1
|
Shang NY, Huang LJ, Lan JQ, Kang YY, Tang JS, Wang HY, Li XN, Sun Z, Chen QY, Liu MY, Wen ZP, Feng XH, Wu L, Peng Y. PHPB ameliorates memory deficits and reduces oxidative injury in Alzheimer's disease mouse model by activating Nrf2 signaling pathway. Acta Pharmacol Sin 2024; 45:1142-1159. [PMID: 38409216 PMCID: PMC11130211 DOI: 10.1038/s41401-024-01240-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, is the most common cause of dementia in elderly people and substantially affects patient quality of life. Oxidative stress is considered a key factor in the development of AD. Nrf2 plays a vital role in maintaining redox homeostasis and regulating neuroinflammatory responses in AD. Previous studies show that potassium 2-(1-hydroxypentyl)-benzoate (PHPB) exerts neuroprotective effects against cognitive impairment in a variety of dementia animal models such as APP/PS1 transgenic mice. In this study we investigated whether PHPB ameriorated the progression of AD by reducing oxidative stress (OS) damage. Both 5- and 13-month-old APP/PS1 mice were administered PHPB (100 mg·kg-1·d-1, i.g.) for 10 weeks. After the cognition assessment, the mice were euthanized, and the left hemisphere of the brain was harvested for analyses. We showed that 5-month-old APP/PS1 mice already exhibited impaired performance in the step-down test, and knockdown of Nrf2 gene only slightly increased the impairment, while knockdown of Nrf2 gene in 13-month-old APP/PS1 mice resulted in greatly worse performance. PHPB administration significantly ameliorated the cognition impairments and enhanced antioxidative capacity in APP/PS1 mice. In addition, PHPB administration significantly increased the p-AKT/AKT and p-GSK3β/GSK3β ratios and the expression levels of Nrf2, HO-1 and NQO-1 in APP/PS1 mice, but these changes were abolished by knockdown of Nrf2 gene. In SK-N-SH APPwt cells and primary mouse neurons, PHPB (10 μM) significantly increased the p-AKT/AKT and p-GSK3β/GSK3β ratios and the level of Nrf2, which were blocked by knockdown of Nrf2 gene. In summary, this study demonstrates that PHPB exerts a protective effect via the Akt/GSK3β/Nrf2 pathway and it might be a promising neuroprotective agent for the treatment of AD.
Collapse
Affiliation(s)
- Nian-Ying Shang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Long-Jian Huang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jia-Qi Lan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yu-Ying Kang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jing-Shu Tang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Hong-Yue Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xin-Nan Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zhuo Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qiu-Yu Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Meng-Yao Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zi-Peng Wen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xin-Hong Feng
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Lei Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
2
|
Ates I, Yılmaz AD, Buttari B, Arese M, Saso L, Suzen S. A Review of the Potential of Nuclear Factor [Erythroid-Derived 2]-like 2 Activation in Autoimmune Diseases. Brain Sci 2023; 13:1532. [PMID: 38002492 PMCID: PMC10669303 DOI: 10.3390/brainsci13111532] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 11/26/2023] Open
Abstract
An autoimmune disease is the consequence of the immune system attacking healthy cells, tissues, and organs by mistake instead of protecting them. Inflammation and oxidative stress (OS) are well-recognized processes occurring in association with acute or chronic impairment of cell homeostasis. The transcription factor Nrf2 (nuclear factor [erythroid-derived 2]-like 2) is of major importance as the defense instrument against OS and alters anti-inflammatory activities related to different pathological states. Researchers have described Nrf2 as a significant regulator of innate immunity. Growing indications suggest that the Nrf2 signaling pathway is deregulated in numerous diseases, including autoimmune disorders. The advantageous outcome of the pharmacological activation of Nrf2 is an essential part of Nrf2-based chemoprevention and intervention in other chronic illnesses, such as neurodegeneration, cardiovascular disease, autoimmune diseases, and chronic kidney and liver disease. Nevertheless, a growing number of investigations have indicated that Nrf2 is already elevated in specific cancer and disease steps, suggesting that the pharmacological agents developed to mitigate the potentially destructive or transformative results associated with the protracted activation of Nrf2 should also be evaluated. The activators of Nrf2 have revealed an improvement in the progress of OS-associated diseases, resulting in immunoregulatory and anti-inflammatory activities; by contrast, the depletion of Nrf2 worsens disease progression. These data strengthen the growing attention to the biological properties of Nrf2 and its possible healing power on diseases. The evidence supporting a correlation between Nrf2 signaling and the most common autoimmune diseases is reviewed here. We focus on the aspects related to the possible effect of Nrf2 activation in ameliorating pathologic conditions based on the role of this regulator of antioxidant genes in the control of inflammation and OS, which are processes related to the progression of autoimmune diseases. Finally, the possibility of Nrf2 activation as a new drug development strategy to target pathogenesis is proposed.
