1
|
Brunelle DL, Park CR, Fawcett TJ, Walton JP. Signal-in-noise detection across the lifespan in a mouse model of presbycusis. Hear Res 2025; 455:109153. [PMID: 39637601 DOI: 10.1016/j.heares.2024.109153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
The auditory system is constantly tasked with detecting acoustic cues in complex auditory environments. Difficulty hearing speech in noise, largely a result of energetic masking, is a major communication complaint of the elderly, which impacts a third of the global population over 65. The neural mechanisms responsible for processing sound in background noise and subsequently achieving release from energetic masking remain obscure. Furthermore, the senescence of signal-in-noise detection is poorly understood, a phenomenon which could have a myriad of clinical implications. We tested over 300 CBA/CaJ mice aged 1-27 months on tone-in-noise detection ability utilizing prepulse inhibition of the acoustic startle response with a machine learning startle classifier. We found that mice developed profound tone-in-noise detection deficits throughout their lifespan as evidenced by Rd', a detection metric derived from signal detection theory. The most severe decline in Rd' corresponded to a 2.54-fold decrease in tone-in-noise detection across the lifespan. Our findings suggest that CBA/CaJ mice are an appropriate model to study the role of age-related hearing loss in the context of signal-in-noise masking.
Collapse
Affiliation(s)
- Dimitri L Brunelle
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA; Dept. of Communication Sciences & Disorders, University of South Florida, Tampa, FL 33612, USA; Research Computing, University of South Florida, Tampa, FL, USA
| | - Collin R Park
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Timothy J Fawcett
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA; Dept. of Medical Engineering, University of South Florida, Tampa, FL 33620, USA; Dept. of Chemical, Biological and Materials Engineering, University of South Florida, Tampa, FL 33620, USA; Research Computing, University of South Florida, Tampa, FL, USA
| | - Joseph P Walton
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA; Dept. of Communication Sciences & Disorders, University of South Florida, Tampa, FL 33612, USA; Dept. of Medical Engineering, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
2
|
Capshaw G, Diebold CA, Adams DM, Rayner JG, Wilkinson GS, Moss CF, Lauer AM. Resistance to age-related hearing loss in the echolocating big brown bat ( Eptesicus fuscus). Proc Biol Sci 2024; 291:20241560. [PMID: 39500378 DOI: 10.1098/rspb.2024.1560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 10/01/2024] [Indexed: 11/13/2024] Open
Abstract
Hearing mediates many behaviours critical for survival in echolocating bats, including foraging and navigation. Although most mammals are susceptible to progressive age-related hearing loss, the evolution of biosonar, which requires the ability to hear low-intensity echoes from outgoing sonar signals, may have selected against the development of hearing deficits in bats. Many echolocating bats exhibit exceptional longevity and rely on acoustic behaviours for survival to old age; however, relatively little is known about the ageing bat auditory system. In this study, we used DNA methylation to estimate the ages of wild-caught big brown bats (Eptesicus fuscus) and measured hearing sensitivity in young and ageing bats using auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs). We found no evidence for hearing deficits in bats up to 12.5 years of age, demonstrated by comparable thresholds and similar ABR and DPOAE amplitudes across age groups. We additionally found no significant histological evidence for cochlear ageing, with similar hair cell counts, afferent and efferent innervation patterns in young and ageing bats. Here, we demonstrate that big brown bats show minimal evidence for age-related hearing loss and therefore represent informative models for investigating mechanisms that may preserve hearing function over a long lifetime.
Collapse
Affiliation(s)
- Grace Capshaw
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Clarice A Diebold
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Danielle M Adams
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Jack G Rayner
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Gerald S Wilkinson
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
- The Solomon H. Snyder Dept of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Amanda M Lauer
- The Solomon H. Snyder Dept of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Postolache M, Connelly Graham CJ, Burke K, Lauer AM, Xu-Friedman MA. Effects of Age on Responses of Principal Cells of the Mouse Anteroventral Cochlear Nucleus in Quiet and Noise. eNeuro 2024; 11:ENEURO.0215-24.2024. [PMID: 39134409 PMCID: PMC11320020 DOI: 10.1523/eneuro.0215-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 08/15/2024] Open
Abstract
Older listeners often report difficulties understanding speech in noisy environments. It is important to identify where in the auditory pathway hearing-in-noise deficits arise to develop appropriate therapies. We tested how encoding of sounds is affected by masking noise at early stages of the auditory pathway by recording responses of principal cells in the anteroventral cochlear nucleus (AVCN) of aging CBA/CaJ and C57BL/6J mice in vivo. Previous work indicated that masking noise shifts the dynamic range of single auditory nerve fibers (ANFs), leading to elevated tone thresholds. We hypothesized that such threshold shifts could contribute to increased hearing-in-noise deficits with age if susceptibility to masking increased in AVCN units. We tested this by recording the responses of AVCN principal neurons to tones in the presence and absence of masking noise. Surprisingly, we found that masker-induced threshold shifts decreased with age in primary-like units and did not change in choppers. In addition, spontaneous activity decreased in primary-like and chopper units of old mice, with no change in dynamic range or tuning precision. In C57 mice, which undergo early-onset hearing loss, units showed similar changes in threshold and spontaneous rate at younger ages, suggesting they were related to hearing loss and not simply aging. These findings suggest that sound information carried by AVCN principal cells remains largely unchanged with age. Therefore, hearing-in-noise deficits may result from other changes during aging, such as distorted across-channel input from the cochlea and changes in sound coding at later stages of the auditory pathway.
Collapse
Affiliation(s)
- Maggie Postolache
- Department of Biological Sciences, University at Buffalo, State University of NewYork, Buffalo, New York 14260
| | - Catherine J Connelly Graham
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Kali Burke
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Amanda M Lauer
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Solomon H. Snyder Dept. of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Matthew A Xu-Friedman
- Department of Biological Sciences, University at Buffalo, State University of NewYork, Buffalo, New York 14260
| |
Collapse
|
4
|
Capshaw G, Diebold CA, Adams DM, Rayner J, Wilkinson GS, Moss CF, Lauer AM. Resistance to age-related hearing loss in the echolocating big brown bat ( Eptesicus fuscus ). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603592. [PMID: 39071368 PMCID: PMC11275774 DOI: 10.1101/2024.07.15.603592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Hearing mediates many behaviors critical for survival in echolocating bats, including foraging and navigation. Most mammals are susceptible to progressive age-related hearing loss; however, the evolution of biosonar, which requires the ability to hear low-intensity echoes from outgoing sonar signals, may have selected against the development of hearing deficits in echolocating bats. Although many echolocating bats exhibit exceptional longevity and rely on acoustic behaviors for survival to old age, relatively little is known about the aging bat auditory system. In this study, we used DNA methylation to estimate the ages of wild-caught big brown bats ( Eptesicus fuscus ) and measured hearing sensitivity in young and aging bats using auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs). We found no evidence for hearing deficits in aging bats, demonstrated by comparable thresholds and similar ABR wave and DPOAE amplitudes across age groups. We additionally found no significant histological evidence for cochlear aging, with similar hair cell counts, afferent, and efferent innervation patterns in young and aging bats. Here we demonstrate that big brown bats show minimal evidence for age-related loss of peripheral hearing sensitivity and therefore represent informative models for investigating mechanisms that may preserve hearing function over a long lifetime.
Collapse
|
5
|
Dörje NM, Shvachiy L, Kück F, Outeiro TF, Strenzke N, Beutner D, Setz C. Age-related alterations in efferent medial olivocochlear-outer hair cell and primary auditory ribbon synapses in CBA/J mice. Front Cell Neurosci 2024; 18:1412450. [PMID: 38988659 PMCID: PMC11234844 DOI: 10.3389/fncel.2024.1412450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/23/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Hearing decline stands as the most prevalent single sensory deficit associated with the aging process. Giving compelling evidence suggesting a protective effect associated with the efferent auditory system, the goal of our study was to characterize the age-related changes in the number of efferent medial olivocochlear (MOC) synapses regulating outer hair cell (OHC) activity compared with the number of afferent inner hair cell ribbon synapses in CBA/J mice over their lifespan. Methods Organs of Corti of 3-month-old CBA/J mice were compared with mice aged between 10 and 20 months, grouped at 2-month intervals. For each animal, one ear was used to characterize the synapses between the efferent MOC fibers and the outer hair cells (OHCs), while the contralateral ear was used to analyze the ribbon synapses between inner hair cells (IHCs) and type I afferent nerve fibers of spiral ganglion neurons (SGNs). Each cochlea was separated in apical, middle, and basal turns, respectively. Results The first significant age-related decline in afferent IHC-SGN ribbon synapses was observed in the basal cochlear turn at 14 months, the middle turn at 16 months, and the apical turn at 18 months of age. In contrast, efferent MOC-OHC synapses in CBA/J mice exhibited a less pronounced loss due to aging which only became significant in the basal and middle turns of the cochlea by 20 months of age. Discussion This study illustrates an age-related reduction on efferent MOC innervation of OHCs in CBA/J mice starting at 20 months of age. Our findings indicate that the morphological decline of efferent MOC-OHC synapses due to aging occurs notably later than the decline observed in afferent IHC-SGN ribbon synapses.
