1
|
Castillo X, Ortiz G, Arnold E, Wu Z, Tovar Y Romo LB, Clapp C, Martínez de la Escalera G. The influence of the prolactin/vasoinhibin axis on post-stroke lesion volume, astrogliosis, and survival. J Neuroendocrinol 2024; 36:e13415. [PMID: 38808481 DOI: 10.1111/jne.13415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/16/2024] [Accepted: 05/04/2024] [Indexed: 05/30/2024]
Abstract
Ischemic stroke is a significant global health issue, ranking fifth among all causes of death and a leading cause of serious long-term disability. Ischemic stroke leads to severe outcomes, including permanent brain damage and neuronal dysfunction. Therefore, decreasing and preventing neuronal injuries caused by stroke has been the focus of therapeutic research. In recent years, many studies have shown that fluctuations in hormonal levels influence the prognosis of ischemic stroke. Thus, it is relevant to understand the role of hormones in the pathophysiological mechanisms of ischemic stroke for preventing and treating this health issue. Here, we investigate the contribution of the prolactin/vasoinhibin axis, an endocrine system regulating blood vessel growth, immune processes, and neuronal survival, to the pathophysiology of ischemic stroke. Male mice with brain overexpression of prolactin or vasoinhibin by adeno-associated virus (AAV) intracerebroventricular injection or lacking the prolactin receptor (Prlr-/-) were exposed to transient middle cerebral artery occlusion (tMCAO) for 45 min followed by 48 h of reperfusion. Overexpression of vasoinhibin or the absence of the prolactin receptor led to an increased lesion volume and decreased survival rates in mice following tMCAO, whereas overexpression of prolactin had no effect. In addition, astrocytic distribution in the penumbra was altered, glial fibrillary acidic protein and S100b mRNA expressions were reduced, and interleukin-6 mRNA expression increased in the ischemic hemisphere of mice overexpressing vasoinhibin. Of note, prolactin receptor-null mice (Prlr-/-) showed a marked increase in serum vasoinhibin levels. Furthermore, vasoinhibin decreased astrocyte numbers in mixed hippocampal neuron-glia cultures. These observations suggest that increased vasoinhibin levels may hinder astrocytes' protective reactivity. Overall, this study suggests the involvement of the prolactin/vasoinhibin axis in the pathophysiology of ischemic stroke-induced brain injury and provides insights into the impact of its dysregulation on astrocyte reactivity and lesion size. Understanding these mechanisms could help develop therapeutic interventions in ischemic stroke and other related neurological disorders.
Collapse
Affiliation(s)
- Ximena Castillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Georgina Ortiz
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Edith Arnold
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
- CONAHCYT-Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Zhijian Wu
- Ocular Gene Therapy Laboratory, Neurobiology, National Eye Institute (NIH), Bethesda, Maryland, USA
| | - Luis B Tovar Y Romo
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | | |
Collapse
|
2
|
Ulloa M, Macías F, Clapp C, Martínez de la Escalera G, Arnold E. Prolactin is an Endogenous Antioxidant Factor in Astrocytes That Limits Oxidative Stress-Induced Astrocytic Cell Death via the STAT3/NRF2 Signaling Pathway. Neurochem Res 2024; 49:1879-1901. [PMID: 38755517 PMCID: PMC11144156 DOI: 10.1007/s11064-024-04147-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
Oxidative stress-induced death of neurons and astrocytes contributes to the pathogenesis of numerous neurodegenerative diseases. While significant progress has been made in identifying neuroprotective molecules against neuronal oxidative damage, little is known about their counterparts for astrocytes. Prolactin (PRL), a hormone known to stimulate astroglial proliferation, viability, and cytokine expression, exhibits antioxidant effects in neurons. However, its role in protecting astrocytes from oxidative stress remains unexplored. Here, we investigated the effect of PRL against hydrogen peroxide (H2O2)-induced oxidative insult in primary cortical astrocyte cultures. Incubation of astrocytes with PRL led to increased enzymatic activity of superoxide dismutase (SOD) and glutathione peroxidase (GPX), resulting in higher total antioxidant capacity. Concomitantly, PRL prevented H2O2-induced cell death, reactive oxygen species accumulation, and protein and lipid oxidation. The protective effect of PRL upon H2O2-induced cell death can be explained by the activation of both signal transducer and activator of transcription 3 (STAT3) and NFE2 like bZIP transcription factor 2 (NRF2) transduction cascades. We demonstrated that PRL induced nuclear translocation and transcriptional upregulation of Nrf2, concurrently with the transcriptional upregulation of the NRF2-dependent genes heme oxygenase 1, Sod1, Sod2, and Gpx1. Pharmacological blockade of STAT3 suppressed PRL-induced transcriptional upregulation of Nrf2, Sod1 and Gpx1 mRNA, and SOD and GPX activities. Furthermore, genetic ablation of the PRL receptor increased astroglial susceptibility to H2O2-induced cell death and superoxide accumulation, while diminishing their intrinsic antioxidant capacity. Overall, these findings unveil PRL as a potent antioxidant hormone that protects astrocytes from oxidative insult, which may contribute to brain neuroprotection.