Collapse
Affiliation(s)
- Ilker Ates
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, Turkey
| | - Ayşe Didem Yılmaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, Turkey; (A.D.Y.); (S.S.)
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Italian National Institute of Health, 00161 Rome, Italy;
| | - Marzia Arese
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzae Aldo Moro 5, 00185 Rome, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology ‘‘Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, Turkey; (A.D.Y.); (S.S.)
| |
Collapse
|
3
|
Cherian A, Vadivel V, Thiruganasambandham S, Madhavankutty S. Phytocompounds and their molecular targets in immunomodulation: a review. J Basic Clin Physiol Pharmacol 2023; 34:577-590. [PMID: 34786892 DOI: 10.1515/jbcpp-2021-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/24/2021] [Indexed: 11/15/2022]
Abstract
Immune cells are important for the healthy function of every organ. The homeostasis of the immune system is selfregulated by T-cells, B-cells, and natural killer cells. The immunomodulation process of immune cells is part of the immunotherapy. According to therapeutic methods of immune responses are categorized as inducing (immunostimulant), amplification (immune booster), attenuation (immunomodulation), and prevention (immunosuppressive) actions. The prevalence of chronic immunological diseases like viral infections, allergies, and cancer is mainly due to the over-activation of the immune system. Further, immunomodulators are reported to manage the severity of chronic immunological disorders. Moreover, these immunomodulator-acting proteins are identified as potential molecular targets for the regulation of the immune system. Moreover, natural compound like phytocompounds are known to bind these targets and modulates the immune system. The specialized phytocompounds like curcumin, quercetin, stilbenes, flavonoids, and lignans are shown the immunomodulatory actions and ameliorate the immunological disorders. The present scenario of a COVID-19 pandemic situation has taught us the need to focus on strengthening the immune system and the development of the most promising immunotherapeutics. This review is focused on an overview of various phytocompounds and their molecular targets for the management of immunological disorders via immunosuppressants and immunostimulants actions.
Collapse
Affiliation(s)
- Ayda Cherian
- Pharmaceutical Chemistry, SRM College of Pharmacy, Kattankulathur, Tamil Nadu, India
| | - Velmurugan Vadivel
- Pharmaceutical Chemistry, SRM College of Pharmacy, SRMIST, Kattankulathur, Chengalpattu District, Tamil Nadu, India
| | | | | |
Collapse
|
4
|
Sidiropoulou GA, Metaxas A, Kourti M. Natural antioxidants that act against Alzheimer's disease through modulation of the NRF2 pathway: a focus on their molecular mechanisms of action. Front Endocrinol (Lausanne) 2023; 14:1217730. [PMID: 37465125 PMCID: PMC10351420 DOI: 10.3389/fendo.2023.1217730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/01/2023] [Indexed: 07/20/2023] Open
Abstract
Characterized by a complex pathophysiology that includes the intraneuronal formation of neurofibrillary tangles and the extracellular deposition of β-amyloid plaques, Alzheimer's disease (AD) is a terminal neurodegenerative disease that causes dementia in older adults. Oxidative stress in the brain is considered as one of the contributing factors to the pathogenesis of AD, and thus, antioxidants have attracted much interest as potential therapeutic agents against the disorder. Natural antioxidants are typically characterized by low acute and chronic toxicity, which facilitates their potential therapeutic application. One important molecular target for the beneficial effects of natural antioxidants is the nuclear factor erythroid-derived 2-related factor 2 (NFE2L2/NRF2). NRF2 is a key transcription factor that orchestrates the cellular antioxidant response through regulating the expression of oxidative stress-related genes harboring the antioxidant response element (ARE) in their promoters. Indeed, in the case of excessive oxidative damage, NRF2 migrates to the nucleus and binds to ARE, activating the transcription of antioxidant protector genes. There is increasing evidence that NRF2 is implicated in AD pathology through dysfunction and altered localization, which renders it as a potential therapeutic target for AD. Thus, this review summarizes the most recent (2018-2023) advances on the NRF2-modulating activity of natural antioxidants observed in vitro and in AD animal models. This information will help elucidate the molecular mechanisms governing the antioxidant activity of such phytochemicals to highlight their therapeutic potential against common neurodegenerative diseases, such as AD.
