
| | | | | | - Vinay Goyal
- All India Institute of Medical Sciences (AIIMS), New Delhi, India
- Medanta Hospital, New Delhi, India
- Medanta, The Medicity, Gurgaon, India
| | - Rukmini Mridula Kandadai
- Nizams Institute of Medical Sciences (NIMS), Hyderabad, India
- Citi Neuro Centre, Hyderabad, India
| | | | - Rupam Borgohain
- Nizams Institute of Medical Sciences (NIMS), Hyderabad, India
- Citi Neuro Centre, Hyderabad, India
| | - Adreesh Mukherjee
- Bangur Institute of Neurosciences and Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, India
| | | | - Ravi Yadav
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Soaham Desai
- Department of Neurology, Shree Krishna Hospital and Pramukhaswami Medical College, Bhaikaka University, Anand, India
| | - Niraj Kumar
- All India Institute of Medical Sciences, Rishikesh, India
- All India Institute of Medical Sciences, Bibinagar (Hyderabad Metropolitan Region), Bibinagar, India
| | - Deepika Joshi
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | | - Atanu Biswas
- Bangur Institute of Neurosciences and Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, India
| | - Pramod K Pal
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | | | | | | | | | | | | | | | - Oliver B Davis
- Denali Therapeutics, South San Francisco, California, USA
| | | | - Dara E Leto
- Denali Therapeutics, South San Francisco, California, USA
| | | | | | - Uday Muthane
- Parkinson and Ageing Research Foundation, Bangalore, India
| | - Shymal K Das
- Bangur Institute of Neurosciences and Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, India
| | | | | | | | | |
Collapse
|
3
|
Waung MW, Ma F, Wheeler AG, Zai CC, So J. The Diagnostic Landscape of Adult Neurogenetic Disorders. BIOLOGY 2023; 12:1459. [PMID: 38132285 PMCID: PMC10740572 DOI: 10.3390/biology12121459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Neurogenetic diseases affect individuals across the lifespan, but accurate diagnosis remains elusive for many patients. Adults with neurogenetic disorders often undergo a long diagnostic odyssey, with multiple specialist evaluations and countless investigations without a satisfactory diagnostic outcome. Reasons for these diagnostic challenges include: (1) clinical features of neurogenetic syndromes are diverse and under-recognized, particularly those of adult-onset, (2) neurogenetic syndromes may manifest with symptoms that span multiple neurological and medical subspecialties, and (3) a positive family history may not be present or readily apparent. Furthermore, there is a large gap in the understanding of how to apply genetic diagnostic tools in adult patients, as most of the published literature focuses on the pediatric population. Despite these challenges, accurate genetic diagnosis is imperative to provide affected individuals and their families guidance on prognosis, recurrence risk, and, for an increasing number of disorders, offer targeted treatment. Here, we provide a framework for recognizing adult neurogenetic syndromes, describe the current diagnostic approach, and highlight studies using next-generation sequencing in different neurological disease cohorts. We also discuss diagnostic pitfalls, barriers to achieving a definitive diagnosis, and emerging technology that may increase the diagnostic yield of testing.
Collapse
Affiliation(s)
- Maggie W. Waung
- Division of General Neurology, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Fion Ma
- Institute for Human Genetics, University of California San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - Allison G. Wheeler
- Institute for Human Genetics, University of California San Francisco School of Medicine, San Francisco, CA 94143, USA
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Clement C. Zai
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, Institute of Medical Science, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Joyce So
- Division of Medical Genetics, Department of Pediatrics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
4
|
Koros C, Bougea A, Simitsi AM, Papagiannakis N, Angelopoulou E, Pachi I, Antonelou R, Bozi M, Stamelou M, Stefanis L. The Landscape of Monogenic Parkinson's Disease in Populations of Non-European Ancestry: A Narrative Review. Genes (Basel) 2023; 14:2097. [PMID: 38003040 PMCID: PMC10671808 DOI: 10.3390/genes14112097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
INTRODUCTION There has been a bias in the existing literature on Parkinson's disease (PD) genetics as most studies involved patients of European ancestry, mostly in Europe and North America. Our target was to review published research data on the genetic profile of PD patients of non-European or mixed ancestry. METHODS We reviewed articles published during the 2000-2023 period, focusing on the genetic status of PD patients of non-European origin (Indian, East and Central Asian, Latin American, sub-Saharan African and Pacific islands). RESULTS There were substantial differences regarding monogenic PD forms between patients of European and non-European ancestry. The G2019S Leucine Rich Repeat Kinase 2 (LRRK2) mutation was rather scarce in non-European populations. In contrast, East Asian patients carried different mutations like p.I2020T, which is common in Japan. Parkin (PRKN) variants had a global distribution, being common in early-onset PD in Indians, in East Asians, and in early-onset Mexicans. Furthermore, they were occasionally present in Black African PD patients. PTEN-induced kinase 1 (PINK1) and PD protein 7 (DJ-1) variants were described in Indian, East Asian and Pacific Islands populations. Glucocerebrosidase gene variants (GBA1), which represent an important predisposing factor for PD, were found in East and Southeast Asian and Indian populations. Different GBA1 variants have been reported in Black African populations and Latin Americans. CONCLUSIONS Existing data reveal a pronounced heterogeneity in the genetic background of PD. A number of common variants in populations of European ancestry appeared to be absent or scarce in patients of diverse ethnic backgrounds. Large-scale studies that include genetic screening in African, Asian or Latin American populations are underway. The outcomes of such efforts will facilitate further clinical studies and will possibly contribute to the identification of either new pathogenic mutations in already described genes or novel PD-related genes.