Collapse
Affiliation(s)
- Miriam Ulloa
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, 76230, Querétaro, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico City, México
| | - Fernando Macías
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, 76230, Querétaro, México
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, 76230, Querétaro, México
| | | | - Edith Arnold
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, 76230, Querétaro, México.
- CONAHCYT-Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, México.
| |
Collapse
|
3
|
Costa-Brito AR, Gonçalves I, Santos CRA. The brain as a source and a target of prolactin in mammals. Neural Regen Res 2022; 17:1695-1702. [PMID: 35017416 PMCID: PMC8820687 DOI: 10.4103/1673-5374.332124] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Prolactin is a polypeptide hormone associated with an extensive variety of biological functions. Among the roles of prolactin in vertebrates, some were preserved throughout evolution. This is the case of its function in the brain, where prolactin receptors, are expressed in different structures of the central nervous system. In the brain, prolactin actions are principally associated with reproduction and parental behavior, and involves the modulation of adult neurogenesis, neuroprotection, and neuroplasticity, especially during pregnancy, thereby preparing the brain to parenthood. Prolactin is mainly produced by specialized cells in the anterior pituitary gland. However, during vertebrate evolution many other extrapituitary tissues do also produce prolactin, like the immune system, endothelial cells, reproductive structures and in several regions of the brain. This review summarizes the relevance of prolactin for brain function, the sources of prolactin in the central nervous system, as well as its local production and secretion. A highlight on the impact of prolactin in human neurological diseases is also provided.
Collapse
Affiliation(s)
- Ana R Costa-Brito
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Centre; C4-UBI -Cloud Computing Competence Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Centre; C4-UBI -Cloud Computing Competence Centre, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
4
|
Triebel J, Bertsch T, Clapp C. Prolactin and vasoinhibin are endogenous players in diabetic retinopathy revisited. Front Endocrinol (Lausanne) 2022; 13:994898. [PMID: 36157442 PMCID: PMC9500238 DOI: 10.3389/fendo.2022.994898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Diabetic retinopathy (DR) and diabetic macular edema (DME) are major causes for visual loss in adults. Nearly half of the world's population with diabetes has some degree of DR, and DME is a major cause of visual impairment in these patients. Severe vision loss occurs because of tractional retinal detachment due to retinal neovascularization, but the most common cause of moderate vision loss occurs in DME where excessive vascular permeability leads to the exudation and accumulation of extracellular fluid and proteins in the macula. Metabolic control stands as an effective mean for controlling retinal vascular alterations in some but not all patients with diabetes, and the search of other modifiable factors affecting the risk for diabetic microvascular complications is warranted. Prolactin (PRL) and its proteolytic fragment, vasoinhibin, have emerged as endogenous regulators of retinal blood vessels. PRL acquires antiangiogenic and anti-vasopermeability properties after undergoing proteolytic cleavage to vasoinhibin, which helps restrict the vascularization of ocular organs and, upon disruption, promotes retinal vascular alterations characteristic of DR and DME. Evidence is linking PRL (and other pituitary hormones) and vasoinhibin to DR and recent preclinical and clinical evidence supports their translation into novel therapeutic approaches.