Collapse
Affiliation(s)
- Grammatiki Alexandra Sidiropoulou
- Angiogenesis and Cancer Drug Discovery Group, Basic and Translational Cancer Research Centre, European University Cyprus, Nicosia, Cyprus
| | - Athanasios Metaxas
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Malamati Kourti
- Angiogenesis and Cancer Drug Discovery Group, Basic and Translational Cancer Research Centre, European University Cyprus, Nicosia, Cyprus
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
5
|
Jiang Z, Dong T, Wang Y, Tang L, Zhao C, Wen Y, Chen J. Gandouling alleviates cognitive dysfunction by regulates the p62/Nrf2 signaling pathway to reduce oxidative stress and autophagy in mice models of Wilson’s disease. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2022.104477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
6
|
Xie W, Tian S, Yang J, Cai S, Jin S, Zhou T, Wu Y, Chen Z, Ji Y, Cui J. OTUD7B deubiquitinates SQSTM1/p62 and promotes IRF3 degradation to regulate antiviral immunity. Autophagy 2022; 18:2288-2302. [PMID: 35100065 PMCID: PMC9542415 DOI: 10.1080/15548627.2022.2026098] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Deubiquitination plays an important role in the regulation of the crosstalk between macroautophagy/autophagy and innate immune signaling, yet its regulatory mechanisms are not fully understood. Here we identify the deubiquitinase OTUD7B as a negative regulator of antiviral immunity by targeting IRF3 (interferon regulatory factor 3) for selective autophagic degradation. Mechanistically, OTUD7B interacts with IRF3, and activates IRF3-associated cargo receptor SQSTM1/p62 (sequestosome 1) by removing its K63-linked poly-ubiquitin chains at lysine 7 (K7) to enhance SQSTM1 oligomerization. Moreover, viral infection increased the expression of OTUD7B, which forms a negative feedback loop by promoting IRF3 degradation to balance type I interferon (IFN) signaling. Taken together, our study reveals a specific role of OTUD7B in mediating the activation of cargo receptors in a substrate-dependent manner, which could be a potential target against excessive immune responses.Abbreviations: Baf A1: bafilomycin A1; CGAS: cyclic GMP-AMP synthase; DDX58/RIG-I: DExD/H-box helicase 58; DSS: dextran sodium sulfate; DUBs: deubiquitinating enzymes; GFP: green fluorescent protein; IFN: interferon; IKKi: IKBKB/IkappaB kinase inhibitor; IRF3: interferon regulatory factor 3; ISGs: interferon-stimulated genes; MAVS: mitochondrial antiviral signaling protein; MOI: multiplicity of infection; PAMPs: pathogen-associated molecular patterns; SeV: Sendai virus; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TBK1: TANK binding kinase 1; Ub: ubiquitin; WT: wild-type; VSV: vesicular stomatitis virus.
