1
|
Raspeño-García JF, González-Granero S, Herranz-Pérez V, Cózar-Cuesta A, Artacho-Pérula E, Insausti R, García-Verdugo JM, de la Rosa-Prieto C. Anatomy, histology and ultrastructure of the adult human olfactory peduncle: Blood vessel and corpora amylacea assessment. Tissue Cell 2025; 93:102737. [PMID: 39827708 DOI: 10.1016/j.tice.2025.102737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
The mammalian olfactory system is responsible for processing environmental chemical stimuli and comprises several structures, including the olfactory epithelium, olfactory bulb, olfactory peduncle (OP), and olfactory cortices. Despite the critical role played by the OP in the conduction of olfactory information, it has remained understudied. In this work, optical, confocal, and electron microscopy were employed to examine the anatomy, histology, and ultrastructure of six human OP specimens (ages 37-84 years). Three concentric layers were identified in coronal sections: the external layer (EL), the axonal layer (AL), and the internal layer (IL). Immunohistochemistry revealed the distribution of neurons and glial cells throughout the OP. Two neuronal morphologies were observed: granule cells and larger pyramidal cells, the latter associated with projection neurons of the anterior olfactory nucleus. Astrocytes were uniformly distributed with a more radial morphology in the EL. Oligodendrocytes were mainly located in the AL. Blood vessels (BVs) were evenly distributed along the OP, with a mean luminal area of 82.9 µm² and a density of 1.26 %, with a significant increase in the IL. Corpora amylacea (CA) were abundant, with an average size of 49.3 µm² and a density of 3.23 %. CA clustered near BVs, particularly at tissue edges, with both size and density increasing with age. Notably, CA showed strong associations with astrocytes. This study provides the first detailed qualitative and quantitative data on the internal organization of the human OP, which may contribute to a better understanding of the pathophysiology of some neuropathological disorders.
Collapse
Affiliation(s)
- J F Raspeño-García
- Neurogenesis and Neurostereology laboratory, Biomedicine Institute-UCLM, Institute of Health Research of Castilla-La Mancha (IDISCAM), University of Castilla-La Mancha, Albacete, Spain
| | - S González-Granero
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, Valencia, Spain
| | - V Herranz-Pérez
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, Valencia, Spain
| | - A Cózar-Cuesta
- Neurogenesis and Neurostereology laboratory, Biomedicine Institute-UCLM, Institute of Health Research of Castilla-La Mancha (IDISCAM), University of Castilla-La Mancha, Albacete, Spain
| | - E Artacho-Pérula
- Neurogenesis and Neurostereology laboratory, Biomedicine Institute-UCLM, Institute of Health Research of Castilla-La Mancha (IDISCAM), University of Castilla-La Mancha, Albacete, Spain
| | - R Insausti
- Human Neuroanatomy Laboratory, Biomedicine Institute-UCLM, Faculty of Medicine of Albacete, University of Castilla-La Mancha, Albacete, Spain
| | - J M García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, Valencia, Spain.
| | - C de la Rosa-Prieto
- Neurogenesis and Neurostereology laboratory, Biomedicine Institute-UCLM, Institute of Health Research of Castilla-La Mancha (IDISCAM), University of Castilla-La Mancha, Albacete, Spain.
| |
Collapse
|
2
|
Sánchez-Benavides G, Iranzo A, Grau-Rivera O, Giraldo DM, Buongiorno M. Olfactory Dysfunction as a Clinical Marker of Early Glymphatic Failure in Neurodegenerative Diseases. Diagnostics (Basel) 2025; 15:719. [PMID: 40150062 PMCID: PMC11941644 DOI: 10.3390/diagnostics15060719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
An abnormal accumulation of misfolded proteins is a common feature shared by most neurodegenerative disorders. Olfactory dysfunction (OD) is common in the elderly population and is present in 90% of patients with Alzheimer's or Parkinson's disease, usually preceding the cognitive and motor symptoms onset by several years. Early Aβ, tau, and α-synuclein protein aggregates deposit in brain structures involved in odor processing (olfactory bulb and tract, piriform cortex, amygdala, entorhinal cortex, and hippocampus) and seem to underly OD. The glymphatic system is a glial-associated fluid transport system that facilitates the movement of brain fluids and removes brain waste during specific sleep stages. Notably, the glymphatic system became less functional in aging and it is impaired in several conditions, including neurodegenerative diseases. As the nasal pathway has been recently described as the main outflow exit of cerebrospinal fluid and solutes, we hypothesized that OD may indeed be a clinical marker of early glymphatic dysfunction through abnormal accumulation of pathological proteins in olfactory structures. This effect may be more pronounced in peri- and postmenopausal women due to the well-documented impact of estrogen loss on the locus coeruleus, which may disrupt multiple mechanisms involved in glymphatic clearance. If this hypothesis is confirmed, olfactory dysfunction might be considered as a clinical proxy of glymphatic failure in neurodegenerative diseases.
Collapse
Affiliation(s)
- Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (G.S.-B.); (O.G.-R.)
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28029 Madrid, Spain
| | - Alex Iranzo
- Sleep Disorders Center, Neurology Service, Hospital Clínic Universitari de Barcelona, University of Barcelona, 08036 Barcelona, Spain;
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, 28031 Madrid, Spain
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (G.S.-B.); (O.G.-R.)
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28029 Madrid, Spain
| | - Darly Milena Giraldo
- Neurology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
- Neurovascular Diseases Research Group, Vall d’Hebron Research Institute, 08035 Barcelona, Spain
| | - Mariateresa Buongiorno
- Neurology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
- Neurovascular Diseases Research Group, Vall d’Hebron Research Institute, 08035 Barcelona, Spain
| |
Collapse
|
3
|
Ramos-Cazorla P, Carazo-Barrios L, Reyes-Bueno JA, Sagües-Sesé E, de Rojas-Leal C, Barbancho MA, Garzón-Maldonado FJ, de la Cruz-Cosme C, García-Arnés JA, García-Casares N. Olfactory Dysfunction as a Biomarker for Early Diagnosis of Cognitive Impairment in Patients With Type 2 Diabetes: A Systematic Review. J Diabetes Res 2024; 2024:9933957. [PMID: 39735414 PMCID: PMC11681984 DOI: 10.1155/jdr/9933957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 09/17/2024] [Accepted: 10/29/2024] [Indexed: 12/31/2024] Open
Abstract
Background: Olfactory dysfunction and cognitive impairment (CI) have been associated with Type 2 diabetes (T2DM), but the mechanisms underlying this association are broadly unknown. This systematic review tends to investigate the relationship between the onset of olfactory dysfunction and CI in patients with T2DM and to explore the potential role of olfactory dysfunction as an early diagnosis biomarker of CI. Methods: We conducted a systematic review consulting PubMed and Scopus. The articles considered eligible included patients with T2DM and cognitive and olfactory test. Results: The search identified a total of 145 articles, of which 13 were finally selected. The majority of these studies discovered a correlation between olfactory dysfunction and CI in individuals with T2DM. Additionally, other biomarkers such as functional magnetic resonance imaging demonstrated changes in brain regions associated with the sense of smell in T2DM patients. Conclusions: Olfactory dysfunction could be a biomarker for early diagnosis of CI in T2DM. However, these alterations are highly heterogeneous and more studies that include neuroimaging need to be conducted.