Collapse
Affiliation(s)
- Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, General Hospital Nuremberg and Paracelsus Medical University, Nuremberg, Germany
- *Correspondence: Jakob Triebel,
| | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, General Hospital Nuremberg and Paracelsus Medical University, Nuremberg, Germany
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| |
Collapse
|
5
|
Paul DA, Strawderman E, Rodriguez A, Hoang R, Schneider CL, Haber S, Chernoff BL, Shafiq I, Williams ZR, Vates GE, Mahon BZ. Empty Sella Syndrome as a Window Into the Neuroprotective Effects of Prolactin. Front Med (Lausanne) 2021; 8:680602. [PMID: 34307410 PMCID: PMC8295462 DOI: 10.3389/fmed.2021.680602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The goal of this study was to relate diffusion MR measures of white matter integrity of the retinofugal visual pathway with prolactin levels in a patient with downward herniation of the optic chiasm secondary to medical treatment of a prolactinoma. Methods: A 36-year-old woman with a prolactinoma presented with progressive bilateral visual field defects 9 years after initial diagnosis and medical treatment. She was diagnosed with empty-sella syndrome and instructed to stop cabergoline. Hormone testing was conducted in tandem with routine clinical evaluations over 1 year and the patient was followed with diffusion magnetic resonance imaging (dMRI), optical coherence tomography (OCT), and automated perimetry at three time points. Five healthy controls underwent a complementary battery of clinical and neuroimaging tests at a single time point. Results: Shortly after discontinuing cabergoline, diffusion metrics in the optic tracts were within the range of values observed in healthy controls. However, following a brief period where the patient resumed cabergoline (of her own volition), there was a decrease in serum prolactin with a corresponding decrease in visual ability and increase in radial diffusivity (p < 0.001). Those measures again returned to their baseline ranges after discontinuing cabergoline a second time. Conclusions: These results demonstrate the sensitivity of dMRI to detect rapid and functionally significant microstructural changes in white matter tracts secondary to alterations in serum prolactin levels. The inverse relations between prolactin and measures of white matter integrity and visual function are consistent with the hypothesis that prolactin can play a neuroprotective role in the injured nervous system.
Collapse
Affiliation(s)
- David A. Paul
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, United States
| | - Emma Strawderman
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, United States
| | - Alejandra Rodriguez
- University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Ricky Hoang
- University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Colleen L. Schneider
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, United States
- University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Sam Haber
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, United States
| | - Benjamin L. Chernoff
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Ismat Shafiq
- Department of Endocrinology and Metabolism, University of Rochester Medical Center, Rochester, NY, United States
| | - Zoë R. Williams
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, United States
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| | - G. Edward Vates
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, United States
| | - Bradford Z. Mahon
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, United States
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Hubens WHG, Krauskopf J, Beckers HJM, Kleinjans JCS, Webers CAB, Gorgels TGMF. Small RNA Sequencing of Aqueous Humor and Plasma in Patients With Primary Open-Angle Glaucoma. Invest Ophthalmol Vis Sci 2021; 62:24. [PMID: 34156425 PMCID: PMC8237107 DOI: 10.1167/iovs.62.7.24] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Purpose Identify differentially expressed microRNAs (miRNAs) in aqueous humor (AH) and blood of primary open-angle glaucoma (POAG) patients by using small RNA sequencing. These may provide insight into POAG pathophysiology or serve as diagnostic biomarker. Methods AH and plasma of nine POAG patients and 10 cataract control patients were small RNA sequenced on Illumina NovaSeq 6000. Identification of gene transcripts targeted by differentially expressed miRNAs was done with miRWalk and MirPath. These targets were used for pathway analysis and Gene Ontology enrichment. Diagnostic potential was evaluated by receiver operating characteristics analysis. Results We identified 715 miRNAs in plasma and 62 miRNAs in AH. Plasma miRNA profile did not differ between POAG and control. In contrast, in AH, seven miRNAs were differentially expressed. Hsa-miR-30a-3p, hsa-miR-143-3p, hsa-miR-211-5p, and hsa-miR-221-3p were upregulated, whereas hsa-miR-92a-3p, hsa-miR-451a, and hsa-miR-486-5p were downregulated in POAG. Compared to previous studies, hsa-mir-143-3p, hsa-miR-211-5p, and hsa-miR-221-3p were reported previously, strengthening their involvement in POAG whereas hsa-miR-30a-3p, hsa-miR-92a-3p, and hsa-miR-486-5p are implicated in POAG for the first time. Identified gene transcripts were involved in several pathways, some implicated in glaucoma before (e.g., TGF-β and neurotrophin signaling), whereas others are new (e.g., prolactin and apelin signaling). In respect to diagnostics, AH concentration of hsa-mir-143-3p had an area under the curve (AUC) of 0.889. Combined with hsa-miR-221-3p, AUC improved to 0.96. Conclusions Small RNA sequencing identified seven differentially expressed miRNAs in AH of POAG patients. The differentially expressed miRNAs may be useful as POAG biomarkers or could become targets for new therapeutic strategies.