Collapse
Affiliation(s)
- Weihong Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China,Huizhou Municipal Central Hospital, Huizhou, P.R.China
| | - Shuo Tian
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jiahui Yang
- Huizhou Municipal Central Hospital, Huizhou, P.R.China
| | - Sihui Cai
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Shouheng Jin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Tao Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yaoxing Wu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zhiyun Chen
- Huizhou Municipal Central Hospital, Huizhou, P.R.China
| | - Yanqin Ji
- Huizhou Municipal Central Hospital, Huizhou, P.R.China,CONTACT Yanqin Ji Huizhou Municipal Central Hospital, Huizhou, Guangdong, 516001, P.R.China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China,Jun Cui; School of Life Sciences, Sun Yat-sen University, 132 Waihuan East Road, Guangdong 510006, Guangdong, P.R.China
| |
Collapse
|
7
|
Zhai Z, Huang Y, Zhang Y, Zhao L, Li W. Clinical Research Progress of Small Molecule Compounds Targeting Nrf2 for Treating Inflammation-Related Diseases. Antioxidants (Basel) 2022; 11:1564. [PMID: 36009283 PMCID: PMC9405369 DOI: 10.3390/antiox11081564] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Studies have found that inflammation is a symptom of various diseases, such as coronavirus disease 2019 (COVID-19) and rheumatoid arthritis (RA); it is also the source of other diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), lupus erythematosus (LE), and liver damage. Nrf2 (nuclear factor erythroid 2-related factor 2) is an important multifunctional transcription factor in cells and plays a central regulatory role in cellular defense mechanisms. In recent years, several studies have found a strong association between the activation of Nrf2 and the fight against inflammation-related diseases. A number of small molecule compounds targeting Nrf2 have entered clinical research. This article reviews the research status of small molecule compounds that are in clinical trials for the treatment of COVID-19, rheumatoid arthritis, Alzheimer's disease, Parkinson's disease, lupus erythematosus, and liver injury.
Collapse
Affiliation(s)
- Zhenzhen Zhai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yanxin Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yawei Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lili Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wen Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education & Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou 450001, China
| |
Collapse
|
8
|
Li F, Zhou J, Zhu X, Lu R, Ye Y, Wang S, Xing G, Shen H. Oxidative injury induced by drinking water disinfection by-products dibromoacetonitrile and dichloroacetonitrile in mouse hippocampal neuronal cells: The protective effect of N-acetyl-L-cysteine. Toxicol Lett 2022; 365:61-73. [PMID: 35724848 DOI: 10.1016/j.toxlet.2022.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 11/27/2022]
Abstract
Dibromoacetonitrile (DBAN) and dichloroacetonitrile (DCAN) are haloacetonitriles (HANs) produced as by-products of chloramine disinfection of drinking water and can cause neurotoxicity. The molecular pathways leading to HAN-induced neuronal cell death remain unclear. The nuclear factor erythroid 2-related factor 2 (Nrf2) is an important regulator of oxidation reactions. We explored the role of the sequestosome 1 (p62)-Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 pathway in DBAN- and DCAN-induced mouse hippocampal neuronal (HT22) cell injury. DBAN and DCAN reduced cell viability, increased lactate dehydrogenase release rate, and promoted apoptosis. Over the same treatment time, DBAN at lower concentrations caused cell injury, suggesting that DBAN is more cytotoxic than DCAN. DBAN and DCAN triggered oxidative stress by reducing intracellular glutathione and increasing reactive oxygen species concentrations. DBAN and DCAN activated the Nrf2 pathway. Furthermore, Nrf2 inhibitors (all-trans retinoic acid) attenuated DBAN- and DCAN-induced toxicity, whereas Nrf2 activators (tert-Butylhydroquinone) achieved the opposite effect. This indicates that activation of the Nrf2 pathway mediates DBAN- and DCAN-induced cell injury. Notably, the expression of p62, a noncanonical pathway that mediates Nrf2 activation, increased, whereas the expression of Keap1, another regulator of Nrf2, decreased. We noted that high p62 expression activated the Nrf2 pathway, and p62 was regulated through Nrf2, forming a positive feedback loop. N-acetyl-L-cysteine, a mercaptan substance, protected against DBAN- and DCAN-induced toxicity and inhibited the Nrf2 pathway. In summary, Nrf2 pathway inhibition and mercaptan supplementation prevent DBAN- and DCAN-induced HT22 cell injury, accordingly, targeting them is a potential approach to preventing HAN-induced neurotoxicity.