Collapse
Affiliation(s)
- Nele Marie Dörje
- University Medical Center Göttingen, Department of Otolaryngology-Head and Neck Surgery, InnerEarLab, Göttingen, Germany
- University Medical Center Göttingen, Institute for Auditory Neuroscience, Göttingen, Germany
| | - Liana Shvachiy
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Cardiovascular Centre, University of Lisbon, Lisbon, Portugal
| | - Fabian Kück
- University Medical Center Göttingen, Department of Medical Statistics, Core Facility Medical Biometry and Statistical Bioinformatics, Göttingen, Germany
| | - Tiago F Outeiro
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nicola Strenzke
- University Medical Center Göttingen, Institute for Auditory Neuroscience, Göttingen, Germany
| | - Dirk Beutner
- University Medical Center Göttingen, Department of Otolaryngology-Head and Neck Surgery, InnerEarLab, Göttingen, Germany
| | - Cristian Setz
- University Medical Center Göttingen, Department of Otolaryngology-Head and Neck Surgery, InnerEarLab, Göttingen, Germany
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| |
Collapse
|
6
|
Steenken F, Pektaş A, Köppl C. Age-related changes in olivocochlear efferent innervation in gerbils. Front Synaptic Neurosci 2024; 16:1422330. [PMID: 38887655 PMCID: PMC11180762 DOI: 10.3389/fnsyn.2024.1422330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Introduction Age-related hearing difficulties have a complex etiology that includes degenerative processes in the sensory cochlea. The cochlea comprises the start of the afferent, ascending auditory pathway, but also receives efferent feedback innervation by two separate populations of brainstem neurons: the medial olivocochlear and lateral olivocochlear pathways, innervating the outer hair cells and auditory-nerve fibers synapsing on inner hair cells, respectively. Efferents are believed to improve hearing under difficult conditions, such as high background noise. Here, we compare olivocochlear efferent innervation density along the tonotopic axis in young-adult and aged gerbils (at ~50% of their maximum lifespan potential), a classic animal model for age-related hearing loss. Methods Efferent synaptic terminals and sensory hair cells were labeled immunohistochemically with anti-synaptotagmin and anti-myosin VIIa, respectively. Numbers of hair cells, numbers of efferent terminals, and the efferent innervation area were quantified at seven tonotopic locations along the organ of Corti. Results The tonotopic distribution of olivocochlear innervation in the gerbil was similar to that previously shown for other species, with a slight apical cochlear bias in presumed lateral olivocochlear innervation (inner-hair-cell region), and a broad mid-cochlear peak for presumed medial olivocochlear innervation (outer-hair-cell region). We found significant, age-related declines in overall efferent innervation to both the inner-hair-cell and the outer-hair-cell region. However, when accounting for the age-related losses in efferent target structures, the innervation density of surviving elements proved unchanged in the inner-hair-cell region. For outer hair cells, a pronounced increase of orphaned outer hair cells, i.e., lacking efferent innervation, was observed. Surviving outer hair cells that were still efferently innervated retained a nearly normal innervation. Discussion A comparison across species suggests a basic aging scenario where outer hair cells, type-I afferents, and the efferents associated with them, steadily die away with advancing age, but leave the surviving cochlear circuitry largely intact until an advanced age, beyond 50% of a species' maximum lifespan potential. In the outer-hair-cell region, MOC degeneration may precede outer-hair-cell death, leaving a putatively transient population of orphaned outer hair cells that are no longer under efferent control.
Collapse
Affiliation(s)
- Friederike Steenken
- Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Cluster of Excellence “Hearing4all”, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Asli Pektaş
- Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Christine Köppl
- Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Cluster of Excellence “Hearing4all”, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Research Centre Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
7
|
Castaño-González K, Köppl C, Pyott SJ. The crucial role of diverse animal models to investigate cochlear aging and hearing loss. Hear Res 2024; 445:108989. [PMID: 38518394 DOI: 10.1016/j.heares.2024.108989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/18/2024] [Accepted: 03/04/2024] [Indexed: 03/24/2024]
Abstract
Age-related hearing loss affects a large and growing segment of the population, with profound impacts on quality of life. Age-related pathology of the cochlea-the mammalian hearing organ-underlies age-related hearing loss. Because investigating age-related changes in the cochlea in humans is challenging and often impossible, animal models are indispensable to investigate these mechanisms as well as the complex consequences of age-related hearing loss on the brain and behavior. In this review, we advocate for a comparative and interdisciplinary approach while also addressing the challenges of comparing age-related hearing loss across species with varying lifespans. We describe the experimental advantages and limitations as well as areas for future research in well-established models of age-related hearing loss, including mice, rats, gerbils, chinchillas, and birds. We also indicate the need to expand characterization of age-related hearing loss in other established animal models, especially guinea pigs, cats, and non-human primates, in which auditory function is well characterized but age-related cochlear pathology is understudied. Finally, we highlight the potential of emerging animal models for advancing our understanding of age-related hearing loss, including deer mice, with their notably extended lifespans and preserved hearing, naked mole rats, with their exceptional longevity and extensive vocal communications, as well as zebrafish, which offer genetic tractability and suitability for drug screening. Ultimately, a comparative and interdisciplinary approach in auditory research, combining insights from various animal models with human studies, is key to robust and reliable research outcomes that better advance our understanding and treatment of age-related hearing loss.
Collapse
Affiliation(s)
- Karen Castaño-González
- Department of Otorhinolaryngology, Head & Neck Surgery, University Medical Center Groningen; The Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands
| | - Christine Köppl
- Cluster of Excellence "Hearing4All", Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky Universität; Research Center Neurosensory Science, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Sonja J Pyott
- Department of Otorhinolaryngology, Head & Neck Surgery, University Medical Center Groningen; The Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
8
|
Mittelstadt JK, Shilling-Scrivo KV, Kanold PO. Long-term training alters response dynamics in the aging auditory cortex. Hear Res 2024; 444:108965. [PMID: 38364511 PMCID: PMC11186583 DOI: 10.1016/j.heares.2024.108965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/18/2024]
Abstract
Age-related auditory dysfunction, presbycusis, is caused in part by functional changes in the auditory cortex (ACtx) such as altered response dynamics and increased population correlations. Given the ability of cortical function to be altered by training, we tested if performing auditory tasks might benefit auditory function in old age. We examined this by training adult mice on a low-effort tone-detection task for at least six months and then investigated functional responses in ACtx at an older age (∼18 months). Task performance remained stable well into old age. Comparing sound-evoked responses of thousands of ACtx neurons using in vivo 2-photon Ca2+ imaging, we found that many aspects of youthful neuronal activity, including low activity correlations, lower neural excitability, and a greater proportion of suppressed responses, were preserved in trained old animals as compared to passively-exposed old animals. Thus, consistent training on a low-effort task can benefit age-related functional changes in ACtx and may preserve many aspects of auditory function.