Collapse
Affiliation(s)
- Christos Koros
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Anastasia Bougea
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Athina Maria Simitsi
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Nikolaos Papagiannakis
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Efthalia Angelopoulou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Ioanna Pachi
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Roubina Antonelou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| | - Maria Bozi
- Dafni Psychiatric Hospital, 12462 Athens, Greece;
- 2nd Department of Neurology, Attikon Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | | | - Leonidas Stefanis
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.K.); (A.M.S.); (N.P.); (E.A.); (I.P.); (R.A.); (L.S.)
| |
Collapse
|
5
|
Yang Y, Gao F, Gao L, Miao J. Effects of rasagiline combined with levodopa and benserazide hydrochloride on motor function and homocysteine and IGF-1 levels in elderly patients with Parkinson's disease. BMC Neurol 2023; 23:360. [PMID: 37803329 PMCID: PMC10557206 DOI: 10.1186/s12883-023-03411-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND During the course of their illness, people with Parkinson's disease may see changes in their insulin-like growth factor (IGF-1) and serum homocysteine (Hcy) indices. In this study, patients with intermediate to severe Parkinson's disease were examined for how Resagiline and levodopa and benserazide hydrochloride affected their motor performance, serum levels of homocysteine (Hcy), and insulin-like growth factor (IGF-1). METHODS From June 2020 to December 2021, a total of 100+ cases of Parkinson's patients over 60 years old in the middle and late stages of Parkinson's were seen in the outpatient and inpatient departments of the Third People's Hospital of Chengdu City and had a detailed observation record, and according to the inclusion criteria, the patients who met the criteria were randomly grouped into a clinical observation group and a control group. The subjects in the control group received only levodopa and benserazide hydrochloride treatment, while the observation group was treated with Resagiline in combination with the clinical control group. The total treatment observation period was 1 year for both groups, and the motor function and serum Hcy and IGF-1 indexes of both groups were compared after the end of treatment. RESULTS We randomly and evenly grouped 64 patients who met the requirements of the inclusion criteria into a clinical observation group and a control group, each with 32 patients, from among 168 patients over 60 years of age with detailed observation records in the middle and late stages of Parkinson's. After the 1-year observation period, we found that the total effective rate after treatment in the clinical observation group (93.75%) and significantly higher than that in the control group (68.75%) (P < 0.05); after 1 year of treatment, the UPDRS score decreased in both groups, and the observation group was significantly lower than the control group (P < 0.05); after treatment, serum Hcy decreased and IGF-1 increased in both groups, and the observation group was higher than the control group mean values (P < 0.05). CONCLUSIONS In patients with Parkinson's disease who are in the middle and late stages of the disease, the administration of Resagiline combined with levodopa and benserazide hydrochloride can significantly lower the body's serum Hcy level, significantly raise IGF-1 levels, and significantly improve motor function in patients with Parkinson's disease. It can also have significant therapeutic effects.
Collapse
Grants
- 2019-YF09-00086-SN 5G communication technology supported remote diagnosis, treatment and care of patients with brain dysfunction and disability, semi-disability, and integrated prevention and control system
- 2019-YF09-00086-SN 5G communication technology supported remote diagnosis, treatment and care of patients with brain dysfunction and disability, semi-disability, and integrated prevention and control system
- 2019-YF09-00086-SN 5G communication technology supported remote diagnosis, treatment and care of patients with brain dysfunction and disability, semi-disability, and integrated prevention and control system
- 2019-YF09-00086-SN 5G communication technology supported remote diagnosis, treatment and care of patients with brain dysfunction and disability, semi-disability, and integrated prevention and control system
Collapse
Affiliation(s)
- Yifan Yang
- Department of Neurology, Affiliated Hospital of Southwest Jiaotong University & Chengdu Third People's Hospital, Chengdu, Sichuan, 610000, China.
| | - Feng Gao
- Southwest Jiaotong University, Chengdu, Sichuan, 610000, China
| | - Li Gao
- Department of Neurology, Affiliated Hospital of Southwest Jiaotong University & Chengdu Third People's Hospital, Chengdu, Sichuan, 610000, China
| | - Jiaodan Miao
- Department of Neurology, Affiliated Hospital of Southwest Jiaotong University & Chengdu Third People's Hospital, Chengdu, Sichuan, 610000, China
| |
Collapse
|
6
|
Do MD, Tran TN, Luong AB, Le LHG, Van Le T, Le KT, Van Vo NT, Le TNN, Vu HA, Mai TP. Clinical and genetic analysis of Vietnamese patients diagnosed with early-onset Parkinson's disease. Brain Behav 2023; 13:e2950. [PMID: 36879366 PMCID: PMC10097096 DOI: 10.1002/brb3.2950] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Genetic factors play a crucial role in the pathogenesis of Parkinson's disease (PD). However, no comprehensive study has described genetic alterations in Vietnamese patients diagnosed with PD. This study aimed to identify genetic causes and their association with clinical phenotypes in a Vietnamese PD cohort. METHODS A total of 83 patients with early-onset PD (disease onset before the age of 50) were recruited for genetic analysis using a combination of multiplex ligation-dependent probe amplification and next-generation sequencing for a panel of 20 PD-associated genes. RESULTS It was found that 37 out of 83 patients carried genetic alterations, with 24 pathogenic/likely pathogenic/risk variants and 25 variants of uncertain significance. The pathogenic/likely pathogenic/risk variants were mostly detected in LRRK2, PRKN, and GBA, while the variants of uncertain significance were identified in 12 different genes that were studied. The most common genetic alteration was LRRK2 c.4883G>C (p.Arg1628Pro), and patients with PD carrying this variant were found to have a distinct phenotype. Participants carrying pathogenic/likely pathogenic/risk variants had a significantly higher rate of a family history of PD. CONCLUSION These results provide a further understanding of genetic alterations associated with PD in a South-East Asian population.
