1
|
Okuma R, Kobayashi S, Kobayashi S, Arai Y, Matsumoto N, Motoyoshi M, Kobayashi M, Fujita S. The cortical areas processing periodontal ligament nociception in mice. J Oral Biosci 2025; 67:100597. [PMID: 39667668 DOI: 10.1016/j.job.2024.100597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVES Toothaches are often poorly localized. Although periodontal pain is better localized, it can spread to other areas. Ultimately, the cerebral cortex processes nociception, with somatotopic organization possibly playing a role in localizing the origin. However, the exact cortical area in the periodontal ligament (PDL) remains unclear. METHODS This study examined cortical responses to electrical stimulation of the molar PDL in anesthetized male mice using in vivo optical imaging with a voltage-sensitive dye, autofluorescent flavin fluorescence, and immunohistochemistry for c-Fos protein expression. RESULTS On optical imaging, cortical responses to the stimulation of the ipsilateral and contralateral PDL of the upper and lower teeth were observed in the primary somatosensory cortex (S1) and area from the insular cortex (IC) to the ventral edge of the secondary somatosensory cortex (S2), defined as the area caudal to the middle cerebral artery (C-area). Responses in S1 were faint and unstable, but were consistent in the C-area. The initial response locations were similar regardless of which PDL was stimulated, and the activated areas in the C-area almost overlapped. Three-dimensional construction of c-Fos-immunopositive cells responding to upper or lower PDL stimulation revealed bilateral distribution in the cingulate gyrus, secondary auditory cortex, temporal association cortex, ectorhinal cortex, and IC, but not in the S1 and S2. CONCLUSION These results suggest that the somatotopic organization of the S1, S2, and IC cannot explain the localization of PDL nociception. The predominance of responses in the contralateral IC may provide clues for identifying the laterality.
Collapse
Affiliation(s)
- Risako Okuma
- Department of Orthodontics, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Biology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Oral Structural and Functional Biology, Nihon University Graduate School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Shutaro Kobayashi
- Department of Biology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Oral and Maxillofacial Surgery, Kameda General Hospital, 929 Higashi-cho, Kamogawa City, Chiba 296-8602, Japan
| | - Satomi Kobayashi
- Department of Biology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Yoshinori Arai
- Department of Oral and Maxillofacial Radiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Advanced Dental Treatment, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Naoyuki Matsumoto
- Department of Pathology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama City, Kanagawa 230-8501, Japan
| | - Mitsuru Motoyoshi
- Department of Orthodontics, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Clinical Research, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Satoshi Fujita
- Department of Biology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| |
Collapse
|
2
|
Chen H, Fu S, Zhi X, Wang Y, Liu F, Li Y, Ren F, Zhang J, Ren L, Wang Y. Research Progress on Neural Processing of Hand and Forearm Tactile Sensation: A Review Based on fMRI Research. Neuropsychiatr Dis Treat 2025; 21:193-212. [PMID: 39906284 PMCID: PMC11792622 DOI: 10.2147/ndt.s488059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Tactile perception is one of the important ways through which humans interact with the external environment. Similar to the neural processing in visual and auditory systems, the neural processing of tactile information is a complex procedure that transforms this information into sensory signals. Neuroimaging techniques, such as functional Magnetic Resonance Imaging (fMRI), provide compelling evidence indicating that different types of tactile signals undergo independent or collective processing within multiple brain regions. This review focuses on fMRI studies employing both task-based (block design or event-related design) and resting-state paradigms. These studies use general linear models (GLM) to identify brain regions activated during touch processing, or employ functional connectivity(FC) analysis to examine interactions between brain regions, thereby exploring the neural mechanisms underlying the central nervous system's processing of various aspects of tactile sensation, including discriminative touch and affective touch. The discussion extends to exploring changes in tactile processing patterns observed in certain disease states. Recognizing the analogy between pain and touch processing patterns, we conclude by summarizing the interaction between touch and pain. Currently, fMRI-based studies have made significant progress in the field of tactile neural processing. These studies not only deepen our understanding of tactile perception but also provide new perspectives for future neuroscience studies.