Collapse
Affiliation(s)
- Jonah K Mittelstadt
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Kelson V Shilling-Scrivo
- Department of Biology, University of Maryland, College Park, MD 20742, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21230, USA
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biology, University of Maryland, College Park, MD 20742, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
9
|
Charlton PE, Burke K, Kobrina A, Lauer AM, Dent ML. The perception of ultrasonic vocalizations by laboratory mice following intense noise exposures. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:867-878. [PMID: 38310604 PMCID: PMC10838193 DOI: 10.1121/10.0024614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 02/06/2024]
Abstract
Noise-induced hearing loss interacts with age, sex, and listening conditions to affect individuals' perception of ecologically relevant stimuli like speech. The present experiments assessed the impact of age and sex on vocalization detection by noise-exposed mice trained to detect a downsweep or complex ultrasonic vocalization in quiet or in the presence of a noise background. Daily thresholds before and following intense noise exposure were collected longitudinally and compared across several factors. All mice, regardless of age, sex, listening condition, or stimulus type showed their poorest behavioral sensitivity immediately after the noise exposure. There were varying degrees of recovery over time and across factors. Old-aged mice had greater threshold shifts and less recovery compared to middle-aged mice. Mice had larger threshold shifts and less recovery for downsweeps than for complex vocalizations. Female mice were more sensitive, had smaller post-noise shifts, and had better recovery than males. Thresholds in noise were higher and less variable than thresholds in quiet, but there were comparable shifts and recovery. In mice, as in humans, the perception of ecologically relevant stimuli suffers after an intense noise exposure, and results differ from simple tone detection findings.
Collapse
Affiliation(s)
- Payton E Charlton
- Department of Psychology, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Kali Burke
- Department of Psychology, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Anastasiya Kobrina
- Department of Psychology, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Amanda M Lauer
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Micheal L Dent
- Department of Psychology, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| |
Collapse
|
10
|
Henry KS, Guo AA, Abrams KS. Normal behavioral discrimination of envelope statistics in budgerigars with kainate-induced cochlear synaptopathy. Hear Res 2024; 441:108927. [PMID: 38096707 PMCID: PMC10775186 DOI: 10.1016/j.heares.2023.108927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/27/2023]
Abstract
Cochlear synaptopathy is a common pathology in humans associated with aging and potentially sound overexposure. Synaptopathy is widely expected to cause "hidden hearing loss," including difficulty perceiving speech in noise, but support for this hypothesis is controversial. Here in budgerigars (Melopsittacus undulatus), we evaluated the impact of long-term cochlear synaptopathy on behavioral discrimination of Gaussian noise (GN) and low-noise noise (LNN) signals processed to have a flatter envelope. Stimuli had center frequencies of 1-3kHz, 100-Hz bandwidth, and were presented at sensation levels (SLs) from 10 to 30dB. We reasoned that narrowband, low-SL stimuli of this type should minimize spread of excitation across auditory-nerve fibers, and hence might reveal synaptopathy-related defects if they exist. Cochlear synaptopathy was induced without hair-cell injury using kainic acid (KA). Behavioral threshold tracking experiments characterized the minimum stimulus duration above which animals could reliably discriminate between LNN and GN. Budgerigar thresholds for LNN-GN discrimination ranged from 40 to 60ms at 30dB SL, were similar across frequencies, and increased for lower SLs. Notably, animals with long-term 39-77% estimated synaptopathy performed similarly to controls, requiring on average a ∼7.5% shorter stimulus duration (-0.7±1.0dB; mean difference ±SE) for LNN-GN discrimination. Decision-variable correlation analyses of detailed behavioral response patterns showed that individual animals relied on envelope cues to discriminate LNN and GN, with lesser roles of FM and energy cues; no difference was found between KA-exposed and control groups. These results suggest that long-term cochlear synaptopathy does not impair discrimination of low-level signals with different envelope statistics.
Collapse
Affiliation(s)
- Kenneth S Henry
- Department of Otolaryngology, University of Rochester, NY 14642, USA; Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA; Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA.
| | - Anna A Guo
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
| | - Kristina S Abrams
- Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
11
|
Park CR, Willott JF, Walton JP. Age-related changes of auditory sensitivity across the life span of CBA/CaJ mice. Hear Res 2024; 441:108921. [PMID: 38042127 PMCID: PMC10843596 DOI: 10.1016/j.heares.2023.108921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/29/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023]
Abstract
The inbred mouse strain CBA/CaJ is a frequently used animal model of age-related hearing loss in humans. These mice display significant hearing loss at a relatively advanced age, similar to most humans, with progressive loss of hearing as the mouse continues to age. While important descriptions of hearing loss in this mouse strain at multiple ages have previously been published, shortcomings persist in the data for hearing over the lifespan of the mouse. Therefore, we analyzed auditory brainstem response threshold data from records maintained by our research group to yield an extensive database of thresholds over nearly the entire life span of the CBA/CaJ mouse (from 79 to 1085 days). Data was collected from in-house bred mice of CBA/CaJ stock, initially from The Jackson Laboratory. Data was collected using BiosigRZ software and TDT System III hardware. Thresholds were routinely measured in conjunction with behavioral and electrophysiological experiments; only responses from baseline or experimentally naïve animals were analyzed. The resulting data set comprised 376 female mice and 441 males. At the lowest and highest frequencies (8 & 32 kHz), initial thresholds were just under 30 dB SPL and increased slowly until they were significantly different at 16-18 months compared to 1-3 months age, with the difference increasing over subsequent ages. At the middle frequencies (12 & 16 kHz), initial thresholds were just under 20 dB SPL and increased until they became different from initial at 16-18 months. At 24 kHz, initial thresholds were just above 20 dB and became different from initial at 13-16 months of age. The rate of change of thresholds with age were similar for all frequencies until about 30 months of age, when 32 kHz threshold changes lagged behind other frequencies. Generally, CBA/CaJ mice in our colony display relatively low thresholds until approximately 16 months of age, depending on frequency. After 16-18 months, thresholds become significantly worse. After approximately 20-22 months thresholds increase linearly with age.
Collapse
Affiliation(s)
- Collin R Park
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, United States; Department of Communication Sciences and Disorders, University of South Florida, Tampa, FL, United States
| | - James F Willott
- Department of Communication Sciences and Disorders, University of South Florida, Tampa, FL, United States
| | - Joseph P Walton
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, United States; Department of Communication Sciences and Disorders, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
12
|
Burke K, Burke M, Lauer AM. Auditory brainstem response (ABR) waveform analysis program. MethodsX 2023; 11:102414. [PMID: 37846351 PMCID: PMC10577057 DOI: 10.1016/j.mex.2023.102414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
Auditory brainstem responses (ABR) are a high-throughput assessment of auditory function. Many studies determine changes to the threshold at frequencies that span the normal hearing range of their test subjects, but fewer studies evaluate changes in waveform morphology. The goal of developing this program was to make a user-friendly semiautomatic peak-detection algorithm to encourage widespread analysis of the amplitudes and latencies of the ABR, which may yield informative details about the integrity of the auditory system with development, aging, genetic manipulations, or damaging conditions. This method incorporates automated peak detection with manual override and inter-rater validation to calculate the amplitude and latency for waves 1-5, as well as interpeak latencies and amplitude ratios between waves. The output includes raw data and calculations in a format compatible with graphical and statistical software.•The method yields a high-throughput peak-detection algorithm with manual override and inter-rater capabilities to streamline ABR waveform analysis.•Data output includes amplitudes, latencies, amplitude ratios, and interpeak latencies for generation of input-output curves.•While complete automation of peak detection with this tool is dependent on good signal-to-noise ratios, relevant amplitude and latency calculations are fully automated, and manual spot-checking is simplified to significantly reduce the time to analyze waveforms.
Collapse
Affiliation(s)
- Kali Burke
- Department of Otolaryngology- Head and Neck Surgery at Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205, USA
| | - Matthew Burke
- Hexagon Manufacturing Intelligence, 624 Grassmere Park Suite 7, Nashville TN 37214, USA
| | - Amanda M. Lauer
- Department of Otolaryngology- Head and Neck Surgery at Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205, USA
- Department of Neuroscience at Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
13
|
Mittelstadt JK, Kanold PO. Orbitofrontal cortex conveys stimulus and task information to the auditory cortex. Curr Biol 2023; 33:4160-4173.e4. [PMID: 37716349 PMCID: PMC10602585 DOI: 10.1016/j.cub.2023.08.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 08/21/2023] [Indexed: 09/18/2023]
Abstract
Auditory cortical neurons modify their response profiles in response to numerous external factors. During task performance, changes in primary auditory cortex (A1) responses are thought to be driven by top-down inputs from the orbitofrontal cortex (OFC), which may lead to response modification on a trial-by-trial basis. While OFC neurons respond to auditory stimuli and project to A1, the function of OFC projections to A1 during auditory tasks is unknown. Here, we observed the activity of putative OFC terminals in A1 in mice by using in vivo two-photon calcium imaging of OFC terminals under passive conditions and during a tone detection task. We found that behavioral activity modulates but is not necessary to evoke OFC terminal responses in A1. OFC terminals in A1 form distinct populations that exclusively respond to either the tone, reward, or error. Using tones against a background of white noise, we found that OFC terminal activity was modulated by the signal-to-noise ratio (SNR) in both the passive and active conditions and that OFC terminal activity varied with SNR, and thus task difficulty in the active condition. Therefore, OFC projections in A1 are heterogeneous in their modulation of auditory encoding and likely contribute to auditory processing under various auditory conditions.