Collapse
Affiliation(s)
- Minh Duc Do
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Tai Ngoc Tran
- Movement Disorder Unit, Department of Neurology, University Medical Center, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - An Bac Luong
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Linh Hoang Gia Le
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Tuan Van Le
- Department of Neurology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Khuong Thai Le
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Niem Thanh Van Vo
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thuc-Nhi Nguyen Le
- Department of Neurology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Hoang Anh Vu
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thao Phuong Mai
- Department of Physiology-Pathophysiology-Immunology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
7
|
Kovanda A, Rački V, Bergant G, Georgiev D, Flisar D, Papić E, Brankovic M, Jankovic M, Svetel M, Teran N, Maver A, Kostic VS, Novakovic I, Pirtošek Z, Rakuša M, Vuletić V, Peterlin B. A multicenter study of genetic testing for Parkinson's disease in the clinical setting. NPJ Parkinsons Dis 2022; 8:149. [PMID: 36333361 PMCID: PMC9636217 DOI: 10.1038/s41531-022-00408-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Parkinson's disease (PD) guidelines lack clear criteria for genetic evaluation. We assessed the yield and rationale of genetic testing for PD in a routine clinical setting on a multicenter cohort of 149 early-onset and familial patients by exome sequencing and semi-quantitative multiplex ligation-dependent probe amplification of evidence-based PD-associated gene panel. We show that genetic testing for PD should be considered for both early-onset and familial patients alike, and a clinical yield of about 10% in the Caucasian population can be expected.
Collapse
Affiliation(s)
- Anja Kovanda
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Valentino Rački
- Department of Neurology, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Gaber Bergant
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Dejan Georgiev
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Artificial Intelligence Lab, Faculty of Computer and Information Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Dušan Flisar
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Eliša Papić
- Department of Neurology, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Marija Brankovic
- Neurology Clinic, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Marina Svetel
- Neurology Clinic, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nataša Teran
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Aleš Maver
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Vladimir S Kostic
- Neurology Clinic, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivana Novakovic
- Institute of Human Genetics and Neurology Clinic, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Zvezdan Pirtošek
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Neurology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Martin Rakuša
- Department of Neurology, University Medical Centre Maribor, Maribor, Slovenia
| | - Vladimira Vuletić
- Department of Neurology, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
8
|
Hua P, Zhao Y, Zeng Q, Li L, Ren J, Guo J, Tang B, Liu W. Genetic Analysis of Patients With Early-Onset Parkinson’s Disease in Eastern China. Front Aging Neurosci 2022; 14:849462. [PMID: 35645773 PMCID: PMC9131032 DOI: 10.3389/fnagi.2022.849462] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Background Genetic factors play an important role in the pathogenesis of early-onset Parkinson’s disease (EOPD). To date, more than 20 pathogenic genes associated with Parkinson’s disease (PD) have been identified. This study aims to explore the mutation spectrum of EOPD and the clinical characteristics of mutation carriers in eastern China. Methods We recruited 155 unrelated EOPD patients, including 8 familial and 147 sporadic EOPD (age at onset ≤ 50 years). Overall, 24 known PD-associated genes were detected by whole exome sequencing and multiplex ligation-dependent probe amplification (MLPA) from patient samples. The genetic and clinical characteristics of pathogenic/likely pathogenic (P/LP) loci in this cohort were analyzed. Results Overall, 14 (9.03%) patients were detected with P/LP variants distributed in seven genes. The most frequent mutation occurred in PRKN (7/155, 4.52%), followed by LRRK2 (2/155, 1.29%), SNCA, CHCHD2, TMEM230, DNAJC13 and PLA2G6 (1/155, 0.64%, respectively). Exon rearrangement mutations accounted for 57.9% (11/19) of all mutations in PRKN. Four novel variants were detected: c.14T > C (p.M5T) in SNCA, c.297C > A (p.Y99X) in CHCHD2, c.2578C > T (p.R860C) in DNAJC13 and c.4C > T (p.Q2X) in TMEM230. We found the first case of LRRK2 c.6055G > A (p.G2019S) mutation in Chinese population. The median onset age of patients with P/LP mutations in autosomal recessive genes (PRKN and PLA2G6) was about 18.0 years earlier than patients without mutation. The proportion of patients with mutations were 63.64%, 27.03% and 9.68% when patients were stratified according to the age of onset at ≤ 30, ≤ 40 and ≤ 50 years, respectively. Conclusion Early-onset Parkinson’s disease patients from eastern China present a regional specific mutation spectrum. Analysis of larger patient cohorts is required to support these findings, and mechanistic studies of the four novel missense/non-sense mutations will clarify their role in the pathogenicity of EOPD.
Collapse
Affiliation(s)
- Ping Hua
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lanting Li
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Jingru Ren
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Centre for Medical Genetics, Xiangya Hospital, School of Life Sciences, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Centre for Medical Genetics, Xiangya Hospital, School of Life Sciences, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Beisha Tang,
| | - Weiguo Liu
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Weiguo Liu,
| |
Collapse
|
9
|
α-Synuclein at the Presynaptic Axon Terminal as a Double-Edged Sword. Biomolecules 2022; 12:biom12040507. [PMID: 35454096 PMCID: PMC9029495 DOI: 10.3390/biom12040507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
α-synuclein (α-syn) is a presynaptic, lipid-binding protein strongly associated with the neuropathology observed in Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and Alzheimer’s Disease (AD). In normal physiology, α-syn plays a pivotal role in facilitating endocytosis and exocytosis. Interestingly, mutations and modifications of precise α-syn domains interfere with α-syn oligomerization and nucleation that negatively affect presynaptic vesicular dynamics, protein expressions, and mitochondrial profiles. Furthermore, the integration of the α-syn oligomers into the presynaptic membrane results in pore formations, ion influx, and excitotoxicity. Targeted therapies against specific domains of α-syn, including the use of small organic molecules, monoclonal antibodies, and synthetic peptides, are being screened and developed. However, the prospect of an effective α-syn targeted therapy is still plagued by low permeability across the blood–brain barrier (BBB), and poor entry into the presynaptic axon terminals. The present review proposes a modification of current strategies, which includes the use of novel encapsulation technology, such as lipid nanoparticles, to bypass the BBB and deliver such agents into the brain.