Collapse
Affiliation(s)
- Hao Chen
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Shifang Fu
- Rehabilitation Department, Tianjin University of Traditional Chinese Medicine Second Affiliated Hospital, Tianjin, 300250, People’s Republic of China
| | - Xiaoyu Zhi
- Rehabilitation Department, Tianjin University of Traditional Chinese Medicine Second Affiliated Hospital, Tianjin, 300250, People’s Republic of China
| | - Yu Wang
- Rehabilitation Department, Tianjin University of Traditional Chinese Medicine Second Affiliated Hospital, Tianjin, 300250, People’s Republic of China
| | - Fanqi Liu
- Rehabilitation Department, Tianjin University of Traditional Chinese Medicine Second Affiliated Hospital, Tianjin, 300250, People’s Republic of China
| | - Yuetong Li
- Rehabilitation Department, Tianjin University of Traditional Chinese Medicine Second Affiliated Hospital, Tianjin, 300250, People’s Republic of China
| | - Fengjiao Ren
- Rehabilitation Department, Tianjin University of Traditional Chinese Medicine Second Affiliated Hospital, Tianjin, 300250, People’s Republic of China
| | - Junfeng Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
- Rehabilitation Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People’s Republic of China
| | - Longsheng Ren
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Yanguo Wang
- Rehabilitation Department, Tianjin University of Traditional Chinese Medicine Second Affiliated Hospital, Tianjin, 300250, People’s Republic of China
| |
Collapse
|
3
|
Li JZ, Mills EP, Osborne NR, Cheng JC, Sanmugananthan VV, El-Sayed R, Besik A, Kim JA, Bosma RL, Rogachov A, Davis KD. Individual differences in conditioned pain modulation are associated with functional connectivity within the descending antinociceptive pathway. Pain 2024:00006396-990000000-00774. [PMID: 39661368 DOI: 10.1097/j.pain.0000000000003478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/11/2024] [Indexed: 12/12/2024]
Abstract
ABSTRACT The perception of pain and ability to cope with it varies widely amongst people, which in part could be due to the presence of inhibitory (antinociceptive) or facilitatory (pronociceptive) effects in conditioned pain modulation (CPM). This study examined whether individual differences in CPM reflect functional connectivity (FC) strengths within nodes of the descending antinociceptive pathway (DAP). A heat-based CPM paradigm and resting-state functional magnetic resonance imaging (rs-fMRI) were used to test the hypothesis that an individual's capacity to exhibit inhibitory CPM (changes in test stimuli [TS] pain due to a conditioning stimulus [CS]) reflects FC of the subgenual anterior cingulate cortex (sgACC), periaqueductal gray (PAG), and rostral ventromedial medulla (RVM). A total of 151 healthy participants (72 men, 79 women) underwent CPM testing and rs-fMRI. Three types of CPM were identified based on the effect of the CS on TS pain: (1) Antinociception: CS reduced TS pain in 45% of participants, (2) No-CPM: CS did not change TS pain in 15% of participants, and (3) Pronociception: CS increased TS pain in 40% of participants. Only the Antinociceptive subgroup exhibited FC between the left sgACC and PAG, right sgACC and PAG, and RVM and PAG. Furthermore, only the Antinociceptive subgroup exhibited a correlation of both left and right sgACC-RVM FC (medium effect sizes) with CPM effect magnitude. Women, compared with men were more likely to be categorized as pronociceptive. These data support the proposition that FC of the DAP reflects or contributes to inhibitory CPM.
Collapse
Affiliation(s)
- Janet Z Li
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Emily P Mills
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Natalie R Osborne
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Joshua C Cheng
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Vaidhehi V Sanmugananthan
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rima El-Sayed
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Ariana Besik
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Junseok A Kim
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rachael L Bosma
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Anton Rogachov
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Karen D Davis
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Lisi MP, Fusaro M, Aglioti SM. Visual perspective and body ownership modulate vicarious pain and touch: A systematic review. Psychon Bull Rev 2024; 31:1954-1980. [PMID: 38429591 PMCID: PMC11543731 DOI: 10.3758/s13423-024-02477-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 03/03/2024]
Abstract
We conducted a systematic review investigating the influence of visual perspective and body ownership (BO) on vicarious brain resonance and vicarious sensations during the observation of pain and touch. Indeed, the way in which brain reactivity and the phenomenological experience can be modulated by blurring the bodily boundaries of self-other distinction is still unclear. We screened Scopus and WebOfScience, and identified 31 articles, published from 2000 to 2022. Results show that assuming an egocentric perspective enhances vicarious resonance and vicarious sensations. Studies on synaesthetes suggest that vicarious conscious experiences are associated with an increased tendency to embody fake body parts, even in the absence of congruent multisensory stimulation. Moreover, immersive virtual reality studies show that the type of embodied virtual body can affect high-order sensations such as appropriateness, unpleasantness, and erogeneity, associated with the touched body part and the toucher's social identity. We conclude that perspective plays a key role in the resonance with others' pain and touch, and full-BO over virtual avatars allows investigation of complex aspects of pain and touch perception which would not be possible in reality.