Collapse
Affiliation(s)
- Jonah K Mittelstadt
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
14
|
Krishnan PS, Lauer AM, Ward BK, Seal SM, Nieman CL, Andresen NS. Sex and Race Representation in Temporal Bone Histopathology Studies in the United States: A Systematic Review. Ear Hear 2023; 44:661-669. [PMID: 36763469 PMCID: PMC10331314 DOI: 10.1097/aud.0000000000001340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
OBJECTIVES The author's objective was to evaluate sex and race representation in temporal bone histopathology studies. DESIGN PubMed, Embase, Cochrane, Web of Science, and Scopus were searched for studies written in English examining temporal bone histopathology specimens from U.S.-based institutions from January 1, 1947, to September 1, 2021. Two authors then performed "snowballing" by reviewing references from the initial search and included the studies that fulfilled the inclusion criteria. For each study, the following information was collected: publication details, study design, funding, institution from where temporal bone specimens were procured, number of study specimens, and donor demographical information. RESULTS The authors found that out of 300 studies, 166 (55%) report sex while only 15 (5%) reported race information. Over the past 70 years, the ratio of studies reporting sex to those that do not has increased from 1.00 to 2.19 and the number of female temporal bone histopathology subjects relative to male has increased from 0.67 to 0.75. Over 90% of studies that do report this information feature participant racial compositions that do not reflect the diversity of the U.S. population. CONCLUSIONS Studies of temporal bone histopathology often do not report participant sex or race. The reporting of participant sex and the inclusion of specimens from female donors have both increased over time. However, temporal bone histopathology study cohorts are not representative of the racial diversity of the U.S. population. The otolaryngology community must strive to build temporal bone histopathology libraries that are representative of the diverse U.S. population.
Collapse
Affiliation(s)
- Pavan S. Krishnan
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Amanda M. Lauer
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bryan K. Ward
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stella M. Seal
- Welch Medical Library, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carrie L. Nieman
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Cochlear Center for Hearing & Public Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Center for Innovative Care in Aging, Johns Hopkins University School of Nursing, Baltimore, Maryland
| | - Nicholas S. Andresen
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
15
|
Tarnovsky YC, Taiber S, Nissan Y, Boonman A, Assaf Y, Wilkinson GS, Avraham KB, Yovel Y. Bats experience age-related hearing loss (presbycusis). Life Sci Alliance 2023; 6:e202201847. [PMID: 36997281 PMCID: PMC10067528 DOI: 10.26508/lsa.202201847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
Hearing loss is a hallmark of aging, typically initially affecting the higher frequencies. In echolocating bats, the ability to discern high frequencies is essential. However, nothing is known about age-related hearing loss in bats, and they are often assumed to be immune to it. We tested the hearing of 47 wild Egyptian fruit bats by recording their auditory brainstem response and cochlear microphonics, and we also assessed the cochlear histology in four of these bats. We used the bats' DNA methylation profile to evaluate their age and found that bats exhibit age-related hearing loss, with more prominent deterioration at the higher frequencies. The rate of the deterioration was ∼1 dB per year, comparable to the hearing loss observed in humans. Assessing the noise in the fruit bat roost revealed that these bats are exposed to continuous immense noise-mostly of social vocalizations-supporting the assumption that bats might be partially resistant to loud noise. Thus, in contrast to previous assumptions, our results suggest that bats constitute a model animal for the study of age-related hearing loss.
Collapse
Affiliation(s)
- Yifat Chaya Tarnovsky
- School of Neurobiology, Biochemistry, and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Taiber
- School of Neurobiology, Biochemistry, and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yomiran Nissan
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Arjan Boonman
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yaniv Assaf
- School of Neurobiology, Biochemistry, and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | - Karen B Avraham
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
16
|
Vaden KI, Neely ST, Harris SE, Dubno JR. Metabolic and Sensory Components of Age-Related Hearing Loss: Associations With Distortion- and Reflection-Based Otoacoustic Emissions. Trends Hear 2023; 27:23312165231213776. [PMID: 37969007 PMCID: PMC10655661 DOI: 10.1177/23312165231213776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023] Open
Abstract
Age-related hearing loss is difficult to study in humans because multiple genetic and environmental risk factors may contribute to pathology and cochlear function declines in older adults. These pathologies, including degeneration of the stria vascularis, are hypothesized to affect outer hair cells responsible for active cochlear amplification of low-level sounds. Otoacoustic emission (OAE) measures are used to quantify the energy added to the traveling wave in cochlear amplification, which typically weakens with increased pure-tone thresholds and for older individuals. Thus, the current study evaluated two OAE measures for individuals with different components of age-related hearing loss. We examined two retrospective adult lifespan datasets (18 to 89+ years of age) from independent sites (Medical University of South Carolina and Boys Town National Research Hospital), which included demographics, noise history questionnaires, distortion-product otoacoustic emissions (DPOAE), and cochlear reflectance (CR). Metabolic and sensory estimates of age-related hearing loss were derived from the audiograms in each dataset, and then tested for associations with DPOAE and CR. The results showed that metabolic estimates increased for older participants and were associated with lower overall DPOAE and CR magnitudes across frequency (i.e., lower fitted intercepts). Sensory estimates were significantly higher for males, who reported more positive noise histories compared to females and were associated with steeper negative across-frequency slopes for DPOAEs. Although significant associations were observed between OAE configurations, DPOAEs appeared uniquely sensitive to metabolic estimates. The current findings suggest that distortion-based measures may provide greater sensitivity than reflection-based measures to the components of age-related hearing loss.
Collapse
Affiliation(s)
- Kenneth I. Vaden
- Department of Otolaryngology – Head & Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Stephen T. Neely
- Center for Hearing Research, Boys Town National Research Hospital, Omaha, NE, USA
| | - Sara E. Harris
- Center for Hearing Research, Boys Town National Research Hospital, Omaha, NE, USA
| | - Judy R. Dubno
- Department of Otolaryngology – Head & Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
17
|
Schrode KM, Dent ML, Lauer AM. Sources of variability in auditory brainstem response thresholds in a mouse model of noise-induced hearing loss. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:3576. [PMID: 36586874 PMCID: PMC9756347 DOI: 10.1121/10.0016593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Numerous and non-acoustic experimental factors can potentially influence experimental outcomes in animal models when measuring the effects of noise exposures. Subject-related factors, including species, strain, age, sex, body weight, and post-exposure measurement timepoints, influence the observed hearing deficits. Experimenter effects, such as experience with experimental techniques and animal handling, may also factor into reported thresholds. In this study, the influence of subject sex, body mass, age at noise exposure, and timepoint of post-exposure recording are reported from a large sample of CBA/CaJ mice. Auditory brainstem response (ABR) thresholds differed between noise-exposed and unexposed mice, although the differences varied across tone frequencies. Thresholds across age at noise exposures and measurement delays after exposure also differed for some timepoints. Higher body mass correlated with higher ABR thresholds for unexposed male and female mice, but not for noise-exposed mice. Together, these factors may contribute to differences in phenotypic outcomes observed across studies or even within a single laboratory.