Collapse
Affiliation(s)
- Wouter H G Hubens
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Julian Krauskopf
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Henny J M Beckers
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jos C S Kleinjans
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Carroll A B Webers
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Theo G M F Gorgels
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
7
|
Aroña RM, Arnold E, Macías F, López-Casillas F, Clapp C, Martínez de la Escalera G. Vasoinhibin generation and effect on neuronal apoptosis in the hippocampus of late mouse embryos. Am J Physiol Regul Integr Comp Physiol 2020; 318:R760-R771. [PMID: 32048872 DOI: 10.1152/ajpregu.00286.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Morphological and behavioral evidence suggests that vasoinhibin is present in the central nervous system (CNS), triggering neuroendocrine and behavioral responses to stress. Moreover, vasoinhibin reduces neuronal survival and differentiation of primary sensory neurons of the peripheral nervous system. To address the functional role played by vasoinhibin at the CNS, and to better understand the underlying mechanisms involved in its actions, we treated primary cultured hippocampal neurons obtained from embryonic day 16 (E16) mice with a human recombinant vasoinhibin. We examined the resulting cellular changes, focusing on neuronal cell death, and explored the local generation of vasoinhibin within the hippocampus. Our results show that vasoinhibin significantly reduced neuronal cell density and increased immunoreactive activated caspase-3 and TUNEL-positive staining at 72, 16, and 24 h, respectively. Furthermore, vasoinhibin increased the expression of proapoptotic genes BAX, BAD, BIM, and PUMA and decreased that of the antiapoptotic gene BCL-2 at 24 h, as assessed by quantitative real-time reverse transcription-polymerase chain reaction. Vasoinhibin effects were blocked by coincubation with a vasoinhibin antibody or with prolactin. Immunoreactive bands consistent with vasoinhibin were observed in hippocampal extracts by Western blot analysis, and a prolactin standard was cleaved to vasoinhibin by a hippocampal lysate in a heat- and cathepsin D inhibitor pepstatin A-dependent fashion. Taken together, these data support the notion that vasoinhibin is locally produced by cathepsin D within the embryonic mouse hippocampus, a brain region that plays a critical role in emotional regulation, resulting in decreased neuronal cell viability via the activation of the intrinsic apoptosis pathway.
Collapse
Affiliation(s)
- Rodrigo M Aroña
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Edith Arnold
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico.,CONACYT-Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Fernando Macías
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Fernando López-Casillas
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City, Mexico
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| | | |
Collapse
|
8
|
Yang H, Di J, Pan J, Yu R, Teng Y, Cai Z, Deng X. The Association Between Prolactin and Metabolic Parameters in PCOS Women: A Retrospective Analysis. Front Endocrinol (Lausanne) 2020; 11:263. [PMID: 32477263 PMCID: PMC7235367 DOI: 10.3389/fendo.2020.00263] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/09/2020] [Indexed: 01/15/2023] Open
Abstract
Background: The aim of this retrospective study was to analyze the association between prolactin (PRL) and metabolic parameters in infertile patients with polycystic ovary syndrome (PCOS). Methods: A total of 2,052 patients with PCOS and 9,696 patients with tubal infertility (non-PCOS) undergoing in vitro fertilization and embryo transfer (IVF-ET) at the reproductive medicine center of the first affiliated hospital of Wenzhou Medical University from January 2007 to July 2017 were enrolled in this study. Serum PRL, basic endocrine hormones, fasting plasma lipid, fasting plasma glucose (FPG), liver function, thyroid hormone and other parameters were measured and analyzed. Result: PRL levels were significantly lower in PCOS patients than controls over all age groups (p < 0.05). In the PCOS patients, serum PRL was significantly and positively correlated with FPG, serum TSH and serum FT4, and significantly and negatively correlated with LH, LH/FSH, TC, TG, LDL-C, AST, ALT, γ-GGT, FT3, and FT3/FT4 (p < 0.05 or 0.01). After adjusted for age and body mass index (BMI), serum PRL was positively correlated with FPG, TSH, and FT4, and negatively correlated with LH and LH/FSH. Conclusion: Low serum PRL may be an important cause of metabolic risk in infertile patients with PCOS.
Collapse
Affiliation(s)
- Haiyan Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Reproductive Medicine Center of the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Junbo Di
- Qilu Children's Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiexue Pan
- Reproductive Medicine Center of the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Rong Yu
- Reproductive Medicine Center of the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yili Teng
- Reproductive Medicine Center of the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhuhua Cai
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaohui Deng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Xiaohui Deng
| |
Collapse
|