Collapse
Affiliation(s)
- Paula Ramos-Cazorla
- Department of Medicine, Faculty of Medicine, University of Málaga, Málaga, Spain
| | | | - Jose A. Reyes-Bueno
- Department of Neurology, Regional University Hospital of Málaga, Málaga, Spain
| | - Elena Sagües-Sesé
- Department of Medicine, Faculty of Medicine, University of Málaga, Málaga, Spain
| | - Carmen de Rojas-Leal
- Department of Neurology, University Hospital Virgen de la Victoria of Málaga, Málaga, Spain
- Biomedical Research Institute of Málaga-Nanomedicine Platform (IBIMA-Plataforma BIONAND), Málaga, Spain
| | - Miguel A. Barbancho
- Biomedical Research Institute of Málaga-Nanomedicine Platform (IBIMA-Plataforma BIONAND), Málaga, Spain
- Clinical Neurology Unit, Centro de Investigaciones Médico-Sanitarias (CIMES), Málaga, Spain
- Department of Physiology, Faculty of Medicine, University of Malaga, Málaga, Spain
| | - Francisco J. Garzón-Maldonado
- Department of Neurology, University Hospital Virgen de la Victoria of Málaga, Málaga, Spain
- Biomedical Research Institute of Málaga-Nanomedicine Platform (IBIMA-Plataforma BIONAND), Málaga, Spain
| | - C. de la Cruz-Cosme
- Department of Medicine, Faculty of Medicine, University of Málaga, Málaga, Spain
- Department of Neurology, University Hospital Virgen de la Victoria of Málaga, Málaga, Spain
- Biomedical Research Institute of Málaga-Nanomedicine Platform (IBIMA-Plataforma BIONAND), Málaga, Spain
| | - Juan A. García-Arnés
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Malaga, Málaga, Spain
| | - Natalia García-Casares
- Department of Medicine, Faculty of Medicine, University of Málaga, Málaga, Spain
- Biomedical Research Institute of Málaga-Nanomedicine Platform (IBIMA-Plataforma BIONAND), Málaga, Spain
- Clinical Neurology Unit, Centro de Investigaciones Médico-Sanitarias (CIMES), Málaga, Spain
| |
Collapse
|
4
|
Bathini P, Brai E, Balin BJ, Bimler L, Corry DB, Devanand DP, Doty RL, Ehrlich GD, Eimer WA, Fulop T, Hahn DL, Hammond CJ, Infanti J, Itzhaki R, Lathe R, Little CS, McLeod R, Moein ST, Nelson AR, Perry G, Shemesh OA, Tanzi RE, Webley WC, Schultek NM, Alberi Auber L. Sensory Dysfunction, Microbial Infections, and Host Responses in Alzheimer's Disease. J Infect Dis 2024; 230:S150-S164. [PMID: 39255393 DOI: 10.1093/infdis/jiae328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Sensory functions of organs of the head and neck allow humans to interact with the environment and establish social bonds. With aging, smell, taste, vision, and hearing decline. Evidence suggests that accelerated impairment in sensory abilities can reflect a shift from healthy to pathological aging, including the development of Alzheimer's disease (AD) and other neurological disorders. While the drivers of early sensory alteration in AD are not elucidated, insults such as trauma and infections can affect sensory function. Herein, we review the involvement of the major head and neck sensory systems in AD, with emphasis on microbes exploiting sensory pathways to enter the brain (the "gateway" hypothesis) and the potential feedback loop by which sensory function may be impacted by central nervous system infection. We emphasize detection of sensory changes as first-line surveillance in senior adults to identify and remove potential insults, like microbial infections, that could precipitate brain pathology.
Collapse
Affiliation(s)
- Praveen Bathini
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
| | | | - Brian J Balin
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
| | - Lynn Bimler
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - David B Corry
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Dan L. Duncan Comprehensive Cancer Center, Biology of Inflammation Center, and the Michael E. DeBakey VA Center for Translational Research in Inflammatory Diseases, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology and Immunology, Dan L. Duncan Comprehensive Cancer Center, Biology of Inflammation Center, and the Michael E. DeBakey VA Center for Translational Research in Inflammatory Diseases, Baylor College of Medicine, Houston, Texas, USA
| | - Davangere P Devanand
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Department of Psychiatry and Neurology, Irving Medical Center, Columbia University, New York, USA
| | - Richard L Doty
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Smell and Taste Center, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Garth D Ehrlich
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - William A Eimer
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Charlestown, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Harvard Medical School, Harvard University, Cambridge, Massachusetts, USA
| | - Tamas Fulop
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Department of Medicine, Division of Geriatrics, Faculty of Medicine and Health Sciences, Research Center on Aging, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - David L Hahn
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
| | - Christine J Hammond
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Division of Research, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Joseph Infanti
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Division of Research, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Ruth Itzhaki
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Institute of Population Ageing, University of Oxford, Oxford, United Kingdom
| | - Richard Lathe
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Division of Infection Medicine, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Christopher Scott Little
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Rima McLeod
- Departments of Ophthalmology and Visual Sciences, University of Chicago, Chicago, Illinois, USA
- Department of Pediatrics Infectious Diseases, University of Chicago, Chicago, Illinois, USA
| | - Shima T Moein
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Smell and Taste Center, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA
| | - George Perry
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Or A Shemesh
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rudolph E Tanzi
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Charlestown, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Harvard Medical School, Harvard University, Cambridge, Massachusetts, USA
| | - Wilmore C Webley
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Nikki M Schultek
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
| | - Lavinia Alberi Auber
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- BrainFit4Life, Fribourg, Switzerland
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
- VitalizeDx, Epalinges, Switzerland
- VitalizeDx Eu, Trieste, Italy
| |
Collapse
|
5
|
Bouhaben J, Delgado-Lima AH, Delgado-Losada ML. The role of olfactory dysfunction in mild cognitive impairment and Alzheimer's disease: A meta-analysis. Arch Gerontol Geriatr 2024; 123:105425. [PMID: 38615524 DOI: 10.1016/j.archger.2024.105425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
PURPOSE This comprehensive meta-analysis investigates the association between olfactory deficits in mild cognitive impairment (MCI) and Alzheimer's disease (AD). METHODS A thorough search across databases identified articles analyzing olfactory status in MCI or AD patients. Methodological quality assessment followed PRISMA guidelines. Hedges' g effect size statistic computed standard mean differences and 95% confidence intervals. Moderator analysis was conducted. RESULTS Among the included studies (65 for MCI and 61 for AD), odor identification exhibited larger effect sizes compared to odor threshold and discrimination, in both MCI and AD samples. Moderate effect size is found in OI scores in MCI (k = 65, SE = 0.078, CI 95% = [-1.151, -0.844]). Furthermore, compared to MCI, AD had moderate to large heterogeneous effects in olfactory identification (k = 61, g = -2.062, SE = 0.125, CI 95% = [-2.308, -1.816]). Global cognitive status is positively related to olfactory identification impairment in both MCI (k = 57, Z = 2.74, p = 0.006) and AD (k = 53, Z = 5.03, p < 0.0001) samples. CONCLUSION Olfactory impairments exhibit a notable and substantial presence in MCI. Among these impairments, odor identification experiences the greatest decline in MCI, mirroring the primary sensory deficit observed in AD. Consequently, the incorporation of a straightforward odor identification test is advisable in the evaluation of individuals vulnerable to the onset of AD, offering a practical screening tool for early detection.
Collapse
Affiliation(s)
- Jaime Bouhaben
- Experimental Psychology, Cognitive Processes and Speech Therapy Department, Faculty of Psychology, Complutense University of Madrid, 28223 Pozuelo de Alarcon, Spain
| | - Alice Helena Delgado-Lima
- Experimental Psychology, Cognitive Processes and Speech Therapy Department, Faculty of Psychology, Complutense University of Madrid, 28223 Pozuelo de Alarcon, Spain
| | - María Luisa Delgado-Losada
- Experimental Psychology, Cognitive Processes and Speech Therapy Department, Faculty of Psychology, Complutense University of Madrid, 28223 Pozuelo de Alarcon, Spain.
| |
Collapse
|
6
|
Cartas‐Cejudo P, Cortés A, Lachén‐Montes M, Anaya‐Cubero E, Puerta E, Solas M, Fernández‐Irigoyen J, Santamaría E. Neuropathological stage-dependent proteome mapping of the olfactory tract in Alzheimer's disease: From early olfactory-related omics signatures to computational repurposing of drug candidates. Brain Pathol 2024; 34:e13252. [PMID: 38454090 PMCID: PMC11189775 DOI: 10.1111/bpa.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by an early olfactory dysfunction, progressive memory loss, and behavioral deterioration. Albeit substantial progress has been made in characterizing AD-associated molecular and cellular events, there is an unmet clinical need for new therapies. In this study, olfactory tract proteotyping performed in controls and AD subjects (n = 17/group) showed a Braak stage-dependent proteostatic impairment accompanied by the progressive modulation of amyloid precursor protein and tau functional interactomes. To implement a computational repurposing of drug candidates with the capacity to reverse early AD-related olfactory omics signatures (OMSs), we generated a consensual OMSs database compiling differential omics datasets obtained by mass-spectrometry or RNA-sequencing derived from initial AD across the olfactory axis. Using the Connectivity Map-based drug repurposing approach, PKC, EGFR, Aurora kinase, Glycogen synthase kinase, and CDK inhibitors were the top pharmacologic classes capable to restore multiple OMSs, whereas compounds with targeted activity to inhibit PI3K, Insulin-like growth factor 1 (IGF-1), microtubules, and Polo-like kinase (PLK) represented a family of drugs with detrimental potential to induce olfactory AD-associated gene expression changes. To validate the potential therapeutic effects of the proposed drugs, in vitro assays were performed. These validation experiments revealed that pretreatment of human neuron-like SH-SY5Y cells with the EGFR inhibitor AG-1478 showed a neuroprotective effect against hydrogen peroxide-induced damage while the pretreatment with the Aurora kinase inhibitor Reversine reduced amyloid-beta (Aβ)-induced neurotoxicity. Taken together, our data pointed out that OMSs may be useful as substrates for drug repurposing to propose novel neuroprotective treatments against AD.