Collapse
Affiliation(s)
- Katrina M Schrode
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University School of Medicine, 515 Traylor Building, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| | - Micheal L Dent
- Department of Psychology, B76 Park Hall, University at Buffalo-SUNY, Buffalo, New York 14260, USA
| | - Amanda M Lauer
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University School of Medicine, 515 Traylor Building, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| |
Collapse
|
18
|
Capshaw G, Vicencio-Jimenez S, Screven LA, Burke K, Weinberg MM, Lauer AM. Physiological Evidence for Delayed Age-related Hearing Loss in Two Long-lived Rodent Species (Peromyscus leucopus and P. californicus). J Assoc Res Otolaryngol 2022; 23:617-631. [PMID: 35882705 PMCID: PMC9613845 DOI: 10.1007/s10162-022-00860-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/30/2022] [Indexed: 10/16/2022] Open
Abstract
Deer mice (genus Peromyscus) are an emerging model for aging studies due to their longevity relative to rodents of similar size. Although Peromyscus species are well-represented in genetic, developmental, and behavioral studies, relatively few studies have investigated auditory sensitivity in this genus. Given the potential utility of Peromyscus for investigations of age-related changes to auditory function, we recorded auditory brainstem responses (ABRs) in two Peromyscus species, P. californicus, and P. leucopus, across the lifespan. We compared hearing sensitivity and ABR wave metrics measured in these species with measurements from Mus musculus (CBA/CaJ strain) to assess age-related effects on hearing across species. Recordings in young animals showed that all species had similar hearing ranges and thresholds with peak sensitivity ranging from 8 to 16 kHz; however, P. californicus and P. leucopus were more sensitive to frequencies below 8 kHz. Although M. musculus showed significant threshold shifts across a broad range of frequencies beginning at middle age and worsening among old individuals, older Peromyscus mice retained good sensitivity to sound across their lifespan. Middle-aged P. leucopus had comparable thresholds to young for frequencies below 24 kHz. P. leucopus also had notably large ABRs that were robust to age-related amplitude reductions, although response latencies increased with age. Old P. californicus were less sensitive to mid-range tones (8-16 kHz) than young individuals; however, there were no significant age-effects on ABR amplitudes or latencies in this species. These results indicate that longevity in Peromyscus mice may be correlated with delayed aging of the auditory system and highlight these species as promising candidates for longitudinal hearing research.
Collapse
Affiliation(s)
- Grace Capshaw
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD USA
| | - Sergio Vicencio-Jimenez
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Laurel A. Screven
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Kali Burke
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Madison M. Weinberg
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Amanda M. Lauer
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
19
|
Britton R, Liu AT, Rege SV, Adams JM, Akrapongpisak L, Le D, Alcantara-Lee R, Estrada RA, Ray R, Ahadi S, Gallager I, Yang CF, Minami SS, Braithwaite SP, Czirr E, Campbell MK. Molecular and histological correlates of cognitive decline across age in male C57BL/6J mice. Brain Behav 2022; 12:e2736. [PMID: 35971662 PMCID: PMC9480918 DOI: 10.1002/brb3.2736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 07/01/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Increasing age is the number one risk factor for developing cognitive decline and neurodegenerative disease. Aged humans and mice exhibit numerous molecular changes that contribute to a decline in cognitive function and increased risk of developing age-associated diseases. Here, we characterize multiple age-associated changes in male C57BL/6J mice to understand the translational utility of mouse aging. METHODS Male C57BL/6J mice from various ages between 2 and 24 months of age were used to assess behavioral, as well as, histological and molecular changes across three modalities: neuronal, microgliosis/neuroinflammation, and the neurovascular unit (NVU). Additionally, a cohort of 4- and 22-month-old mice was used to assess blood-brain barrier (BBB) breakdown. Mice in this cohort were treated with a high, acute dose of lipopolysaccharide (LPS, 10 mg/kg) or saline control 6 h prior to sacrifice followed by tail vein injection of 0.4 kDa sodium fluorescein (100 mg/kg) 2 h later. RESULTS Aged mice showed a decline in cognitive and motor abilities alongside decreased neurogenesis, proliferation, and synapse density. Further, neuroinflammation and circulating proinflammatory cytokines were increased in aged mice. Additionally, we found changes at the BBB, including increased T cell infiltration in multiple brain regions and an exacerbation in BBB leakiness following chemical insult with age. There were also a number of readouts that were unchanged with age and have limited utility as markers of aging in male C57BL/6J mice. CONCLUSIONS Here we propose that these changes may be used as molecular and histological readouts that correspond to aging-related behavioral decline. These comprehensive findings, in the context of the published literature, are an important resource toward deepening our understanding of normal aging and provide an important tool for studying aging in mice.
Collapse
Affiliation(s)
| | - Angela T Liu
- Alkahest, Inc., San Carlos, California, USA.,Coda Biotherapeutics, South San Francisco, California, USA
| | | | | | - Lily Akrapongpisak
- Alkahest, Inc., San Carlos, California, USA.,University of Queensland, Herston, Queensland, Australia
| | - David Le
- Alkahest, Inc., San Carlos, California, USA.,Fountain Therapeutics, South San Francisco, California, USA
| | | | | | - Rebecca Ray
- Alkahest, Inc., San Carlos, California, USA.,202 Chives Way, Walnut Creek, California, USA
| | - Sara Ahadi
- Alkahest, Inc., San Carlos, California, USA
| | | | | | | | | | - Eva Czirr
- Alkahest, Inc., San Carlos, California, USA.,Confluence Therapeutics, South San Francisco, California, USA
| | | |
Collapse
|
20
|
Vaden KI, Eckert MA, Matthews LJ, Schmiedt RA, Dubno JR. Metabolic and Sensory Components of Age-Related Hearing Loss. J Assoc Res Otolaryngol 2022; 23:253-272. [PMID: 35064426 PMCID: PMC8964894 DOI: 10.1007/s10162-021-00826-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 11/23/2021] [Indexed: 12/01/2022] Open
Abstract
Age-related hearing loss is a multifactorial condition with effects of aging and environmental exposures that contribute to cochlear pathologies. Metabolic hearing loss involves declines in the endocochlear potential, which broadly reduce cochlear amplification of low-level sounds. Sensory hearing loss involves damage to outer hair cells that may eliminate amplification, especially for high-frequency sounds. A novel approach was developed to estimate the extent of metabolic and sensory components (in dB) for an individual, by combining hearing loss profiles to optimally approximate their hearing thresholds (audiogram). This approach was validated using estimates of metabolic and sensory hearing loss from retrospective datasets including gerbils, cross-sectional and longitudinal audiograms from older adults, a measure of speech recognition in noise, and histopathology case reports. Simulation results showed that well-approximated audiograms can produce accurate metabolic and sensory estimates. Estimates of metabolic and sensory components of age-related hearing loss differentiated gerbils with known strial and/or sensory pathologies based on age and exposures. For older adults, metabolic estimates consistently increased with age and were associated with poorer speech recognition in noise, while sensory estimates were related to sex and noise exposure differences. Histopathology case reports (with audiograms) that described strial and outer hair cell pathology in temporal bones from older donors showed significant differences in metabolic and sensory estimates, respectively. The results support the view that audiograms include information that can be used to estimate the metabolic and sensory components of age-related hearing loss.
Collapse
Affiliation(s)
- Kenneth I. Vaden
- Hearing Research Program, Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500 USA
| | - Mark A. Eckert
- Hearing Research Program, Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500 USA
| | - Lois J. Matthews
- Hearing Research Program, Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500 USA
| | - Richard A. Schmiedt
- Hearing Research Program, Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500 USA
| | - Judy R. Dubno
- Hearing Research Program, Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500 USA
| |
Collapse
|
21
|
Thulasiram MR, Ogier JM, Dabdoub A. Hearing Function, Degeneration, and Disease: Spotlight on the Stria Vascularis. Front Cell Dev Biol 2022; 10:841708. [PMID: 35309932 PMCID: PMC8931286 DOI: 10.3389/fcell.2022.841708] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 11/21/2022] Open
Abstract
The stria vascularis (SV) is a highly vascularized tissue lining the lateral wall of the cochlea. The SV maintains cochlear fluid homeostasis, generating the endocochlear potential that is required for sound transduction. In addition, the SV acts as an important blood-labyrinth barrier, tightly regulating the passage of molecules from the blood into the cochlea. A healthy SV is therefore vital for hearing function. Degeneration of the SV is a leading cause of age-related hearing loss, and has been associated with several hearing disorders, including Norrie disease, Meniere's disease, Alport syndrome, Waardenburg syndrome, and Cytomegalovirus-induced hearing loss. Despite the SV's important role in hearing, there is still much that remains to be discovered, including cell-specific function within the SV, mechanisms of SV degeneration, and potential protective or regenerative therapies. In this review, we discuss recent discoveries elucidating the molecular regulatory networks of SV function, mechanisms underlying degeneration of the SV, and otoprotective strategies for preventing drug-induced SV damage. We also highlight recent clinical developments for treating SV-related hearing loss and discuss future research trajectories in the field.