Collapse
Affiliation(s)
- Fang Li
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jie Zhou
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xueyu Zhu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Rongzhu Lu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yang Ye
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Suhua Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Guangwei Xing
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Haijun Shen
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
9
|
Liu M, Li Y, Kong B, Zhang G, Zhang Q. Polydatin down-regulates the phosphorylation level of STAT3 and induces pyroptosis in triple-negative breast cancer mice with a high-fat diet. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:173. [PMID: 35280371 PMCID: PMC8908165 DOI: 10.21037/atm-22-73] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/11/2022] [Indexed: 12/26/2022]
Abstract
Background To explore the impact of polydatin on mice with triple-negative breast cancer (TNBC) receiving a high-fat diet, as well as the underlying processes. Methods A total of 40 female Balb/c mice were randomly separated into 4 groups (4T1 + polydatin + fat diet group, 4T1 + high-fat diet group, 4T1 + polydatin group, and 4T1 group). To establish the obese TNBC mouse model, TNBC was xenografted 1×105 4T1 cells/50 µL per mouse at the right fourth mammary fat pad under anesthesia and the mice were fed a high fat diet. When the experiment was completed, total plasma cholesterol (TC) and cancer antigen (CA)15-3 were measured. The enzyme-linked immunosorbent assay (ELISA) method was used detect CA15-3. Oil red O staining was used to observe the morphological changes. Western blot analysis and reverse transcription polymerase chain reaction (RT-PCR) were used to detect the corresponding protein expression and the messenger RNA (mRNA) level. Results Polydatin decreased the degree of fatty liver, as determined by oil red O staining. The TC level in the 4T1 + fat diet group was significantly higher, and it was decreased in the 4T1 + polydatin group. The results of ELISA showed that compared with the 4T1 group, CA15-3 was significantly increased in the 4T1 + fat diet group, and polydatin was shown to significantly reduce the expression of CA15-3. Polydatin inhibited p-JAK2 and p-STAT3 mRNA and protein levels. Polydatin increased pyroptosis-related gene mRNA and protein level. Conclusions We believe that polydatin can effectively reduce blood lipid levels in TNBC mice with a high-fat diet, and play an anticancer role in TNBC. The underlying mechanism may be related to the JAK2/STAT3 signaling pathway and pyroptosis in TNBC. Our results contribute to validating the traditional use of polydatin in the treatment of TNBC with hyperlipidemia.
Collapse
Affiliation(s)
- Min Liu
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yinan Li
- Beijing University of Chinese Medicine, Beijing, China
| | - Bingtan Kong
- Beijing University of Chinese Medicine, Beijing, China
| | - Ganlin Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Qing Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Raj A, Kaushal A, Datta I. Impact of monomeric and aggregated wild-type and A30P/A53T double-mutant α-synuclein on antioxidant mechanism and glutamate metabolic profile of cultured astrocytes. J Neurosci Res 2021; 100:681-706. [PMID: 34904280 DOI: 10.1002/jnr.24994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/28/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022]
Abstract
Serving as a source of glutathione and up-taking and metabolizing glutamate are the primary supportive role of astrocytes for the adjacent neurons. Despite the clear physical association between astrocytes and α-synuclein, the effect of extracellular α-synuclein on these astrocytic functions has not yet been elucidated. Hence, we aim to assess the effect of various forms of α-synuclein on antioxidant mechanism and glutamate metabolism. Wild-type and A53T/A30P double-mutant α-synuclein, both in monomeric and aggregated forms, were added extracellularly to media of midbrain rat astrocyte culture, with their survival, oxidative, and nitrative stress, glutathione and glutamate content, expression of enzymes associated with oxidative stress and glutamate metabolism, glutamate and glutathione transporters being assessed along with the association/engulfment of these peptides by astrocytes. A30P/A53T peptide associated more with astrocytes, and low-extracellular K+ concentration showed prominent reduction in the engulfment of the monomeric forms, suggesting that the association of the aggregated forms was greater with the membrane. The peptide-associated astrocytes showed lower survival and increased oxidative stress generation, owing to the decrease in nuclear localization of Nrf2 and increase in iNOS, and further aggravated by the decrease in glutathione content and related enzymes like glutathione synthetase, glutathione peroxidase, and glutathione reductase. Glutamate uptake increased in aggregate-treated cells due to the increase in GLAST1 expression, de novo synthesis of glutamate by pyruvate carboxylase, and/or glutamine synthase, bolstered by the differential glutamate dehydrogenase enzyme activity. We thus show for the first time that extracellular α-synuclein exposure leads to astrocytic dysfunction with respect to the antioxidant mechanism and glutamate metabolic profile. The impact was higher in the case of the aggregated and mutated peptide, with the highest dysfunction for the mutant aggregated α-synuclein treatment.