Collapse
|
10
|
Guo Y, Sun Y, Song Z, Zheng W, Xiong W, Yang Y, Yuan L, Deng H. Genetic Analysis and Literature Review of SNCA Variants in Parkinson's Disease. Front Aging Neurosci 2021; 13:648151. [PMID: 34456707 PMCID: PMC8397385 DOI: 10.3389/fnagi.2021.648151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/29/2021] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is the fastest-growing neurodegenerative disorder. Aging, environmental factors, and genetics are considered as risk factors. The alpha-synuclein gene (SNCA), the first pathogenic gene identified in a familial form of PD, was indisputably involved as a heritable component for familial and sporadic PD. In this study, whole-exome sequencing and Sanger sequencing were performed to evaluate the association between the SNCA gene variants and PD. The genetic data of 438 clinically diagnosed patients with PD and 543 matched control populations of the Han Chinese were analyzed. The literature review of SNCA variants for 231 cases reported in 89 articles was extracted from the PubMed and the Movement Disorder Society Genetic mutation database. No potentially causative variant(s) in the SNCA gene, excepting two single-nucleotide nonsynonymous variants c.158C>T (p.A53V, rs542171324) and c.349C>T (p.P117S, rs145138372), were detected. There was no statistically significant difference in the genotypic or allelic frequencies for either variant between the PD group and the control group (all P > 0.05). No copy number variants of the SNCA gene were detected. The results of this study suggest that the variants in the exons of the SNCA gene may have less or no role in the development of PD in the Han Chinese populations. The literature review suggests that psychiatric signs and cognitive decline/dementia were more common among patients with SNCA duplication or triplication (psychiatric signs: χ2 = 7.892, P = 0.005; cognitive decline/dementia: χ2 = 8.991, P = 0.003).
Collapse
Affiliation(s)
- Yi Guo
- Department of Medical Information, School of Life Sciences, Central South University, Changsha, China
| | - Yan Sun
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Song
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wen Zheng
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xiong
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yan Yang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lamei Yuan
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China.,Disease Genome Research Center, Central South University, Changsha, China
| | - Hao Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China.,Disease Genome Research Center, Central South University, Changsha, China
| |
Collapse
|
11
|
Magnusen AF, Hatton SL, Rani R, Pandey MK. Genetic Defects and Pro-inflammatory Cytokines in Parkinson's Disease. Front Neurol 2021; 12:636139. [PMID: 34239490 PMCID: PMC8259624 DOI: 10.3389/fneur.2021.636139] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is a movement disorder attributed to the loss of dopaminergic (DA) neurons mainly in the substantia nigra pars compacta. Motor symptoms include resting tremor, rigidity, and bradykinesias, while non-motor symptoms include autonomic dysfunction, anxiety, and sleeping problems. Genetic mutations in a number of genes (e.g., LRRK2, GBA, SNCA, PARK2, PARK6, and PARK7) and the resultant abnormal activation of microglial cells are assumed to be the main reasons for the loss of DA neurons in PD with genetic causes. Additionally, immune cell infiltration and their participation in major histocompatibility complex I (MHCI) and/or MHCII-mediated processing and presentation of cytosolic or mitochondrial antigens activate the microglial cells and cause the massive generation of pro-inflammatory cytokines and chemokines, which are all critical for the propagation of brain inflammation and the neurodegeneration in PD with genetic and idiopathic causes. Despite knowing the involvement of several of such immune devices that trigger neuroinflammation and neurodegeneration in PD, the exact disease mechanism or the innovative biomarker that could detect disease severity in PD linked to LRRK2, GBA, SNCA, PARK2, PARK6, and PARK7 defects is largely unknown. The current review has explored data from genetics, immunology, and in vivo and ex vivo functional studies that demonstrate that certain genetic defects might contribute to microglial cell activation and massive generation of a number of pro-inflammatory cytokines and chemokines, which ultimately drive the brain inflammation and lead to neurodegeneration in PD. Understanding the detailed involvement of a variety of immune mediators, their source, and the target could provide a better understanding of the disease process. This information might be helpful in clinical diagnosis, monitoring of disease progression, and early identification of affected individuals.