Collapse
Affiliation(s)
- Paz Cartas‐Cejudo
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Navarra Institute for Health ResearchPamplonaSpain
| | - Adriana Cortés
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Navarra Institute for Health ResearchPamplonaSpain
| | - Mercedes Lachén‐Montes
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Navarra Institute for Health ResearchPamplonaSpain
| | - Elena Anaya‐Cubero
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Navarra Institute for Health ResearchPamplonaSpain
| | - Elena Puerta
- Department of Pharmacology and ToxicologyUniversity of Navarra, IdiSNAPamplonaSpain
| | - Maite Solas
- Department of Pharmacology and ToxicologyUniversity of Navarra, IdiSNAPamplonaSpain
| | - Joaquín Fernández‐Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Navarra Institute for Health ResearchPamplonaSpain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Navarra Institute for Health ResearchPamplonaSpain
| |
Collapse
|
7
|
Franco R, Garrigós C, Lillo J. The Olfactory Trail of Neurodegenerative Diseases. Cells 2024; 13:615. [PMID: 38607054 PMCID: PMC11012126 DOI: 10.3390/cells13070615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Alterations in olfactory functions are proposed as possible early biomarkers of neurodegenerative diseases. Parkinson's and Alzheimer's diseases manifest olfactory dysfunction as a symptom, which is worth mentioning. The alterations do not occur in all patients, but they can serve to rule out neurodegenerative pathologies that are not associated with small deficits. Several prevalent neurodegenerative conditions, including impaired smell, arise in the early stages of Parkinson's and Alzheimer's diseases, presenting an attractive prospect as a snitch for early diagnosis. This review covers the current knowledge on the link between olfactory deficits and Parkinson's and Alzheimer's diseases. The review also covers the emergence of olfactory receptors as actors in the pathophysiology of these diseases. Olfactory receptors are not exclusively expressed in olfactory sensory neurons. Olfactory receptors are widespread in the human body; they are expressed, among others, in the testicles, lungs, intestines, kidneys, skin, heart, and blood cells. Although information on these ectopically expressed olfactory receptors is limited, they appear to be involved in cell recognition, migration, proliferation, wound healing, apoptosis, and exocytosis. Regarding expression in non-chemosensory regions of the central nervous system (CNS), future research should address the role, in both the glia and neurons, of olfactory receptors. Here, we review the limited but relevant information on the altered expression of olfactory receptor genes in Parkinson's and Alzheimer's diseases. By unraveling how olfactory receptor activation is involved in neurodegeneration and identifying links between olfactory structures and neuronal death, valuable information could be gained for early diagnosis and intervention strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Rafael Franco
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain;
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- School of Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Claudia Garrigós
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain;
| | - Jaume Lillo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain;
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
| |
Collapse
|
8
|
Liu D, Lu J, Wei L, Yao M, Yang H, Lv P, Wang H, Zhu Y, Zhu Z, Zhang X, Chen J, Yang QX, Zhang B. Olfactory deficit: a potential functional marker across the Alzheimer's disease continuum. Front Neurosci 2024; 18:1309482. [PMID: 38435057 PMCID: PMC10907997 DOI: 10.3389/fnins.2024.1309482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent form of dementia that affects an estimated 32 million individuals globally. Identifying early indicators is vital for screening at-risk populations and implementing timely interventions. At present, there is an urgent need for early and sensitive biomarkers to screen individuals at risk of AD. Among all sensory biomarkers, olfaction is currently one of the most promising indicators for AD. Olfactory dysfunction signifies a decline in the ability to detect, identify, or remember odors. Within the spectrum of AD, impairment in olfactory identification precedes detectable cognitive impairments, including mild cognitive impairment (MCI) and even the stage of subjective cognitive decline (SCD), by several years. Olfactory impairment is closely linked to the clinical symptoms and neuropathological biomarkers of AD, accompanied by significant structural and functional abnormalities in the brain. Olfactory behavior examination can subjectively evaluate the abilities of olfactory identification, threshold, and discrimination. Olfactory functional magnetic resonance imaging (fMRI) can provide a relatively objective assessment of olfactory capabilities, with the potential to become a promising tool for exploring the neural mechanisms of olfactory damage in AD. Here, we provide a timely review of recent literature on the characteristics, neuropathology, and examination of olfactory dysfunction in the AD continuum. We focus on the early changes in olfactory indicators detected by behavioral and fMRI assessments and discuss the potential of these techniques in MCI and preclinical AD. Despite the challenges and limitations of existing research, olfactory dysfunction has demonstrated its value in assessing neurodegenerative diseases and may serve as an early indicator of AD in the future.
Collapse
Affiliation(s)
- Dongming Liu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiaming Lu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Liangpeng Wei
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mei Yao
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Huiquan Yang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Pin Lv
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Haoyao Wang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yajing Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhengyang Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiu Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qing X. Yang
- Department of Radiology, Center for NMR Research, Penn State University College of Medicine, Hershey, PA, United States
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
- Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Provincial Medical Key Discipline (Laboratory), Nanjing, China
| |
Collapse
|
9
|
Yu H, Wang F, Jia D, Bi S, Gong J, Wu J, Mao Y, Chen J, Chai G. Pathological features and molecular signatures of early olfactory dysfunction in 3xTg-AD model mice. CNS Neurosci Ther 2024; 30:e14632. [PMID: 38366763 PMCID: PMC10873683 DOI: 10.1111/cns.14632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Olfactory dysfunction is known to be an early manifestation of Alzheimer's disease (AD). However, the underlying mechanism, particularly the specific molecular events that occur during the early stages of olfactory disorders, remains unclear. METHODS In this study, we utilized transcriptomic sequencing, bioinformatics analysis, and biochemical detection to investigate the specific pathological and molecular characteristics of the olfactory bulb (OB) in 4-month-old male triple transgenic 3xTg-AD mice (PS1M146V/APPSwe/TauP301L). RESULTS Initially, during the early stages of olfactory impairment, no significant learning and memory deficits were observed. Correspondingly, we observed significant accumulation of amyloid-beta (Aβ) and Tau pathology specifically in the OB, but not in the hippocampus. In addition, significant axonal morphological defects were detected in the olfactory bulb, cortex, and hippocampal brain regions of 3xTg-AD mice. Transcriptomic analysis revealed a significant increase in the expression of neuroinflammation-related genes, accompanied by a significant decrease in neuronal activity-related genes in the OB. Moreover, immunofluorescence and immunoblotting demonstrated an activation of glial cell biomarkers Iba1 and GFAP, along with a reduction in the expression levels of neuronal activity-related molecules Nr4a2 and FosB, as well as olfaction-related marker OMP. CONCLUSION In sum, the early accumulation of Aβ and Tau pathology induces neuroinflammation, which subsequently leads to a decrease in neuronal activity within the OB, causing axonal transport deficits that contribute to olfactory disorders. Nr4a2 and FosB appear to be promising targets for intervention aimed at improving early olfactory impairment in AD.
Collapse
Affiliation(s)
- Haitao Yu
- Department of Fundamental Medicine, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
- Affiliated Hospital of Jiangnan UniversityWuxiJiangsu ProvinceP. R. China
| | - Fangzhou Wang
- Department of Fundamental Medicine, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
| | - Dongdong Jia
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation HospitalWuxiJiangsuP. R. China
| | - Shuguang Bi
- Department of Fundamental Medicine, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
| | - Juan Gong
- Department of Fundamental Medicine, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
| | - Jia‐Jun Wu
- Department of Fundamental Medicine, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
| | - Yumin Mao
- Department of Fundamental Medicine, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
| | - Jia Chen
- Department of Fundamental Medicine, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
| | - Gao‐Shang Chai
- Department of Fundamental Medicine, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuP. R. China
| |
Collapse
|
10
|
Luo D, Li J, Liu H, Wang J, Xia Y, Qiu W, Wang N, Wang X, Wang X, Ma C, Ge W. Integrative Transcriptomic Analyses of Hippocampal-Entorhinal System Subfields Identify Key Regulators in Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300876. [PMID: 37232225 PMCID: PMC10401097 DOI: 10.1002/advs.202300876] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/15/2023] [Indexed: 05/27/2023]
Abstract
The hippocampal-entorhinal system supports cognitive function and is selectively vulnerable to Alzheimer's disease (AD). Little is known about global transcriptomic changes in the hippocampal-entorhinal subfields during AD. Herein, large-scale transcriptomic analysis is performed in five hippocampal-entorhinal subfields of postmortem brain tissues (262 unique samples). Differentially expressed genes are assessed across subfields and disease states, and integrated genotype data from an AD genome-wide association study. An integrative gene network analysis of bulk and single-nucleus RNA sequencing (snRNA-Seq) data identifies genes with causative roles in AD progression. Using a system-biology approach, pathology-specific expression patterns for cell types are demonstrated, notably upregulation of the A1-reactive astrocyte signature in the entorhinal cortex (EC) during AD. SnRNA-Seq data show that PSAP signaling is involved in alterations of cell- communications in the EC during AD. Further experiments validate the key role of PSAP in inducing astrogliosis and an A1-like reactive astrocyte phenotype. In summary, this study reveals subfield-, cell type-, and AD pathology-specific changes and demonstrates PSAP as a potential therapeutic target in AD.