Collapse
Affiliation(s)
- Matsya R Thulasiram
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jacqueline M Ogier
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Alain Dabdoub
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Andresen NS, Winslow MK, Gregg L, Seal SM, Lehar M, Ward BK, Lauer AM. Insights into Presbycusis From the First Temporal Bone Laboratory Within the United States. Otol Neurotol 2022; 43:400-408. [PMID: 35061640 PMCID: PMC8852250 DOI: 10.1097/mao.0000000000003466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Johns Hopkins Otologic Research Laboratory was founded in 1924 as the first human temporal bone laboratory within the United States. To better understand the contributions of the Johns Hopkins Otologic Research Laboratory to our understanding of presbycusis, we consulted with a medical librarian and archivist to search the Alan Mason Chesney Medical Archives, PubMed, JSTOR, and Johns Hopkins Bulletin for published and unpublished works from the lab. Between 1924 and 1938, Samuel J. Crowe, the Chairman of Otolaryngology, and anatomist Stacy R. Guild amassed a collection of ∼1,800 temporal bones. This collection allowed for an unprecedented period of discovery related to otologic disease. They combined hearing thresholds measured by the recently invented audiometer with new techniques for temporal bone decalcification, sectioning, and staining, and a method for the graphic reconstruction of the cochlea. Crowe and Guild used this unique opportunity to correlate otopathology with hearing and to make the first detailed descriptions of the otopathology of presbycusis. In 1931 and 1934, they observed spiral ganglion neuron and outer hair cell loss in the basal turn of the cochlea in individuals with high-frequency hearing loss. These were the first studies to reveal that stria vascularis degeneration and middle ear pathology were not the most common causes for high-frequency hearing loss. Aside from revealing the primary driving factors of presbycusis, this work provided insight into the tonotopic organization of the cochlea. After initially being recruited to help raise money for the laboratory, medical illustrator Max Brödel used the vertical histologic cross-sections of the cochlea to produce illustrations of the ear. The decision to produce histologic sections in the plane of the superior semicircular canal likely influenced Brödel's illustrations that share a similar orientation and would later become widely circulated. Significant contributions from the Otologic Research Laboratory were also made by Mary Hardy, D.Sc., a woman who has previously received little recognition for her work. The sectioning of temporal bones was stopped in 1938 due to World War II, but much of Crowe's and Guild's work continued into the 1940s until a rift between the two resulted in the temporary closure of the laboratory in 1949. Nearly 100 years after its founding, discoveries from the Johns Hopkins Otologic Research Laboratory remain relevant and emphasize the importance of continued human temporal bone research to improve our understanding and treatment of otologic disease.
Collapse
Affiliation(s)
- Nicholas S. Andresen
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marjorie Kehoe Winslow
- Alan Mason Chesney Medical Archives, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lydia Gregg
- Department of Art as Applied to Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stella M. Seal
- Welch Medical Library, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mohamed Lehar
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bryan K. Ward
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amanda M. Lauer
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Kim YH, Schrode KM, Engel J, Vicencio-Jimenez S, Rodriguez G, Lee HK, Lauer AM. Auditory Behavior in Adult-Blinded Mice. J Assoc Res Otolaryngol 2022; 23:225-239. [PMID: 35084628 PMCID: PMC8964904 DOI: 10.1007/s10162-022-00835-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/31/2021] [Indexed: 10/19/2022] Open
Abstract
Cross-modal plasticity occurs when the function of remaining senses is enhanced following deprivation or loss of a sensory modality. Auditory neural responses are enhanced in the auditory cortex, including increased sensitivity and frequency selectivity, following short-term visual deprivation in adult mice (Petrus et al. Neuron 81:664-673, 2014). Whether or not these visual deprivation-induced neural changes translate into improved auditory perception and performance remains unclear. As an initial investigation of the effects of adult visual deprivation on auditory behaviors, CBA/CaJ mice underwent binocular enucleation at 3-4 weeks old and were tested on a battery of learned behavioral tasks, acoustic startle response (ASR), and prepulse inhibition (PPI) tests beginning at least 2 weeks after the enucleation procedure. Auditory brain stem responses (ABRs) were also measured to screen for potential effects of visual deprivation on non-behavioral hearing function. Control and enucleated mice showed similar tone detection sensitivity and frequency discrimination in a conditioned lick suppression test. Both groups showed normal reactivity to sound as measured by ASR in a quiet background. However, when startle-eliciting stimuli were presented in noise, enucleated mice showed decreased ASR amplitude relative to controls. Control and enucleated mice displayed no significant differences in ASR habituation, PPI tests, or ABR thresholds, or wave morphology. Our findings suggest that while adult-onset visual deprivation induces cross-modal plasticity at the synaptic and circuit levels, it does not substantially influence simple auditory behavioral performance.
Collapse
Affiliation(s)
- Ye-Hyun Kim
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Katrina M Schrode
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - James Engel
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Sergio Vicencio-Jimenez
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Gabriela Rodriguez
- Cell, Molecular, Developmental Biology, and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, USA
| | - Hey-Kyoung Lee
- Cell, Molecular, Developmental Biology, and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.,Zanvyl-Krieger Mind/Brain Institute and Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Amanda M Lauer
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, 21205, USA. .,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
24
|
Wang Y, Li X, Ren F, Liu S, Ma W, Zhang Y, Qi Z, Yang J, Li H, Fu X, Wang H, Gao F. High-Frequency Cochlear Amplifier Dysfunction: A Dominating Contribution to the Cognitive-Ear Link. Front Aging Neurosci 2022; 13:767570. [PMID: 35069174 PMCID: PMC8770931 DOI: 10.3389/fnagi.2021.767570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The objective of this study was to investigate the role of the high-frequency cochlear dysfunction in the cognitive-ear link.Methods: Seventy-four presbycusis patients (PC group) and seventy-one age-, sex-, and education-level matched normal hearing controls (NH group) were recruited in this study. Participants underwent a battery of cognitive tests estimated by Montreal Cognitive Assessment (MoCA), Stroop Color-Word Interference Test (Stroop), Symbol Digit Modalities Test (SDMT), Auditory Verbal Learning Test (AVLT), and Trail-Making Test (TMT-A and B), as well as auditory tests including distortion product otoacoustic emission (DPOAE), pure tone (PT) thresholds, and speech reception thresholds (SRT). Data were analyzed using the factor analysis, partial correlation analysis, multiple linear regression models, and mediation models.Results: Distortion product otoacoustic emission detection amplitudes and PT thresholds performed worse gradually from low to high frequencies in both the NH and PC groups. High-frequency DPOAE (H-DPOAE) was significantly correlated with cognitive domains in the PC group (AVLT: r = 0.30, p = 0.04; SDMT: r = 0.36, p = 0.01; Stroop: r = –0.32, p = 0.03; TMT-A: r = –0.40, p = 0.005; TMT-B: r = –0.34, p = 0.02). Multiple linear regression models showed that H-DPOAE predicted cognitive impairment effectively for aspects of memory (R2 = 0.27, 95% CI, 0.03 to 1.55), attention (R2 = 0.32, 95% CI, –6.18 to –0.40), processing speed (R2 = 0.37, 95% CI, 0.20 to 1.64), and executive function (TMT-A: R2 = 0.34, 95% CI, –5.52 to 1.03; TMT-B: R2 = 0.29, 95% CI, –11.30 to –1.12). H-DPOAE directly affected cognition and fully mediated the relationship between pure tone average (PTA)/SRT and cognitive test scores, excluding MoCA.Conclusion: This study has demonstrated that the high-frequency cochlear amplifier dysfunction has a direct predictive effect on the cognitive decline and makes a large contribution to the cognitive-ear link.