Collapse
Affiliation(s)
- Albert Frank Magnusen
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Shelby Loraine Hatton
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Reena Rani
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Paediatrics of University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
12
|
Clinical Study of 668 Indian Subjects with Juvenile, Young, and Early Onset Parkinson's Disease. Can J Neurol Sci 2021; 49:93-101. [PMID: 33685545 DOI: 10.1017/cjn.2021.40] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To determine the demographic pattern of juvenile-onset parkinsonism (JP, <20 years), young-onset (YOPD, 20-40 years), and early onset (EOPD, 40-50 years) Parkinson's disease (PD) in India. MATERIALS AND METHODS We conducted a 2-year, pan-India, multicenter collaborative study to analyze clinical patterns of JP, YOPD, and EOPD. All patients under follow-up of movement disorders specialists and meeting United Kingdom (UK) Brain Bank criteria for PD were included. RESULTS A total of 668 subjects (M:F 455:213) were recruited with a mean age at onset of 38.7 ± 8.1 years. The mean duration of symptoms at the time of study was 8 ± 6 years. Fifteen percent had a family history of PD and 13% had consanguinity. JP had the highest consanguinity rate (53%). YOPD and JP cases had a higher prevalence of consanguinity, dystonia, and gait and balance issues compared to those with EOPD. In relation to nonmotor symptoms, panic attacks and depression were more common in YOPD and sleep-related issues more common in EOPD subjects. Overall, dyskinesias were documented in 32.8%. YOPD subjects had a higher frequency of dyskinesia than EOPD subjects (39.9% vs. 25.5%), but they were first noted later in the disease course (5.7 vs. 4.4 years). CONCLUSION This large cohort shows differing clinical patterns in JP, YOPD, and EOPD cases. We propose that cutoffs of <20, <40, and <50 years should preferably be used to define JP, YOPD, and EOPD.
Collapse
|
13
|
Zhao Y, Qin L, Pan H, Liu Z, Jiang L, He Y, Zeng Q, Zhou X, Zhou X, Zhou Y, Fang Z, Wang Z, Xiang Y, Yang H, Wang Y, Zhang K, Zhang R, He R, Zhou X, Zhou Z, Yang N, Liang D, Chen J, Zhang X, Zhou Y, Liu H, Deng P, Xu K, Xu K, Zhou C, Zhong J, Xu Q, Sun Q, Li B, Zhao G, Wang T, Chen L, Shang H, Liu W, Chan P, Xue Z, Wang Q, Guo L, Wang X, Xu C, Zhang Z, Chen T, Lei L, Zhang H, Wang C, Tan J, Yan X, Shen L, Jiang H, Zhang Z, Hu Z, Xia K, Yue Z, Li J, Guo J, Tang B. The role of genetics in Parkinson's disease: a large cohort study in Chinese mainland population. Brain 2020; 143:2220-2234. [PMID: 32613234 DOI: 10.1093/brain/awaa167] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/19/2020] [Accepted: 04/06/2020] [Indexed: 02/05/2023] Open
Abstract
This study aimed to determine the mutational spectrum of familial Parkinson's disease and sporadic early-onset Parkinson's disease (sEOPD) in a mainland Chinese population and the clinical features of mutation carriers. We performed multiplex ligation-dependent probe amplification assays and whole-exome sequencing for 1676 unrelated patients with Parkinson's disease in a mainland Chinese population, including 192 probands from families with autosomal-recessive Parkinson's disease, 242 probands from families with autosomal-dominant Parkinson's disease, and 1242 sEOPD patients (age at onset ≤ 50). According to standards and guidelines from the American College of Medical Genetics and Genomics, pathogenic/likely pathogenic variants in 23 known Parkinson's disease-associated genes occurred more frequently in the autosomal-recessive Parkinson's disease cohort (65 of 192, 33.85%) than in the autosomal-dominant Parkinson's disease cohort (10 of 242, 4.13%) and the sEOPD cohort (57 of 1242, 4.59%), which leads to an overall molecular diagnostic yield of 7.88% (132 of 1676). We found that PRKN was the most frequently mutated gene (n = 83, 4.95%) and present the first evidence of an SNCA duplication and LRRK2 p.N1437D variant in mainland China. In addition, several novel pathogenic/likely pathogenic variants including LRRK2 (p.V1447M and p.Y1645S), ATP13A2 (p.R735X and p.A819D), FBXO7 (p.G67E), LRP10 (c.322dupC/p.G109Rfs*51) and TMEM230 (c.429delT/p.P144Qfs*2) were identified in our cohort. Furthermore, the age at onset of the 132 probands with genetic diagnoses (median, 31.5 years) was about 14.5 years earlier than that of patients without molecular diagnoses (i.e. non-carriers, median 46.0 years). Specifically, the age at onset of Parkinson's disease patients with pathogenic/likely pathogenic variants in ATP13A2, PLA2G6, PRKN, or PINK1 was significantly lower than that of non-carriers, while the age at onset of carriers with other gene pathogenic/likely pathogenic variants was similar to that of non-carriers. The clinical spectrum of Parkinson's disease-associated gene carriers in this mainland Chinese population was similar to that of other populations. We also detected 61 probands with GBA possibly pathogenic variants (3.64%) and 59 probands with GBA p.L444P (3.52%). These results shed insight into the genetic spectrum and clinical manifestations of Parkinson's disease in mainland China and expand the existing repertoire of pathogenic or likely pathogenic variants involved in known Parkinson's disease-associated genes. Our data highlight the importance of genetic testing in Parkinson's disease patients with age at onset < 40 years, especially in those from families with a recessive inheritance pattern, who may benefit from early diagnosis and treatment.