Collapse
Affiliation(s)
- Dan Luo
- Department of ImmunologyState Key Laboratory of Complex Severe and Rare DiseasesInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
- Department of Human AnatomyHistology and EmbryologyNeuroscience CenterNational Human Brain Bank for Development and FunctionInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Jingying Li
- Department of ImmunologyState Key Laboratory of Complex Severe and Rare DiseasesInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Hanyou Liu
- Department of ImmunologyState Key Laboratory of Complex Severe and Rare DiseasesInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Jiayu Wang
- Department of ImmunologyState Key Laboratory of Complex Severe and Rare DiseasesInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Yu Xia
- Department of Human AnatomyHistology and EmbryologyNeuroscience CenterNational Human Brain Bank for Development and FunctionInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Wenying Qiu
- Department of Human AnatomyHistology and EmbryologyNeuroscience CenterNational Human Brain Bank for Development and FunctionInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Naili Wang
- Department of Human AnatomyHistology and EmbryologyNeuroscience CenterNational Human Brain Bank for Development and FunctionInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Xue Wang
- Department of Human AnatomyHistology and EmbryologyNeuroscience CenterNational Human Brain Bank for Development and FunctionInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Xia Wang
- Department of ImmunologyState Key Laboratory of Complex Severe and Rare DiseasesInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Chao Ma
- Department of Human AnatomyHistology and EmbryologyNeuroscience CenterNational Human Brain Bank for Development and FunctionInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Wei Ge
- Department of ImmunologyState Key Laboratory of Complex Severe and Rare DiseasesInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| |
Collapse
|
11
|
Cartas-Cejudo P, Lachén-Montes M, Ferrer I, Fernández-Irigoyen J, Santamaría E. Sex-divergent effects on the NAD+-dependent deacetylase sirtuin signaling across the olfactory-entorhinal-amygdaloid axis in Alzheimer's and Parkinson's diseases. Biol Sex Differ 2023; 14:5. [PMID: 36755296 PMCID: PMC9906849 DOI: 10.1186/s13293-023-00487-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Smell impairment is one of the earliest features in Alzheimer's (AD) and Parkinson's diseases (PD). Due to sex differences exist in terms of smell and olfactory structures as well as in the prevalence and manifestation of both neurological syndromes, we have applied olfactory proteomics to favor the discovery of novel sex-biased physio-pathological mechanisms and potential therapeutic targets associated with olfactory dysfunction. METHODS SWATH-MS (sequential window acquisition of all theoretical fragment ion spectra mass spectrometry) and bioinformatic workflows were applied in 57 post-mortem olfactory tracts (OT) derived from controls with no known neurological history (n = 6F/11M), AD (n = 4F/13M) and PD (n = 7F/16M) subjects. Complementary molecular analyses by Western-blotting were performed in the olfactory bulb (OB), entorhinal cortex (EC) and amygdala areas. RESULTS 327 and 151 OT differentially expressed proteins (DEPs) were observed in AD women and AD men, respectively (35 DEPs in common). With respect to PD, 198 DEPs were identified in PD women, whereas 95 DEPs were detected in PD men (20 DEPs in common). This proteome dyshomeostasis induced a disruption in OT protein interaction networks and widespread sex-dependent pathway perturbations in a disease-specific manner, among them Sirtuin (SIRT) signaling. SIRT1, SIRT2, SIRT3 and SIRT5 protein levels unveiled a tangled expression profile across the olfactory-entorhinal-amygdaloid axis, evidencing disease-, sex- and brain structure-dependent changes in olfactory protein acetylation. CONCLUSIONS Alteration in the OT proteostasis was more severe in AD than in PD. Moreover, protein expression changes were more abundant in women than men independent of the neurological syndrome. Mechanistically, the tangled SIRT profile observed across the olfactory pathway-associated brain regions in AD and PD indicates differential NAD (+)-dependent deacetylase mechanisms between women and men. All these data shed new light on differential olfactory mechanisms across AD and PD, pointing out that the evaluation of the feasibility of emerging sirtuin-based therapies against neurodegenerative diseases should be considered with caution, including further sex dimension analyses in vivo and in clinical studies.
Collapse
Affiliation(s)
- Paz Cartas-Cejudo
- grid.410476.00000 0001 2174 6440Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), IdiSNA, Navarra Institute for Health Research, Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Mercedes Lachén-Montes
- grid.410476.00000 0001 2174 6440Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), IdiSNA, Navarra Institute for Health Research, Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Isidro Ferrer
- grid.5841.80000 0004 1937 0247Department of Pathology and Experimental Therapeutics, CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Bellvitge University Hospital/Bellvitge Biomedical Research Institute (IDIBELL), Institute of Health Carlos III, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Joaquín Fernández-Irigoyen
- grid.410476.00000 0001 2174 6440Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), IdiSNA, Navarra Institute for Health Research, Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), IdiSNA, Navarra Institute for Health Research, Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008, Pamplona, Spain.
| |
Collapse
|
12
|
Coleman-Belin J, Harris A, Chen B, Zhou J, Ciulla T, Verticchio A, Antman G, Chang M, Siesky B. Aging Effects on Optic Nerve Neurodegeneration. Int J Mol Sci 2023; 24:2573. [PMID: 36768896 PMCID: PMC9917079 DOI: 10.3390/ijms24032573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
Common risk factors for many ocular pathologies involve non-pathologic, age-related damage to the optic nerve. Understanding the mechanisms of age-related changes can facilitate targeted treatments for ocular pathologies that arise at any point in life. In this review, we examine these age-related, neurodegenerative changes in the optic nerve, contextualize these changes from the anatomic to the molecular level, and appreciate their relationship with ocular pathophysiology. From simple structural and mechanical changes at the optic nerve head (ONH), to epigenetic and biochemical alterations of tissue and the environment, multiple age-dependent mechanisms drive extracellular matrix (ECM) remodeling, retinal ganglion cell (RGC) loss, and lowered regenerative ability of respective axons. In conjunction, aging decreases the ability of myelin to preserve maximal conductivity, even with "successfully" regenerated axons. Glial cells, however, regeneratively overcompensate and result in a microenvironment that promotes RGC axonal death. Better elucidating optic nerve neurodegeneration remains of interest, specifically investigating human ECM, RGCs, axons, oligodendrocytes, and astrocytes; clarifying the exact processes of aged ocular connective tissue alterations and their ultrastructural impacts; and developing novel technologies and pharmacotherapies that target known genetic, biochemical, matrisome, and neuroinflammatory markers. Management models should account for age-related changes when addressing glaucoma, diabetic retinopathy, and other blinding diseases.
Collapse
Affiliation(s)
- Janet Coleman-Belin
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alon Harris
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bo Chen
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jing Zhou
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas Ciulla
- Vitreoretinal Medicine and Surgery, Midwest Eye Institute, Indianapolis, IN 46290, USA
| | - Alice Verticchio
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gal Antman
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Ophthalmology, Rabin Medical Center, Petah Tikva 4941492, Israel
| | - Michael Chang
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brent Siesky
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
13
|
Bricker RL, Bhaskar U, Titone R, Carless MA, Barberi T. A Molecular Analysis of Neural Olfactory Placode Differentiation in Human Pluripotent Stem Cells. Stem Cells Dev 2022; 31:507-520. [PMID: 35592997 PMCID: PMC9641992 DOI: 10.1089/scd.2021.0257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 05/19/2022] [Indexed: 11/12/2022] Open
Abstract
During embryonic development, the olfactory sensory neurons (OSNs) and the gonadotropic-releasing hormone neurons (GNRHNs) migrate from the early nasal cavity, known as the olfactory placode, to the brain. Defects in the development of OSNs and GNRHNs result in neurodevelopmental disorders such as anosmia and congenital hypogonadotropic hypogonadism, respectively. Treatments do not restore the defective neurons in these disorders, and as a result, patients have a diminished sense of smell or a gonadotropin hormone deficiency. Human pluripotent stem cells (hPSCs) can produce any cell type in the body; therefore, they are an invaluable tool for cell replacement therapies. Transplantation of olfactory placode progenitors, derived from hPSCs, is a promising therapeutic to replace OSNs and GNRHNs and restore tissue function. Protocols to generate olfactory placode progenitors are limited, and thus, we describe, in this study, a novel in vitro model for olfactory placode differentiation in hPSCs, which is capable of producing both OSNs and GNRHNs. Our study investigates the major developmental signaling factors that recapitulate the embryonic development of the olfactory tissue. We demonstrate that induction of olfactory placode in hPSCs requires bone morphogenetic protein inhibition, wingless/integrated protein inhibition, retinoic acid inhibition, transforming growth factor alpha activation, and fibroblast growth factor 8 activation. We further show that the protocol transitions hPSCs through the anterior pan-placode ectoderm and neural ectoderm regions in early development while preventing neural crest and non-neural ectoderm regions. Finally, we demonstrate production of OSNs and GNRHNs by day 30 of differentiation. Our study is the first to report on OSN differentiation in hPSCs.