Collapse
Affiliation(s)
- Aishwarya Raj
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru, India
| | - Alka Kaushal
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru, India
| | - Indrani Datta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru, India
| |
Collapse
|
11
|
Shi L, Chen B, Wang X, Huang M, Qiao C, Wang J, Wang Z. Antioxidant response to severe hypoxia in Brandt's vole Lasiopodomys brandtii. Integr Zool 2021; 17:581-595. [PMID: 34713576 DOI: 10.1111/1749-4877.12602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The antioxidant defense system is essential for animals to cope with homeostasis disruption and overcome oxidative stress caused by adverse environmental conditions such as hypoxia. However, our understanding of how this system works in subterranean rodents remains limited. In this study, Brandt's vole Lasiopodomys brandtii was exposed to normoxia (21% O2 ) or hypoxia (mild or severe hypoxia: 10% or 5% O2 ) for 6 h. Changes in key enzymes of the classic enzymatic antioxidant system at both mRNA and enzyme activity levels, and tissue antioxidant levels of the low-molecular-weight antioxidant system were determined in brain, liver, and kidney. Transcript levels of the upstream regulator NF-E2-related factor 2 (Nrf2) were also measured. We found that the mRNA expression of Nrf2 and its downstream antioxidant enzyme genes in L. brandtii were relatively conserved in response to hypoxia in most tissues and genes tested, except in the liver. Hepatic Nrf2, Cu/Zn SOD, GPx1, and GPx3 levels were significantly upregulated in response to mild hypoxia, whereas Mn SOD level decreased significantly in severe hypoxia. Unmatched with changes at the RNA level, constitutively high and relatively stable antioxidant enzyme activities were maintained throughout. For the low-molecular-weight antioxidant system, an abrupt increase of cerebral ascorbic acid (AA) levels in hypoxia indicated a tissue-specific antioxidant response. Although hypoxia did not cause significant oxidative damage in most tissues tested, the significant decrease in antioxidant enzyme activities (GPX and GR) and increase in lipid peroxidation in the kidney suggest that prolonged hypoxia may pose a critical threat to this species.
Collapse
Affiliation(s)
- Luye Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Bojian Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai, China.,Jiaxing-Tongji Environmental Research Institute, Jiaxing, China
| | - Xinrui Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Maolin Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Congcong Qiao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jingou Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China.,Centre for Nutritional Ecology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Proteomic Analysis of Hypoxia-Induced Senescence of Human Bone Marrow Mesenchymal Stem Cells. Stem Cells Int 2021; 2021:5555590. [PMID: 34484348 PMCID: PMC8416403 DOI: 10.1155/2021/5555590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/29/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022] Open
Abstract
Methods Hypoxia in hBMSCs was induced for 0, 4, and 12 hours, and cellular senescence was evaluated by senescence-associated β-galactosidase (SA-β-gal) staining. Tandem mass tag (TMT) labeling was combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) for differential proteomic analysis of hypoxia in hBMSCs. Parallel reaction monitoring (PRM) analysis was used to validate the candidate proteins. Verifications of signaling pathways were evaluated by western blotting. Cell apoptosis was evaluated using Annexin V/7-AAD staining by flow cytometry. The production of reactive oxygen species (ROS) was detected by the fluorescent probe 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA). Results Cell senescence detected by SA-β-gal activity was higher in the 12-hour hypoxia-induced group. TMT analysis of 12-hour hypoxia-induced cells identified over 6000 proteins, including 686 differentially expressed proteins. Based on biological pathway analysis, we found that the senescence-associated proteins were predominantly enriched in the cancer pathways, PI3K-Akt pathway, and cellular senescence signaling pathways. CDK1, CDK2, and CCND1 were important nodes in PPI analyses. Moreover, the CCND1, UQCRH, and COX7C expressions were verified by PRM. Hypoxia induction for 12 hours in hBMSCs reduced CCND1 expression but promoted ROS production and cell apoptosis. Such effects were markedly reduced by the PI3K agonist, 740 Y-P, and attenuated by LY294002. Conclusions Hypoxia of hBMSCs inhibited CCND1 expression but promoted ROS production and cell apoptosis through activating the PI3K-dependent signaling pathway. These findings provided a detailed characterization of the proteomic profiles related to hypoxia-induced senescence of hBMSCs and facilitated our understanding of the molecular mechanisms leading to stem cell senescence.
Collapse
|