Collapse
Affiliation(s)
- Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lixia Qin
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Li Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qian Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xun Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaoxia Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yangjie Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhenghuan Fang
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Zheng Wang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yaqin Xiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Honglan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yige Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kailin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Rui Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Runcheng He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaoting Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhou Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Nannan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Dongxiao Liang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Juan Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xuxiang Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yao Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hongli Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Penghui Deng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kun Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ke Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chaojun Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Junfei Zhong
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Bin Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Guihu Zhao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weiguo Liu
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Piu Chan
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing 100101, China
| | - Zheng Xue
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Li Guo
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, China
| | - Xuejing Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450047, China
| | - Changshui Xu
- Department of Neurology, Henan provincial people's hospital, Zhengzhou, Henan 450003, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Tao Chen
- Department of Neurology, Hainan General Hospital, Haikou, Hainan 570311, China
| | - Lifang Lei
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Hainan Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Chunyu Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jieqiong Tan
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Xinxiang Yan
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhuohua Zhang
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Zhengmao Hu
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Kun Xia
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Zhenyu Yue
- Departments of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jinchen Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
14
|
The E3 ubiquitin ligase SCF(Fbxo7) mediates proteasomal degradation of UXT isoform 2 (UXT-V2) to inhibit the NF-κB signaling pathway. Biochim Biophys Acta Gen Subj 2020; 1865:129754. [PMID: 33010352 PMCID: PMC8063000 DOI: 10.1016/j.bbagen.2020.129754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022]
Abstract
Background Ubiquitously eXpressed Transcript isoform 2 (UXT—V2) is a prefoldin-like protein involved in NF-κB signaling, apoptosis, and the androgen and estrogen response. UXT-V2 is a cofactor in the NF-κB transcriptional enhanceosome, and its knockdown inhibits TNF-α -induced NF-κB activation. Fbxo7 is an F-box protein that interacts with SKP1, Cullin1 and RBX1 proteins to form an SCF(Fbxo7) E3 ubiquitin ligase complex. Fbxo7 negatively regulates NF-κB signaling through TRAF2 and cIAP1 ubiquitination. Methods We combine co-immunoprecipitation, ubiquitination in vitro and in vivo, cycloheximide chase assay, ubiquitin chain restriction analysis and microscopy to investigate interaction between Fbxo7 and overexpressed UXT-V2-HA. Results The Ubl domain of Fbxo7 contributes to interaction with UXT—V2. This substrate is polyubiquitinated by SCF(Fbxo7) with K48 and K63 ubiquitin chain linkages in vitro and in vivo. This post-translational modification decreases UXT-V2 stability and promotes its proteasomal degradation. We further show that UXT—V1, an alternatively spliced isoform of UXT, containing 12 additional amino acids at the N-terminus as compared to UXT—V2, also interacts with and is ubiquitinated by Fbxo7. Moreover, FBXO7 knockdown promotes UXT-V2 accumulation, and the overexpression of Fbxo7-ΔF-box protects UXT-V2 from proteasomal degradation and enhances the responsiveness of NF-κB reporter. We find that UXT-V2 colocalizes with Fbxo7 in the cell nucleus. Conclusions Together, our study reveals that SCF(Fbxo7) mediates the proteasomal degradation of UXT-V2 causing the inhibition of the NF-κB signaling pathway. General significance Discovering new substrates of E3 ubiquitin-ligase SCF(Fbxo7) contributes to understand its function in different diseases such as cancer and Parkinson. UXT-V2 is a canonical substrate of SCF(Fbxo7) E3 ubiquitin ligase. Fbxo7 interacts with both UXT-V1 and UXT—V2. UXT-V2 recruits Fbxo7 to the cell nuclei. Fbxo7 inhibit NF-kB pathway through degradation of UXT-V2.
Collapse
|
15
|
Yoo D, Choi JH, Im JH, Kim MJ, Kim HJ, Park SS, Jeon B. Young-Onset Parkinson's Disease with Impulse Control Disorder Due to Novel Variants of F-Box Only Protein 7. J Mov Disord 2020; 13:225-228. [PMID: 32894901 PMCID: PMC7502300 DOI: 10.14802/jmd.20026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022] Open
Abstract
F-box only protein 7 (FBXO7) is a rare monogenic cause of hereditary Parkinson’s disease (PD) with an autosomal recessive mode of inheritance and a broad spectrum of clinical manifestations. Here, we report a de novo PD patient with onset at the age of 28 with novel compound heterozygous variants in the FBXO7 gene (c.1162C>T, p.Gln388X; c.80G>A, p.Arg27His). The clinical features of the patient were problematic impulse control disorder behaviors and pyromania, and pyramidal signs were negative. We describe the novel pathogenic variants of the FBXO7 gene with detailed clinical pictures to report the expanding genotypes and phenotypes of FBXO7-associated parkinsonism.
Collapse
Affiliation(s)
- Dallah Yoo
- Department of Neurology and Movement Disorder Center, Parkinson Study Group, Neuroscience Research Institute, College of Medicine, Seoul National University Hospital, Seoul, Korea.,Department of Neurology, Kyung Hee University Hospital, Seoul, Korea
| | - Ji-Hyun Choi
- Department of Neurology and Movement Disorder Center, Parkinson Study Group, Neuroscience Research Institute, College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jin-Hee Im
- Department of Neurology and Movement Disorder Center, Parkinson Study Group, Neuroscience Research Institute, College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Man Jin Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Han-Joon Kim
- Department of Neurology and Movement Disorder Center, Parkinson Study Group, Neuroscience Research Institute, College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sung Sup Park
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Beomseok Jeon
- Department of Neurology and Movement Disorder Center, Parkinson Study Group, Neuroscience Research Institute, College of Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
16
|
Jiang Y, Yu M, Chen J, Zhou H, Sun W, Sun Y, Li F, Wei L, Pinkhardt EH, Zhang L, Yuan Y, Wang Z. Parkin is the most common causative gene in a cohort of mainland Chinese patients with sporadic early-onset Parkinson's disease. Brain Behav 2020; 10:e01765. [PMID: 32677319 PMCID: PMC7507393 DOI: 10.1002/brb3.1765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/06/2020] [Accepted: 07/06/2020] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Genetic mutations associated with early-onset Parkinson's disease (EOPD) vary widely among different ethnicities. We detected the genes associated with EOPD in a Chinese cohort using next-generation sequencing (NGS) combined with multiplex ligation-dependent probe amplification (MLPA) and analyzed the phenotypic characteristics of the mutation carriers. METHODS Cohort of 23 sporadic EOPD patients (onset age ≤ 45 years) were recruited. Genetic causes were identified by a targeted NGS panel containing 136 known extrapyramidal disease-causative genes. Multiplications or deletions of PD-causing genes were detected using the MLPA method. Demographic and clinical data were obtained, analyzed, and compared between patients with and those without Parkin gene variants. RESULTS We identified 14 pathogenic or likely pathogenic variants (12 in Parkin, 1 in LRRK2, and 1 in VPS13C) in 10 patients (43.5%) and 8 rare variants of uncertain significance in 9 patients (39.1%). Parkin (34.8%) was the most common causative gene among our patients cohort, and exon deletion (62.5%) was the main type of variant. Patients with Parkin mutations had a younger age of onset, longer delay in diagnosis, slower disease progression, higher frequency of hyperreflexia, fatigue, and less hyposmia compared to patients without Parkin mutations. CONCLUSION Our results revealed a higher prevalence of Parkin mutations in Chinese sporadic EOPD patients, and notably, exon deletion was the most common type of mutation. EOPD patients with Parkin mutations showed unique clinical characteristics.