Collapse
Affiliation(s)
- Rebecca L. Bricker
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Uchit Bhaskar
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Rossella Titone
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Melanie A. Carless
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Tiziano Barberi
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Lab Farm Foods, Inc., New York City, New York, USA
| |
Collapse
|
14
|
Rajani V, Yuan Q. Noradrenergic Modulation of the Piriform Cortex: A Possible Avenue for Understanding Pre-Clinical Alzheimer’s Disease Pathogenesis. Front Cell Neurosci 2022; 16:908758. [PMID: 35722616 PMCID: PMC9204642 DOI: 10.3389/fncel.2022.908758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Olfactory dysfunction is one of the biomarkers for Alzheimer’s disease (AD) diagnosis and progression. Deficits with odor identification and discrimination are common symptoms of pre-clinical AD, preceding severe memory disorder observed in advanced stages. As a result, understanding mechanisms of olfactory impairment is a major focus in both human studies and animal models of AD. Pretangle tau, a precursor to tau tangles, is first observed in the locus coeruleus (LC). In a recent animal model, LC pretangle tau leads to LC fiber degeneration in the piriform cortex (PC), a cortical area associated with olfactory dysfunction in both human AD and rodent models. Here, we review the role of LC-sourced NE in modulation of PC activity and suggest mechanisms by which pretangle tau-mediated LC dysfunction may impact olfactory processing in preclinical stage of AD. Understanding mechanisms of early olfactory impairment in AD may provide a critical window for detection and intervention of disease progression.
Collapse
|
15
|
Riba M, Del Valle J, Augé E, Vilaplana J, Pelegrí C. From corpora amylacea to wasteosomes: History and perspectives. Ageing Res Rev 2021; 72:101484. [PMID: 34634491 DOI: 10.1016/j.arr.2021.101484] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022]
Abstract
Corpora amylacea (CA) have been described in several human organs and have been associated with ageing and several pathological conditions. Although they were first discovered two centuries ago, their function and significance have not yet been identified. Here, we provide a chronological summary of the findings on CA in various organs and identify their similarities. After collecting and integrating these findings, we propose to consider CA as waste containers created by specific cells, which sequester waste products and foreign products, and assemble them within a glycan structure. The containers are then secreted into the external medium or interstitial spaces, in this latter case subsequently being phagocytosed by macrophages. This proposal explains, among others, why CA are so varied in content, why only some of them contain fibrillary amyloid proteins, why all of them contain glycan structures, why some of them contain neo-epitopes and are phagocytosed, and why they can be intracellular or extracellular structures. Lastly, in order to avoid the ambiguity of the term amyloid (which can indicate starch-like structures but also insoluble fibrillary proteins), we propose renaming CA as "wasteosomes", emphasising the waste products they entrap rather than their misleading amyloid properties.
Collapse
Affiliation(s)
- Marta Riba
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, 08035 Barcelona, Spain; Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Jaume Del Valle
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, 08035 Barcelona, Spain; Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Elisabet Augé
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, 08035 Barcelona, Spain; Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Jordi Vilaplana
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, 08035 Barcelona, Spain; Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain.
| | - Carme Pelegrí
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, 08035 Barcelona, Spain; Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| |
Collapse
|
16
|
Son G, Steinbusch HWM, López-Iglesias C, Moon C, Jahanshahi A. Severe histomorphological alterations in post-mortem olfactory glomeruli in Alzheimer's disease. Brain Pathol 2021; 32:e13033. [PMID: 34704631 PMCID: PMC8877757 DOI: 10.1111/bpa.13033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. Key AD symptoms include memory and cognitive decline; however, comorbid symptoms such as depression and sensory‐perceptual dysfunction are often reported. Among these, a deterioration of olfactory sensation is observed in approximately 90% of AD patients. However, the precise pathophysiological basis underlying olfactory deficits because of AD remains elusive. The olfactory glomeruli in the olfactory bulb (OB) receive sensory information in the olfactory processing pathway. Maintaining the structural and functional integrity of the olfactory glomerulus is critical to olfactory signalling. Herein, we conducted an in‐depth histopathological assessment to reveal detailed structural alterations in the olfactory glomeruli in AD patients. Fresh frozen post‐mortem OB specimens obtained from six AD patients and seven healthy age‐matched individuals were examined. We used combined immunohistochemistry and stereology to assess the gross morphology and histological alterations, such as those in the expression of Aβ protein, microglia, and neurotransmitters in the OB. Electron microscopy was employed to study the ultrastructural features in the glomeruli. Significant accumulation of Aβ, morphologic damage, altered neurotransmitter levels, and microgliosis in the olfactory glomeruli of AD patients suggests that glomerular damage could affect olfactory function. Moreover, greater neurodegeneration was observed in the ventral olfactory glomeruli of AD patients. The synaptic ultrastructure revealed distorted postsynaptic densities and a decline in presynaptic vesicles in AD specimens. These findings show that the primary olfactory pathway is affected by the pathogenesis of AD, and may provide clues to identifying the mechanism involved in olfactory dysfunction in AD.
Collapse
Affiliation(s)
- Gowoon Son
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology, Daegu, Republic of Korea.,Department of Neurosurgery, Maastricht University Medical Center+, Maastricht, The Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Harry W M Steinbusch
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology, Daegu, Republic of Korea.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Carmen López-Iglesias
- Microscopy CORE Lab, Maastricht Multimodal Molecular Imaging Institute, FHML, Maastricht University, Maastricht, The Netherlands
| | - Cheil Moon
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology, Daegu, Republic of Korea.,Convergence Research Advanced Centre for Olfaction, Daegu Gyeungbuk Institute of Science and Technology, Daegu, Republic of Korea.,Korea Brain Research Institute, Daegu, Republic of Korea
| | - Ali Jahanshahi
- Department of Neurosurgery, Maastricht University Medical Center+, Maastricht, The Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
17
|
Cartas-Cejudo P, Lachén-Montes M, Fernández-Irigoyen J, Santamaría E. Tackling the Biological Meaning of the Human Olfactory Bulb Dyshomeostatic Proteome across Neurological Disorders: An Integrative Bioinformatic Approach. Int J Mol Sci 2021; 22:ijms222111340. [PMID: 34768771 PMCID: PMC8583219 DOI: 10.3390/ijms222111340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022] Open
Abstract
Olfactory dysfunction is considered an early prodromal marker of many neurodegenerative diseases. Neuropathological changes and aberrant protein aggregates occur in the olfactory bulb (OB), triggering a tangled cascade of molecular events that is not completely understood across neurological disorders. This study aims to analyze commonalities and differences in the olfactory protein homeostasis across neurological backgrounds with different spectrums of smell dysfunction. For that, an integrative analysis was performed using OB proteomics datasets derived from subjects with Alzheimer's disease (AD), Parkinson's disease (PD), mixed dementia (mixD), dementia with Lewy bodies (DLB), frontotemporal lobar degeneration (FTLD-TDP43), progressive supranuclear palsy (PSP) and amyotrophic lateral sclerosis (ALS) with respect to OB proteome data from neurologically intact controls. A total of 80% of the differential expressed protein products were potentially disease-specific whereas the remaining 20% were commonly altered across two, three or four neurological phenotypes. A multi-level bioinformatic characterization revealed a subset of potential disease-specific transcription factors responsible for the downstream effects detected at the proteome level as well as specific densely connected protein complexes targeted by several neurological phenotypes. Interestingly, common or unique pathways and biofunctions were also identified, providing novel mechanistic clues about each neurological disease at olfactory level. The analysis of olfactory epithelium, olfactory tract and primary olfactory cortical proteotypes in a multi-disease format will functionally complement the OB dyshomeostasis, increasing our knowledge about the neurodegenerative process across the olfactory axis.
Collapse
|
18
|
Hu B, Geng C, Guo F, Liu Y, Zong YC, Hou XY. GABA A receptor agonist muscimol rescues inhibitory microcircuit defects in the olfactory bulb and improves olfactory function in APP/PS1 transgenic mice. Neurobiol Aging 2021; 108:47-57. [PMID: 34507271 DOI: 10.1016/j.neurobiolaging.2021.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/28/2021] [Accepted: 08/02/2021] [Indexed: 02/09/2023]
Abstract
Olfactory damage develops at the early stages of Alzheimer's disease (AD). While amyloid-β (Aβ) oligomers are shown to impair inhibitory circuits in the olfactory bulb (OB), its underlying mechanisms remain unclear. Here, we investigated the olfactory dysfunction due to impaired inhibitory transmission to mitral cells (MCs) of the OB in APP/PS1 mice. Using electrophysiological studies, we found that MCs exhibited increased spontaneous firing rates as early as 3 months, much before development of Aβ deposits in the brain. Furthermore, the frequencies but not amplitudes of MC inhibitory postsynaptic currents decreased markedly, suggesting that presynaptic GABA release is impaired while postsynaptic GABAA receptor responses remain intact. Notably, muscimol, a GABAA receptor agonist, improved odor identification and discrimination behaviors in APP/PS1 mice, reduced MC basal firing activity, and rescued inhibitory circuits along with reducing the Aβ burden in the OB. Our study links the presynaptic deficits of GABAergic transmission to olfactory dysfunction and subsequent AD development and implicates the therapeutic potential of maintaining local inhibitory microcircuits against early AD progression.