Collapse
Affiliation(s)
- Yao Wang
- School of Life Sciences, Tiangong University, Tianjin, China
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Xiao Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fuxin Ren
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Siqi Liu
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Wen Ma
- Department of Otolaryngology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Zhang
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Zhihang Qi
- School of Electrical and Electronic Engineering, Tiangong University, Tianjin, China
| | - Jing Yang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Honghao Li
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xinxing Fu
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Medical School, The University of Western Australia, Crawley, WA, Australia
| | - Huiquan Wang
- School of Life Sciences, Tiangong University, Tianjin, China
- *Correspondence: Huiquan Wang,
| | - Fei Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Fei Gao,
| |
Collapse
|
25
|
Climer LK, Hornak AJ, Murtha K, Yang Y, Cox AM, Simpson PL, Le A, Simmons DD. Deletion of Oncomodulin Gives Rise to Early Progressive Cochlear Dysfunction in C57 and CBA Mice. Front Aging Neurosci 2021; 13:749729. [PMID: 34867279 PMCID: PMC8634891 DOI: 10.3389/fnagi.2021.749729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Ca2+ signaling is a major contributor to sensory hair cell function in the cochlea. Oncomodulin (OCM) is a Ca2+ binding protein (CaBP) preferentially expressed in outer hair cells (OHCs) of the cochlea and few other specialized cell types. Here, we expand on our previous reports and show that OCM delays hearing loss in mice of two different genetic backgrounds: CBA/CaJ and C57Bl/6J. In both backgrounds, genetic disruption of Ocm leads to early progressive hearing loss as measured by auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE). In both strains, loss of Ocm reduced hearing across lifetime (hearing span) by more than 50% relative to wild type (WT). Even though the two WT strains have very different hearing spans, OCM plays a considerable and similar role within their genetic environment to regulate hearing function. The accelerated age-related hearing loss (ARHL) of the Ocm KO illustrates the importance of Ca2+ signaling in maintaining hearing health. Manipulation of OCM and Ca2+ signaling may reveal important clues to the systems of function/dysfunction that lead to ARHL.
Collapse
Affiliation(s)
- Leslie K Climer
- Department of Biology, Baylor University, Waco, TX, United States
| | - Aubrey J Hornak
- Department of Biology, Baylor University, Waco, TX, United States
| | - Kaitlin Murtha
- Department of Biology, Baylor University, Waco, TX, United States
| | - Yang Yang
- Department of Biology, Baylor University, Waco, TX, United States
| | - Andrew M Cox
- Department of Biology, Baylor University, Waco, TX, United States
| | | | - Andy Le
- Department of Biology, Baylor University, Waco, TX, United States
| | - Dwayne D Simmons
- Department of Biology, Baylor University, Waco, TX, United States.,Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| |
Collapse
|
26
|
Weinberg MM, Retta NA, Schrode KM, Screven LA, Peterson JL, Moss CF, Sterbing S, Lauer AM. Deafness in an auditory specialist, the big brown bat (Eptesicus fuscus). Hear Res 2021; 412:108377. [PMID: 34735823 DOI: 10.1016/j.heares.2021.108377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
Bats are long-lived animals that show presumed resistance to noise-induced and age-related hearing loss, which has been attributed to their dependence on sound processing for survival. Echolocation and basic auditory functions have been studied extensively in the big brown bat (Eptesicus fuscus), an insectivorous microchiropteran species. We conducted hearing tests and analysis of cochlear sensory cells in a group of big brown bats that exhibited anomalies in behavioral sonar tracking experiments and/or lacked neural responses to acoustic stimulation in subcortical auditory nuclei. We show for the first time the presence of profound deafness and extensive cochlear damage in an echolocating bat species. Auditory brainstem responses were abnormal or absent in these bats, and histological analyses of their cochleae revealed extensive loss of hair cells, supporting cells, and spiral ganglion neurons. The underlying cause of deafness is unknown.
Collapse
Affiliation(s)
- Madison M Weinberg
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Nazrawit A Retta
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Katrina M Schrode
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Laurel A Screven
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jamie L Peterson
- Art as Applied to Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Susanne Sterbing
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Amanda M Lauer
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
27
|
Vicencio-Jimenez S, Weinberg MM, Bucci-Mansilla G, Lauer AM. Olivocochlear Changes Associated With Aging Predominantly Affect the Medial Olivocochlear System. Front Neurosci 2021; 15:704805. [PMID: 34539335 PMCID: PMC8446540 DOI: 10.3389/fnins.2021.704805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Age-related hearing loss (ARHL) is a public health problem that has been associated with negative health outcomes ranging from increased frailty to an elevated risk of developing dementia. Significant gaps remain in our knowledge of the underlying central neural mechanisms, especially those related to the efferent auditory pathways. Thus, the aim of this study was to quantify and compare age-related alterations in the cholinergic olivocochlear efferent auditory neurons. We assessed, in young-adult and aged CBA mice, the number of cholinergic olivocochlear neurons, auditory brainstem response (ABR) thresholds in silence and in presence of background noise, and the expression of excitatory and inhibitory proteins in the ventral nucleus of the trapezoid body (VNTB) and in the lateral superior olive (LSO). In association with aging, we found a significant decrease in the number of medial olivocochlear (MOC) cholinergic neurons together with changes in the ratio of excitatory and inhibitory proteins in the VNTB. Furthermore, in old mice we identified a correlation between the number of MOC neurons and ABR thresholds in the presence of background noise. In contrast, the alterations observed in the lateral olivocochlear (LOC) system were less significant. The decrease in the number of LOC cells associated with aging was 2.7-fold lower than in MOC and in the absence of changes in the expression of excitatory and inhibitory proteins in the LSO. These differences suggest that aging alters the medial and lateral olivocochlear efferent pathways in a differential manner and that the changes observed may account for some of the symptoms seen in ARHL.
Collapse
Affiliation(s)
- Sergio Vicencio-Jimenez
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Madison M Weinberg
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Giuliana Bucci-Mansilla
- Laboratorio de Neurosistemas, Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Amanda M Lauer
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
28
|
Andresen NS, Coreas S, Villavisanis DF, Lauer AM. Comparison of Age-Related Pigmentary Changes in the Auditory and Vestibular Systems Within Mouse and Human Temporal Bones. Front Neurosci 2021; 15:680994. [PMID: 34054423 PMCID: PMC8163230 DOI: 10.3389/fnins.2021.680994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background Melanin pigmentation is present within the auditory and vestibular systems of the mammalian inner ear and may play a role in maintaining auditory and vestibular function. Melanocytes within the stria vascularis (SV) are necessary for the generation of the endocochlear potential (EP) and decreased EP has been linked to age-related hearing loss. Melanocytes and pigment-containing "dark cells" are present within the vestibular system, but have a less well-defined role. African-American individuals have increased pigmentation within the SV and vestibular system, which is hypothesized to be related to lower rates of age-related hearing loss and vestibular dysfunction. It remains unclear if increased pigmentation confers lifelong protection against hearing loss and vestibular dysfunction. Methods Mouse temporal bones were collected from juvenile (3-4 week) and aged (20-32 months) CBA/CaJ mice. Pediatric and adult human temporal bones from Caucasian or African-American individuals were examined from the Johns Hopkins Temporal Bone Collection. Information regarding Fitzpatrick skin type were unavailable, and self-identified race/ethnicity was used as a proxy. Images were taken using light microscopy at 20× magnification. ImageJ software (v1.53) was used to measure pigment within the SV and vestibular system. Results In mouse temporal bones pigmentation within the SV increased with age, but pigmentation within the vestibular system did not increase with age. In human temporal bones pigmentation within the SV increased with age and pigmentation within the vestibular system increased within the wall of the utricle, but not other regions of the vestibular system. African-American individuals had higher amounts of pigment within the SV and vestibular system, among both pediatric and adult populations. Conclusion Stria vascularis pigmentation increases with age in mouse and human temporal bones. Pigmentation within the vestibular system did not increase with age in mouse specimens and only increased within the utricular wall with age in human specimens. Individuals who identified as African-American had higher pigment content within the SV and vestibular system, both as children and as adults. These results highlight how similar age-related pigmentary changes occur in the auditory and vestibular systems across species and underscore the importance of racial/ethnic diversity in human temporal bone studies.