Collapse
Affiliation(s)
- Yanyan Jiang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jing Chen
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Hong Zhou
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Wei Sun
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yunchuang Sun
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Fan Li
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Luhua Wei
- Department of Neurology, Peking University First Hospital, Beijing, China
| | | | - Lin Zhang
- Department of Neurology, UC Davis Medical Center, Sacramento, CA, USA
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|
17
|
Ton ND, Thuan ND, Thuong MTH, Ngoc TTB, Nhung VP, Hoa NTT, Nam NH, Dung HT, Son ND, Ba NV, Bac ND, Tai TN, Dung LTK, Hung NT, Duong NT, Ha NH, Hai NV. Rare and novel variants of PRKN and PINK1 genes in Vietnamese patients with early-onset Parkinson's disease. Mol Genet Genomic Med 2020; 8:e1463. [PMID: 32856414 PMCID: PMC7549612 DOI: 10.1002/mgg3.1463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022] Open
Abstract
Background Early‐onset Parkinson's disease (EOPD) refers to that of patients who have been diagnosed or had onset of motor symptoms before age 50, accounting for 4% of Parkinson's disease patients. The PRKN and PINK1 genes, both involved in a metabolic pathway, are associated with EOPD. Methods To identify variants associated with EOPD, coding region of PARKIN and PINK1 genes in 112 patients and 112 healthy individuals were sequenced. Multiplex ligation‐dependent probe amplification kit was used to determine EOPD patients that carried mutations in PRKN and PINK1 genes. Results and Conclusion Three rare and three novel mutations in total of 14 variants of PARKIN and PINK1 were detected in the EOPD cohorts. Mutations of PRKN and PINK1 genes were found in five (4.4%) patients, which were four patients with compound heterozygous variants in the PRKN and one case with a homozygous mutation of the PINK1 gene. The novel mutations might reduce the stability of the PRKN and PINK1 protein molecules. The frequency of homozygous mutant genotype p.A340T of the PINK1 in the EOPD cohort was higher than in control (p = 0.0001, OR = 5.704), suggesting this variant might be a risk factor for EOPD. To the best of our knowledge, this is the first study of PRKN and PINK1 genes conducted on Vietnamese EOPD patients. These results might contribute to the genetic screening of EOPD in Vietnam.
Collapse
Affiliation(s)
- Nguyen Dang Ton
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Duc Thuan
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Ma Thi Huyen Thuong
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Tran Thi Bich Ngoc
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Vu Phuong Nhung
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Thi Thanh Hoa
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Hoai Nam
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Hoang Thi Dung
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nhu Dinh Son
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | | | | | - Tran Ngoc Tai
- University Medical Center HCMC, University of Medicine and Pharmacy at HCMC, Ho Chi Minh City, Vietnam
| | | | | | - Nguyen Thuy Duong
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Hai Ha
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nong Van Hai
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
18
|
Chen H, Jin YH, Xue YY, Chen YL, Chen YJ, Tao QQ, Wu ZY. Novel ATP13A2 and PINK1 variants identified in Chinese patients with Parkinson’s disease by whole-exome sequencing. Neurosci Lett 2020; 733:135075. [DOI: 10.1016/j.neulet.2020.135075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022]
|
19
|
Li N, Wang L, Zhang J, Tan EK, Li J, Peng J, Duan L, Chen C, Zhou D, He L, Peng R. Whole-exome sequencing in early-onset Parkinson's disease among ethnic Chinese. Neurobiol Aging 2020; 90:150.e5-150.e11. [DOI: 10.1016/j.neurobiolaging.2019.12.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/19/2019] [Accepted: 12/27/2019] [Indexed: 12/18/2022]
|
20
|
Gorcenco S, Ilinca A, Almasoudi W, Kafantari E, Lindgren AG, Puschmann A. New generation genetic testing entering the clinic. Parkinsonism Relat Disord 2020; 73:72-84. [DOI: 10.1016/j.parkreldis.2020.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/18/2022]
|
21
|
Ahn YH, Lee C, Kim NKD, Park E, Kang HG, Ha IS, Park WY, Cheong HI. Targeted Exome Sequencing Provided Comprehensive Genetic Diagnosis of Congenital Anomalies of the Kidney and Urinary Tract. J Clin Med 2020; 9:jcm9030751. [PMID: 32164334 PMCID: PMC7141392 DOI: 10.3390/jcm9030751] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 03/08/2020] [Indexed: 12/13/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney disease in children. The search for genetic causes of CAKUT has led to genetic diagnosis in approximately 5-20 % of CAKUT patients from Western countries. In this study, genetic causes of CAKUT in Korean children were sought using targeted exome sequencing (TES) of 60 genes reported to cause CAKUT in human or murine models. We identified genetic causes in 13.8% of the 94 recruited patients. Pathogenic single nucleotide variants of five known disease-causing genes, HNF1B, PAX2, EYA1, UPK3A, and FRAS1 were found in 7 cases. Pathogenic copy number variations of 6 patients were found in HNF1B, EYA1, and CHD1L. Genetic abnormality types did not significantly differ according to CAKUT phenotypes. Patients with pathogenic variants of targeted genes had syndromic features more frequently than those without (p < 0.001). This is the first genetic analysis study of Korean patients with CAKUT. Only one-seventh of patients were found to have pathogenic mutations in known CAKUT-related genes, indicating that there are more CAKUT-causing genes or environmental factors to discover.