Collapse
Affiliation(s)
- Bin Hu
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Chi Geng
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Feng Guo
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Ying Liu
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China; State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yu-Chen Zong
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Yu Hou
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China; State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
19
|
Barrantes FJ. The unfolding palette of COVID-19 multisystemic syndrome and its neurological manifestations. Brain Behav Immun Health 2021; 14:100251. [PMID: 33842898 PMCID: PMC8019247 DOI: 10.1016/j.bbih.2021.100251] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 02/07/2023] Open
Abstract
Although our current knowledge of the pathophysiology of COVID-19 is still fragmentary, the information so far accrued on the tropism and life cycle of its etiological agent SARS-CoV-2, together with the emerging clinical data, suffice to indicate that the severe acute pulmonary syndrome is the main, but not the only manifestation of COVID-19. Necropsy studies are increasingly revealing underlying endothelial vasculopathies in the form of micro-haemorrhages and micro-thrombi. Intertwined with defective antiviral responses, dysregulated coagulation mechanisms, abnormal hyper-inflammatory reactions and responses, COVID-19 is disclosing a wide pathophysiological palette. An additional property in categorising the disease is the combination of tissue (e.g. neuro- and vasculo-tropism) with organ tropism, whereby the virus preferentially attacks certain organs with highly developed capillary beds, such as the lungs, gastrointestinal tract, kidney and brain. These multiple clinical presentations confirm that the acute respiratory syndrome as described initially is increasingly unfolding as a more complex nosological entity, a multiorgan syndrome of systemic breadth. The neurological manifestations of COVID-19, the focus of this review, reflect this manifold nature of the disease.
Collapse
Affiliation(s)
- Francisco J. Barrantes
- Institute of Biomedical Research (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina
| |
Collapse
|
20
|
Son G, Jahanshahi A, Yoo SJ, Boonstra JT, Hopkins DA, Steinbusch HWM, Moon C. Olfactory neuropathology in Alzheimer's disease: a sign of ongoing neurodegeneration. BMB Rep 2021. [PMID: 34162463 PMCID: PMC8249876 DOI: 10.5483/bmbrep.2021.54.6.055] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Gowoon Son
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Department of Neurosurgery, MUMC+, Maastricht 6202 AZ, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, the Netherlands
| | - Ali Jahanshahi
- Department of Neurosurgery, MUMC+, Maastricht 6202 AZ, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, the Netherlands
| | - Seung-Jun Yoo
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu 42988, Korea
| | - Jackson T. Boonstra
- Department of Neurosurgery, MUMC+, Maastricht 6202 AZ, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, the Netherlands
| | - David A. Hopkins
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax B3H 4R2, Canada
| | - Harry W. M. Steinbusch
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, the Netherlands
| | - Cheil Moon
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu 42988, Korea
| |
Collapse
|
21
|
Flurbiprofen sodium microparticles and soft pellets for nose-to-brain delivery: Serum and brain levels in rats after nasal insufflation. Int J Pharm 2021; 605:120827. [PMID: 34171428 DOI: 10.1016/j.ijpharm.2021.120827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/27/2021] [Accepted: 06/20/2021] [Indexed: 11/21/2022]
Abstract
Neuroinflammation in Alzheimer's disease (AD) revamped the role of a preventive therapeutic action of non steroidal anti-inflammatory drugs; flurbiprofen could delay AD onset, provided its access to brain is enhanced and systemic exposure limited. Nasal administration could enable direct drug access to central nervous system (CNS) via nose-to-brain transport. Here, we investigated the insufflation, deposition, dissolution, transmucosal permeation, and in vivo transport to rat brain of flurbiprofen from nasal powders combined in an active device. Flurbiprofen sodium spray-dried microparticles as such, or soft pellets obtained by agglomeration of drug microparticles with excipients, were intranasally administered to rats by the pre-metered insufflator device. Blood and brain were collected to measure flurbiprofen levels. Excipient presence in soft pellets lowered the metered drug dose to insufflate. Nevertheless, efficiency of powder delivery by the device, measured as emitted fraction, was superior with soft pellets than microparticles, due to their coarse size. Both nasal powders resulted into rapid flurbiprofen absorption. Absolute bioavailability was 33% and 58% for microparticles and pellets, respectively. Compared to intravenous flurbiprofen, the microparticles were more efficient than soft pellets at enhancing direct drug transport to CNS. Direct Transport Percentage index evidenced that more than 60% of the intranasal dose reached the brain via direct nose-to-brain transport for both powders. Moreover, remarkable drug concentrations were measured in the olfactory bulb after microparticle delivery. Bulb connection with the entorhinal cortex, from where AD initiates, makes flurbiprofen sodium administration as nasal powder worth of further investigation in an animal model of neuroinflammation.
Collapse
|
22
|
Son G, Jahanshahi A, Yoo SJ, Boonstra JT, Hopkins DA, Steinbusch HWM, Moon C. Olfactory neuropathology in Alzheimer's disease: a sign of ongoing neurodegeneration. BMB Rep 2021; 54:295-304. [PMID: 34162463 PMCID: PMC8249876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 11/08/2023] Open
Abstract
Olfactory neuropathology is a cause of olfactory loss in Alzheimer's disease (AD). Olfactory dysfunction is also associated with memory and cognitive dysfunction and is an incidental finding of AD dementia. Here we review neuropathological research on the olfactory system in AD, considering both structural and functional evidence. Experimental and clinical findings identify olfactory dysfunction as an early indicator of AD. In keeping with this, amyloid-β production and neuroinflammation are related to underlying causes of impaired olfaction. Notably, physiological features of the spatial map in the olfactory system suggest the evidence of ongoing neurodegeneration. Our aim in this review is to examine olfactory pathology findings essential to identifying mechanisms of olfactory dysfunction in the development of AD in hopes of supporting investigations leading towards revealing potential diagnostic methods and causes of early pathogenesis in the olfactory system. [BMB Reports 2021; 54(6): 295-304].
Collapse
Affiliation(s)
- Gowoon Son
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Department of Neurosurgery, MUMC+, Maastricht 6202 AZ, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, the Netherlands
| | - Ali Jahanshahi
- Department of Neurosurgery, MUMC+, Maastricht 6202 AZ, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, the Netherlands
| | - Seung-Jun Yoo
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu 42988, Korea
| | - Jackson T. Boonstra
- Department of Neurosurgery, MUMC+, Maastricht 6202 AZ, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, the Netherlands
| | - David A. Hopkins
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax B3H 4R2, Canada
| | - Harry W. M. Steinbusch
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, the Netherlands
| | - Cheil Moon
- Department of Brain & Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu 42988, Korea
| |
Collapse
|
23
|
Chen M, Chen Y, Huo Q, Wang L, Tan S, Misrani A, Jiang J, Chen J, Chen S, Zhang J, Tabassum S, Wang J, Chen X, Long C, Yang L. Enhancing GABAergic signaling ameliorates aberrant gamma oscillations of olfactory bulb in AD mouse models. Mol Neurodegener 2021; 16:14. [PMID: 33663578 PMCID: PMC7934466 DOI: 10.1186/s13024-021-00434-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Background Before the deposition of amyloid-beta plaques and the onset of learning memory deficits, patients with Alzheimer’s disease (AD) experience olfactory dysfunction, typified by a reduced ability to detect, discriminate, and identify odors. Rodent models of AD, such as the Tg2576 and APP/PS1 mice, also display impaired olfaction, accompanied by aberrant in vivo or in vitro gamma rhythms in the olfactory pathway. However, the mechanistic relationships between the electrophysiological, biochemical and behavioral phenomena remain unclear. Methods To address the above issues in AD models, we conducted in vivo measurement of local field potential (LFP) with a combination of in vitro electro-olfactogram (EOG), whole-cell patch and field recordings to evaluate oscillatory and synaptic function and pharmacological regulation in the olfactory pathway, particularly in the olfactory bulb (OB). Levels of protein involved in excitation and inhibition of the OB were investigated by western blotting and fluorescence staining, while behavioral studies assessed olfaction and memory function. Results LFP measurements demonstrated an increase in gamma oscillations in the OB accompanied by altered olfactory behavior in both APP/PS1 and 3xTg mice at 3–5 months old, i.e. an age before the onset of plaque formation. Fewer olfactory sensory neurons (OSNs) and a reduced EOG contributed to a decrease in the excitatory responses of M/T cells, suggesting a decreased ability of M/T cells to trigger interneuron GABA release indicated by altered paired-pulse ratio (PPR), a presynaptic parameter. Postsynaptically, there was a compensatory increase in levels of GABAAR α1 and β3 subunits and subsequent higher amplitude of inhibitory responses. Strikingly, the GABA uptake inhibitor tiagabine (TGB) ameliorated abnormal gamma oscillations and levels of GABAAR subunits, suggesting a potential therapeutic strategy for early AD symptoms. These findings reveal increased gamma oscillations in the OB as a core indicator prior to onset of AD and uncover mechanisms underlying aberrant gamma activity in the OB. Conclusions This study suggests that the concomitant dysfunction of both olfactory behavior and gamma oscillations have important implications for early AD diagnosis: in particular, awareness of aberrant GABAergic signaling mechanisms might both aid diagnosis and suggest therapeutic strategies for olfactory damage in AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00434-7.