Collapse
Affiliation(s)
- Nicholas S Andresen
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sarah Coreas
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Amanda M Lauer
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
29
|
Eckert MA, Harris KC, Lang H, Lewis MA, Schmiedt RA, Schulte BA, Steel KP, Vaden KI, Dubno JR. Translational and interdisciplinary insights into presbyacusis: A multidimensional disease. Hear Res 2021; 402:108109. [PMID: 33189490 PMCID: PMC7927149 DOI: 10.1016/j.heares.2020.108109] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/19/2020] [Accepted: 10/25/2020] [Indexed: 12/18/2022]
Abstract
There are multiple etiologies and phenotypes of age-related hearing loss or presbyacusis. In this review we summarize findings from animal and human studies of presbyacusis, including those that provide the theoretical framework for distinct metabolic, sensory, and neural presbyacusis phenotypes. A key finding in quiet-aged animals is a decline in the endocochlear potential (EP) that results in elevated pure-tone thresholds across frequencies with greater losses at higher frequencies. In contrast, sensory presbyacusis appears to derive, in part, from acute and cumulative effects on hair cells of a lifetime of environmental exposures (e.g., noise), which often result in pronounced high frequency hearing loss. These patterns of hearing loss in animals are recognizable in the human audiogram and can be classified into metabolic and sensory presbyacusis phenotypes, as well as a mixed metabolic+sensory phenotype. However, the audiogram does not fully characterize age-related changes in auditory function. Along with the effects of peripheral auditory system declines on the auditory nerve, primary degeneration in the spiral ganglion also appears to contribute to central auditory system aging. These inner ear alterations often correlate with structural and functional changes throughout the central nervous system and may explain suprathreshold speech communication difficulties in older adults with hearing loss. Throughout this review we highlight potential methods and research directions, with the goal of advancing our understanding, prevention, diagnosis, and treatment of presbyacusis.
Collapse
Affiliation(s)
- Mark A Eckert
- Medical University of South Carolina, Department of Otolaryngology - Head and Neck Surgery, Charleston, SC 29425, USA.
| | - Kelly C Harris
- Medical University of South Carolina, Department of Otolaryngology - Head and Neck Surgery, Charleston, SC 29425, USA
| | - Hainan Lang
- Medical University of South Carolina, Department of Pathology and Laboratory Medicine, Charleston, SC 29425, USA
| | - Morag A Lewis
- King's College London, Wolfson Centre for Age-Related Diseases, London SE1 1UL, United Kingdom
| | - Richard A Schmiedt
- Medical University of South Carolina, Department of Otolaryngology - Head and Neck Surgery, Charleston, SC 29425, USA
| | - Bradley A Schulte
- Medical University of South Carolina, Department of Pathology and Laboratory Medicine, Charleston, SC 29425, USA; Medical University of South Carolina, Department of Otolaryngology - Head and Neck Surgery, Charleston, SC 29425, USA
| | - Karen P Steel
- King's College London, Wolfson Centre for Age-Related Diseases, London SE1 1UL, United Kingdom
| | - Kenneth I Vaden
- Medical University of South Carolina, Department of Otolaryngology - Head and Neck Surgery, Charleston, SC 29425, USA
| | - Judy R Dubno
- Medical University of South Carolina, Department of Otolaryngology - Head and Neck Surgery, Charleston, SC 29425, USA; Medical University of South Carolina, Department of Pathology and Laboratory Medicine, Charleston, SC 29425, USA
| |
Collapse
|
30
|
Age-related and noise-induced hearing loss alters grasshopper mouse (Onychomys) vocalizations. Hear Res 2021; 404:108210. [PMID: 33713993 DOI: 10.1016/j.heares.2021.108210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 01/27/2021] [Accepted: 02/10/2021] [Indexed: 11/23/2022]
Abstract
Age-related and noise-induced hearing loss disorders are among the most common pathologies affecting Americans across their lifespans. Loss of auditory feedback due to hearing disorders is correlated with changes in voice and speech-motor control in humans. Although rodents are increasingly used to model human age- and noise-induced hearing loss, few studies have assessed vocal changes after acoustic trauma. Northern grasshopper mice (Onychomys leucogaster) represent a candidate model because their hearing sensitivity is matched to the frequencies of long-distance vocalizations that are produced using vocal fold vibrations similar to human speech. In this study, we quantified changes in auditory brainstem responses (ABRs) and vocalizations related to aging and noise-induced acoustic trauma. Mice showed a progressive decrease in hearing sensitivity across 4-32 kHz, with males losing hearing more rapidly than females. In addition, noise-exposed mice had a 61.55 dB SPL decrease in ABR sensitivity following a noise exposure, with some individuals exhibiting a 21.25 dB recovery 300-330 days after noise exposure. We also found that older grasshopper mice produced calls with lower fundamental frequency. Sex differences were measured in duration of calls with females producing longer calls with age. Our findings indicate that grasshopper mice experience age- and noise- induced hearing loss and concomitant changes in vocal output, making them a promising model for hearing and communication disorders.
Collapse
|
31
|
Lauer AM, Jimenez SV, Delano PH. Olivocochlear efferent effects on perception and behavior. Hear Res 2021; 419:108207. [PMID: 33674070 DOI: 10.1016/j.heares.2021.108207] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/18/2021] [Accepted: 02/12/2021] [Indexed: 01/13/2023]
Abstract
The role of the mammalian auditory olivocochlear efferent system in hearing has long been the subject of debate. Its ability to protect against damaging noise exposure is clear, but whether or not this is the primary function of a system that evolved in the absence of industrial noise remains controversial. Here we review the behavioral consequences of olivocochlear activation and diminished olivocochlear function. Attempts to demonstrate a role for hearing in noise have yielded conflicting results in both animal and human studies. A role in selective attention to sounds in the presence of distractors, or attention to visual stimuli in the presence of competing auditory stimuli, has been established in animal models, but again behavioral studies in humans remain equivocal. Auditory processing deficits occur in models of congenital olivocochlear dysfunction, but these deficits likely reflect abnormal central auditory development rather than direct effects of olivocochlear feedback. Additional proposed roles in age-related hearing loss, tinnitus, hyperacusis, and binaural or spatial hearing, are intriguing, but require additional study. These behavioral studies almost exclusively focus on medial olivocochlear effects, and many relied on lesioning techniques that can have unspecific effects. The consequences of lateral olivocochlear and of corticofugal pathway activation for perception remain unknown. As new tools for targeted manipulation of olivocochlear neurons emerge, there is potential for a transformation of our understanding of the role of the olivocochlear system in behavior across species.
Collapse
Affiliation(s)
- Amanda M Lauer
- David M. Rubenstein Center for Hearing Research and Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, 515 Traylor Building, 720 Rutland Ave, Baltimore, MD 21205, United States; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, United States.
| | - Sergio Vicencio Jimenez
- David M. Rubenstein Center for Hearing Research and Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, 515 Traylor Building, 720 Rutland Ave, Baltimore, MD 21205, United States; Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paul H Delano
- Departments of Otolaryngology and Neuroscience, Faculty of Medicine, University of Chile, Santiago, Chile; Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Advanced Center for Electrical and Electronic Engineer, AC3E, Universidad Técnica Federico Santa María, Valparaíso, Chile
| |
Collapse
|
32
|
Long term changes to auditory sensitivity following blast trauma in mice. Hear Res 2021; 403:108201. [PMID: 33636682 DOI: 10.1016/j.heares.2021.108201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/21/2021] [Accepted: 02/06/2021] [Indexed: 11/21/2022]
Abstract
Blast trauma is a common acoustic/physical insult occurring in modern warfare. Twenty percent of active duty military come into close proximity to explosions and experience mild to severe sensory deficits. The prevalence of such injuries is high but correlating auditory sensitivity changes with the initial insult is difficult because injury and evaluations are often separated by long time periods. Here, auditory sensitivity was measured before and after a traumatic blast in adult CBA/CaJ mice using auditory brainstem responses, distortion production otoacoustic emissions, and behavioral detection of pure tones. These measurements included baseline auditory sensitivity prior to injury in all mice, and again at 3, 30, and 90 days after the blast in the two physiological groups, and daily for up to 90 days in the behavioral group. Mice in all groups experienced an initial deterioration in auditory sensitivity, though physiological measurements showed evidence of recovery that behavioral measurements did not. Amplitudes and latencies of ABR waves may reflect additional changes beyond the peripheral damage shown by the threshold changes and should be explored further. The present work addresses a major gap in the current acoustic trauma literature both in terms of comparing physiological and behavioral methods, as well as measuring the time course of recovery.
Collapse
|