Collapse
Affiliation(s)
- Yo Han Ahn
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.H.A.); (E.P.); (I.-S.H.); (H.I.C.)
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea
| | - Chung Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea; (C.L.); (N.K.D.K.); (W.-Y.P.)
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Korea
| | - Nayoung K. D. Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea; (C.L.); (N.K.D.K.); (W.-Y.P.)
| | - Eujin Park
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.H.A.); (E.P.); (I.-S.H.); (H.I.C.)
- Department of Pediatrics, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Korea
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.H.A.); (E.P.); (I.-S.H.); (H.I.C.)
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea
- Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence:
| | - Il-Soo Ha
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.H.A.); (E.P.); (I.-S.H.); (H.I.C.)
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea
- Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea; (C.L.); (N.K.D.K.); (W.-Y.P.)
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Hae Il Cheong
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.H.A.); (E.P.); (I.-S.H.); (H.I.C.)
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea
- Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
22
|
Rango M, Dossi G, Squarcina L, Bonifati C. Brain mitochondrial impairment in early-onset Parkinson's disease with or without PINK1 mutation. Mov Disord 2020; 35:504-507. [PMID: 31898835 DOI: 10.1002/mds.27946] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND PINK1 mutations are likely to affect mitochondrial function. The objective of this study was to study brain mitochondrial function in patients with early-onset Parkinson's disease, with or without PINK1 mutations. METHODS We investigated brain intracellular pH, mitochondrial activity, and energetics with functional magnetic resonance spectroscopy in patients with early-onset Parkinson's disease with PINK1 mutations (n = 10), early-onset Parkinson's disease without PINK1 mutations (n = 10), and healthy sex- and age-matched subjects (n = 20). We measured peak areas of phosphocreatine and beta adenosine triphosphate. RESULTS The EOPD- group had normal PCr + βATP contents at rest (P = NS) and under activation (P = NS), but reduced contents during recovery (P < 0.001). The EOPD+ group had abnormal PCr + βATP contents at rest (P < 0.001) and during activation (P < 0.001); during recovery, the contents only partially recovered (P < 0.001). Brain intracellular pH alterations were more severe with EOPD+ than with EOPD-. CONCLUSIONS Brain mitochondrial impairments were similar in early-onset Parkinson's disease without PINK1 mutations and late-onset Parkinson's disease. However, mitochondrial impairments were more severe in early-onset Parkinson's disease with PINK1 mutations. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Mario Rango
- Excellence Center for Advanced MR Techniques and Parkinson' s Disease Center, Neurology Unit, Fondazione IRCCS Cà Granda Maggiore Policlinico Hospital, University of Milan, Milan, Italy
| | - Gabriele Dossi
- Excellence Center for Advanced MR Techniques and Parkinson' s Disease Center, Neurology Unit, Fondazione IRCCS Cà Granda Maggiore Policlinico Hospital, University of Milan, Milan, Italy
| | - Letizia Squarcina
- Excellence Center for Advanced MR Techniques and Parkinson' s Disease Center, Neurology Unit, Fondazione IRCCS Cà Granda Maggiore Policlinico Hospital, University of Milan, Milan, Italy
| | - Cristiana Bonifati
- Excellence Center for Advanced MR Techniques and Parkinson' s Disease Center, Neurology Unit, Fondazione IRCCS Cà Granda Maggiore Policlinico Hospital, University of Milan, Milan, Italy
| |
Collapse
|
23
|
Kim M, Won JH, Youn J, Park H. Joint-Connectivity-Based Sparse Canonical Correlation Analysis of Imaging Genetics for Detecting Biomarkers of Parkinson's Disease. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:23-34. [PMID: 31144631 DOI: 10.1109/tmi.2019.2918839] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Imaging genetics is a method used to detect associations between imaging and genetic variables. Some researchers have used sparse canonical correlation analysis (SCCA) for imaging genetics. This study was conducted to improve the efficiency and interpretability of SCCA. We propose a connectivity-based penalty for incorporating biological prior information. Our proposed approach, named joint connectivity-based SCCA (JCB-SCCA), includes the proposed penalty and can handle multi-modal neuroimaging datasets. Different neuroimaging techniques provide distinct information on the brain and have been used to investigate various neurological disorders, including Parkinson's disease (PD). We applied our algorithm to simulated and real imaging genetics datasets for performance evaluation. Our algorithm was able to select important features in a more robust manner compared with other multivariate methods. The algorithm revealed promising features of single-nucleotide polymorphisms and brain regions related to PD by using a real imaging genetic dataset. The proposed imaging genetics model can be used to improve clinical diagnosis in the form of novel potential biomarkers. We hope to apply our algorithm to cohorts such as Alzheimer's patients or healthy subjects to determine the generalizability of our algorithm.
Collapse
|