Collapse
Affiliation(s)
- Ming Chen
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.,Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yunan Chen
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Qingwei Huo
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Shuyi Tan
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Afzal Misrani
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jinxiang Jiang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jian Chen
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Shiyuan Chen
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jiawei Zhang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Sidra Tabassum
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jichen Wang
- School of Psychology and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Xi Chen
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Li Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
24
|
Bonaccorso A, Pellitteri R, Ruozi B, Puglia C, Santonocito D, Pignatello R, Musumeci T. Curcumin Loaded Polymeric vs. Lipid Nanoparticles: Antioxidant Effect on Normal and Hypoxic Olfactory Ensheathing Cells. NANOMATERIALS 2021; 11:nano11010159. [PMID: 33435146 PMCID: PMC7827715 DOI: 10.3390/nano11010159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Abstract
Background: Curcumin (Cur) shows anti-inflammatory and antioxidant effects on central nervous system diseases. The aim of this study was to develop Cur-loaded polymeric and lipid nanoparticles for intranasal delivery to enhance its stability and increase antioxidant effect on olfactory ensheathing cells (OECs). Methods: The nanosuspensions were subjected to physico-chemical and technological evaluation through photon correlation spectroscopy (PCS), differential scanning calorimetry (DSC) and UV-spectrophotometry. The cytotoxicity studies of nanosuspensions were carried out on OECs. A viability test was performed after 24 h of exposure of OECs to unloaded and curcumin-loaded nanosuspensions. The potential protective effect of Cur was assessed on hypoxic OECs cells. Uptake studies were performed on the same cell cultures. Thermal analysis was performed to evaluate potential interaction of Cur with a 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) biomembrane model. Results: PCS analysis indicated that lipid and polymeric nanosuspensions showed a mean size of 127.10 and 338.20 nm, respectively, high homogeneity and negative zeta potential. Incorporation of Cur into both nanocarriers increased drug stability up to 135 days in cryoprotected freeze-dried nanosuspensions. Cell viability was improved when hypoxic OECs were treated with Cur-loaded polymeric and lipid nanosuspensions compared with the control. Conclusions: Both nanocarriers could improve the stability of Cur as demonstrated by technological studies. Biological studies revealed that both nanocarriers could be used to deliver Cur by intranasal administration for brain targeting.
Collapse
Affiliation(s)
- Angela Bonaccorso
- Department of Drug Sciences, University of Catania, V.le Andrea Doria, 6, 95125 Catania, Italy; (A.B.); (C.P.); (D.S.); (R.P.)
| | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation, National Research Council, Via Paolo Gaifami 18, 95126 Catania, Italy
- Correspondence: (R.P.); (T.M.); Tel.: +39-095-7338131 (R.P.); +39-095-7384021 (T.M.)
| | - Barbara Ruozi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Carmelo Puglia
- Department of Drug Sciences, University of Catania, V.le Andrea Doria, 6, 95125 Catania, Italy; (A.B.); (C.P.); (D.S.); (R.P.)
| | - Debora Santonocito
- Department of Drug Sciences, University of Catania, V.le Andrea Doria, 6, 95125 Catania, Italy; (A.B.); (C.P.); (D.S.); (R.P.)
| | - Rosario Pignatello
- Department of Drug Sciences, University of Catania, V.le Andrea Doria, 6, 95125 Catania, Italy; (A.B.); (C.P.); (D.S.); (R.P.)
| | - Teresa Musumeci
- Department of Drug Sciences, University of Catania, V.le Andrea Doria, 6, 95125 Catania, Italy; (A.B.); (C.P.); (D.S.); (R.P.)
- Correspondence: (R.P.); (T.M.); Tel.: +39-095-7338131 (R.P.); +39-095-7384021 (T.M.)
| |
Collapse
|
25
|
Lachén-Montes M, Mendizuri N, Ausín K, Pérez-Mediavilla A, Azkargorta M, Iloro I, Elortza F, Kondo H, Ohigashi I, Ferrer I, de la Torre R, Robledo P, Fernández-Irigoyen J, Santamaría E. Smelling the Dark Proteome: Functional Characterization of PITH Domain-Containing Protein 1 (C1orf128) in Olfactory Metabolism. J Proteome Res 2020; 19:4826-4843. [PMID: 33185454 DOI: 10.1021/acs.jproteome.0c00452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Human Proteome Project (HPP) consortium aims to functionally characterize the dark proteome. On the basis of the relevance of olfaction in early neurodegeneration, we have analyzed the dark proteome using data mining in public resources and omics data sets derived from the human olfactory system. Multiple dark proteins localize at synaptic terminals and may be involved in amyloidopathies such as Alzheimer's disease (AD). We have characterized the dark PITH domain-containing protein 1 (PITHD1) in olfactory metabolism using bioinformatics, proteomics, in vitro and in vivo studies, and neuropathology. PITHD1-/- mice exhibit olfactory bulb (OB) proteome changes related to synaptic transmission, cognition, and memory. OB PITHD1 expression increases with age in wild-type (WT) mice and decreases in Tg2576 AD mice at late stages. The analysis across 6 neurological disorders reveals that olfactory tract (OT) PITHD1 is specifically upregulated in human AD. Stimulation of olfactory neuroepithelial (ON) cells with PITHD1 alters the ON phosphoproteome, modifies the proliferation rate, and induces a pro-inflammatory phenotype. This workflow applied by the Spanish C-HPP and Human Brain Proteome Project (HBPP) teams across the ON-OB-OT axis can be adapted as a guidance to decipher functional features of dark proteins. Data are available via ProteomeXchange with identifiers PXD018784 and PXD021634.
Collapse
Affiliation(s)
- Mercedes Lachén-Montes
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain.,Proteored-ISCIII, Proteomics Platform, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Irunlarrea 3, 31008 Pamplona, Spain
| | - Naroa Mendizuri
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain.,Proteored-ISCIII, Proteomics Platform, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Irunlarrea 3, 31008 Pamplona, Spain
| | - Karina Ausín
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain.,Proteored-ISCIII, Proteomics Platform, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Irunlarrea 3, 31008 Pamplona, Spain
| | - Alberto Pérez-Mediavilla
- IdiSNA, Navarra Institute for Health Research, Irunlarrea 3, 31008 Pamplona, Spain.,Neurobiology of Alzheimer's Disease, Department of Biochemistry, Center for Applied Medical Research (CIMA), Neurosciences Division, University of Navarra, 31008 Pamplona, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Ibon Iloro
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Hiroyuki Kondo
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Isidre Ferrer
- Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, 28029 Madrid, Spain.,Department of Pathology and Experimental Therapeutics, University of Barcelona, 08908 Hospitalet de Llobregat, Spain.,Institute of Neurosciences, University of Barcelona, 08007 Barcelona, Spain
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain.,Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), 08002 Barcelona, Spain.,School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición (CB06/03), CIBEROBN, 28029 Madrid, Spain
| | - Patricia Robledo
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain.,Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), 08002 Barcelona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain.,Proteored-ISCIII, Proteomics Platform, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Irunlarrea 3, 31008 Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain.,Proteored-ISCIII, Proteomics Platform, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Irunlarrea 3, 31008 Pamplona, Spain
| |
Collapse
|
26
|
Proteomic Characterization of the Olfactory Molecular Imbalance in Dementia with Lewy Bodies. Int J Mol Sci 2020; 21:ijms21176371. [PMID: 32887355 PMCID: PMC7503830 DOI: 10.3390/ijms21176371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Olfactory dysfunction is one of the prodromal symptoms in dementia with Lewy bodies (DLB). However, the molecular pathogenesis associated with decreased smell function remains largely undeciphered. We generated quantitative proteome maps to detect molecular alterations in olfactory bulbs (OB) derived from DLB subjects compared to neurologically intact controls. A total of 3214 olfactory proteins were quantified, and 99 proteins showed significant alterations in DLB cases. Protein interaction networks disrupted in DLB indicated an imbalance in translation and the synaptic vesicle cycle. These alterations were accompanied by alterations in AKT/MAPK/SEK1/p38 MAPK signaling pathways that showed a distinct expression profile across the OB–olfactory tract (OT) axis. Taken together, our data partially reflect the missing links in the biochemical understanding of olfactory dysfunction in DLB.
Collapse
|
27
|
Tau and Alpha Synuclein Synergistic Effect in Neurodegenerative Diseases: When the Periphery Is the Core. Int J Mol Sci 2020; 21:ijms21145030. [PMID: 32708732 PMCID: PMC7404325 DOI: 10.3390/ijms21145030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/08/2023] Open
Abstract
In neuronal cells, tau is a microtubule-associated protein placed in axons and alpha synuclein is enriched at presynaptic terminals. They display a propensity to form pathologic aggregates, which are considered the underlying cause of Alzheimer's and Parkinson's diseases. Their functional impairment induces loss of axonal transport, synaptic and mitochondrial disarray, leading to a "dying back" pattern of degeneration, which starts at the periphery of cells. In addition, pathologic spreading of alpha-synuclein from the peripheral nervous system to the brain through anatomical connectivity has been demonstrated for Parkinson's disease. Thus, examination of the extent and types of tau and alpha-synuclein in peripheral tissues and their relation to brain neurodegenerative diseases is of relevance since it may provide insights into patterns of protein aggregation and neurodegeneration. Moreover, peripheral nervous tissues are easily accessible in-vivo and can play a relevant role in the early diagnosis of these conditions. Up-to-date investigations of tau species in peripheral tissues are scant and have mainly been restricted to rodents, whereas, more evidence is available on alpha synuclein in peripheral tissues. Here we aim to review the literature on the functional role of tau and alpha synuclein in physiological conditions and disease at the axonal level, their distribution in peripheral tissues, and discuss possible commonalities/diversities as well as their interaction in proteinopathies.
Collapse
|
28
|
Balin BJ, Hudson AP. Perspectives on the Intracellular Bacterium Chlamydia pneumoniae in Late-Onset Dementia. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020. [DOI: 10.1007/s40588-020-00146-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Abstract
Purpose of Review
Chronic diseases remain a daunting challenge for clinicians and researchers alike. While difficult to completely understand, most chronic diseases, including late-onset dementias, are thought to arise as an interplay between host genetic factors and environmental insults. One of the most diverse and ubiquitous environmental insults centers on infectious agents. Associations of infectious agents with late-onset dementia have taken on heightened importance, including our investigations of infection by the intracellular respiratory bacterium, Chlamydia pneumoniae (Cpn), in late-onset dementia of the Alzheimer’s type.
Recent Findings
Over the last two decades, the relationship of this infection to pathogenesis in late-onset dementia has become much clearer. This clarity has resulted from applying contemporary molecular genetic, biochemical, immunochemical, and cell culture techniques to analysis of human brains, animal models, and relevant in vitro cell culture systems. Data from these studies, taken in aggregate form, now can be applied to evaluation of proof of concept for causation of this infection with late-onset disease. In this evaluation, modifications to the original Koch postulates can be useful for elucidating causation.
Summary
All such relevant studies are outlined and summarized in this review, and they demonstrate the utility of applying modified Koch postulates to the etiology of late-onset dementia of the Alzheimer’s type. Regardless, it is clear that even with strong observational evidence, in combination with application of modifications of Koch’s postulates, we will not be able to conclusively state that Cpn infection is causative for disease pathogenesis in late-onset dementia. Moreover, this conclusion obtains as well for the putative causation of this condition by other pathogens, including herpes simplex virus type 1, Borrelia burgdorferi, and Porphyromonas gingivalis.
Collapse
|
29
|
Hou TY, Zhou Y, Zhu LS, Wang X, Pang P, Wang DQ, Liuyang ZY, Man H, Lu Y, Zhu LQ, Liu D. Correcting abnormalities in miR-124/PTPN1 signaling rescues tau pathology in Alzheimer's disease. J Neurochem 2020; 154:441-457. [PMID: 31951013 DOI: 10.1111/jnc.14961] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
MicroRNAs have been implicated in diverse physiological and pathological processes. We previously reported that aberrant microRNA-124 (miR-124)/non-receptor-type protein phosphatase 1 (PTPN1) signaling plays an important role in the synaptic disorders associated with Alzheimer's disease (AD). In this study, we further investigated the potential role of miR-124/PTPN1 in the tau pathology of AD. We first treated the mice with intra-hippocampal stereotactic injections. Then, we used quantitative real-time reverse transcription PCR (qRT-PCR) to detect the expression of microRNAs. Western blotting was used to measure the level of PTPN1, the level of tau protein, the phosphorylation of tau at AD-related sites, and alterations in the activity of glycogen synthase kinase 3β (GSK-3β) and protein phosphatase 2 (PP2A). Immunohistochemistry was also used to detect changes in tau phosphorylation levels at AD-related sites and somadendritic aggregation. Soluble and insoluble tau protein was separated by 70% formic acid (FA) extraction to examine tau solubility. Finally, behavioral experiments (including the Morris water maze, fear conditioning, and elevated plus maze) were performed to examine learning and memory ability and emotion-related behavior. We found that artificially replicating the abnormalities in miR-124/PTPN1 signaling induced AD-like tau pathology in the hippocampus of wild-type mice, including hyperphosphorylation at multiple sites, insolubility and somadendritic aggregation, as well as learning/memory deficits. We also found that disruption of miR-124/PTPN1 signaling was caused by the loss of RE1-silencing transcription factor protein, which can be initiated by Aβ insults or oxidative stress, as observed in the brains of P301S mice. Correcting the deregulation of miR-124/PTPN1 signaling rescued the tau pathology and learning/memory impairments in the P301S mice. We also found that miR-124/PTPN1 abnormalities induced activation of glycogen synthase kinase 3 (GSK-3) and inactivation of protein phosphatase 2A (PP2A) by promoting tyrosine phosphorylation, implicating an imbalance in tau kinase/phosphatase. Thus, targeting the miR-124/PTPN1 signaling pathway is a promising therapeutic strategy for AD.
Collapse
Affiliation(s)
- Tong-Yao Hou
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yang Zhou
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ling-Shuang Zhu
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiong Wang
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Pei Pang
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ding-Qi Wang
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zhen-Yu Liuyang
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Hengye Man
- Department of Biology, Boston University, Boston, MA, USA
| | - Youming Lu
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Dan Liu
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China.,Department of Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
30
|
Bathini P, Brai E, Auber LA. Olfactory dysfunction in the pathophysiological continuum of dementia. Ageing Res Rev 2019; 55:100956. [PMID: 31479764 DOI: 10.1016/j.arr.2019.100956] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/29/2019] [Accepted: 08/26/2019] [Indexed: 12/21/2022]
Abstract
Sensory capacities like smell, taste, hearing, vision decline with aging, but increasing evidence show that sensory dysfunctions are one of the early signs diagnosing the conversion from physiological to pathological brain state. Smell loss represents the best characterized sense in clinical practice and is considered as one of the first preclinical signs of Alzheimer's and Parkinson's disease, occurring a decade or more before the onset of cognitive and motor symptoms. Despite the numerous scientific reports and the adoption in clinical practice, the etiology of sensory damage as prodromal of dementia remains largely unexplored and more studies are needed to resolve the mechanisms underlying sensory network dysfunction. Although both cognitive and sensory domains are progressively affected, loss of sensory experience in early stages plays a major role in reducing the autonomy of demented people in their daily tasks or even possibly contributing to their cognitive decline. Interestingly, the chemosensory circuitry is devoid of a blood brain barrier, representing a vulnerable port of entry for neurotoxic species that can spread to the brain. Furthermore, the exposure of the olfactory system to the external environment make it more susceptible to mechanical injury and trauma, which can cause degenerative neuroinflammation. In this review, we will summarize several findings about chemosensory impairment signing the conversion from healthy to pathological brain aging and we will try to connect those observations to the promising research linking environmental influences to sporadic dementia. The scientific body of knowledge will support the use of chemosensory diagnostics in the presymptomatic stages of AD and other biomarkers with the scope of finding treatment strategies before the onset of the disease.
Collapse
Affiliation(s)
- Praveen Bathini
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Emanuele Brai
- VIB-KU Leuven Center for Brain & Disease Research, Laboratory for the Research of Neurodegenerative Diseases, Leuven, Belgium
| | - Lavinia Alberi Auber
- Department of Medicine, University of Fribourg, Fribourg, Switzerland; Swiss Integrative Center of Human Health, Fribourg, Switzerland.
| |
Collapse
|