Collapse
Affiliation(s)
- Matteo P Lisi
- CLN2S@Sapienza, Fondazione Istituto Italiano di Tecnologia (IIT) and Department of Psychology, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
- IRCCS, Santa Lucia Foundation, Via Ardeatina 306, 00179, Rome, Italy.
| | - Martina Fusaro
- CLN2S@Sapienza, Fondazione Istituto Italiano di Tecnologia (IIT) and Department of Psychology, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
- IRCCS, Santa Lucia Foundation, Via Ardeatina 306, 00179, Rome, Italy
| | - Salvatore Maria Aglioti
- CLN2S@Sapienza, Fondazione Istituto Italiano di Tecnologia (IIT) and Department of Psychology, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
- IRCCS, Santa Lucia Foundation, Via Ardeatina 306, 00179, Rome, Italy
| |
Collapse
|
5
|
Reddy NA, Clements RG, Brooks JCW, Bright MG. Simultaneous cortical, subcortical, and brainstem mapping of sensory activation. Cereb Cortex 2024; 34:bhae273. [PMID: 38940832 PMCID: PMC11212354 DOI: 10.1093/cercor/bhae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
Nonpainful tactile sensory stimuli are processed in the cortex, subcortex, and brainstem. Recent functional magnetic resonance imaging studies have highlighted the value of whole-brain, systems-level investigation for examining sensory processing. However, whole-brain functional magnetic resonance imaging studies are uncommon, in part due to challenges with signal to noise when studying the brainstem. Furthermore, differentiation of small sensory brainstem structures such as the cuneate and gracile nuclei necessitates high-resolution imaging. To address this gap in systems-level sensory investigation, we employed a whole-brain, multi-echo functional magnetic resonance imaging acquisition at 3T with multi-echo independent component analysis denoising and brainstem-specific modeling to enable detection of activation across the entire sensory system. In healthy participants, we examined patterns of activity in response to nonpainful brushing of the right hand, left hand, and right foot (n = 10 per location), and found the expected lateralization, with distinct cortical and subcortical responses for upper and lower limb stimulation. At the brainstem level, we differentiated the adjacent cuneate and gracile nuclei, corresponding to hand and foot stimulation respectively. Our findings demonstrate that simultaneous cortical, subcortical, and brainstem mapping at 3T could be a key tool to understand the sensory system in both healthy individuals and clinical cohorts with sensory deficits.
Collapse
Affiliation(s)
- Neha A Reddy
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL 60208, United States
| | - Rebecca G Clements
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL 60208, United States
| | - Jonathan C W Brooks
- School of Psychology, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Molly G Bright
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL 60208, United States
| |
Collapse
|
6
|
Mehnert J, Tinnermann A, Basedau H, May A. Functional representation of trigeminal nociceptive input in the human periaqueductal gray. SCIENCE ADVANCES 2024; 10:eadj8213. [PMID: 38507498 PMCID: PMC10954197 DOI: 10.1126/sciadv.adj8213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024]
Abstract
The periaqueductal gray (PAG) is located in the mesencephalon in the upper brainstem and, as part of the descending pain modulation, is considered a crucial structure for pain control. Its modulatory effect on painful sensation is often seen as a systemic function affecting the whole body similarly. However, recent animal data suggest some kind of somatotopy in the PAG. This would make the PAG capable of dermatome-specific analgesic function. We electrically stimulated the three peripheral dermatomes of the trigemino-cervical complex and the greater occipital nerve in 61 humans during optimized brainstem functional magnetic resonance imaging. We provide evidence for a fine-grained and highly specific somatotopic representation of nociceptive input in the PAG in humans and a functional connectivity between the individual representations of the peripheral nerves in the PAG and the brainstem nuclei of these nerves. Our data suggest that the downstream antinociceptive properties of the PAG may be rather specific down to the level of individual dermatomes.
Collapse
Affiliation(s)
| | | | - Hauke Basedau
- Department of Systems Neuroscience, University Medical Center Eppendorf, 20146 Hamburg, Germany
| | | |
Collapse
|
7
|
Kadakia F, Khadka A, Yazell J, Davidson S. Chemogenetic Modulation of Posterior Insula CaMKIIa Neurons Alters Pain and Thermoregulation. THE JOURNAL OF PAIN 2024; 25:766-780. [PMID: 37832899 PMCID: PMC10922377 DOI: 10.1016/j.jpain.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
The posterior insular cortex (PIC) is well positioned to perform somatosensory-limbic integration; yet, the function of neuronal subsets within the PIC in processing the sensory and affective dimensions of pain remains unclear. Here, we employ bidirectional chemogenetic modulation to characterize the function of PIC CaMKIIa-expressing excitatory neurons in a comprehensive array of sensory, affective, and thermoregulatory behaviors. Excitatory pyramidal neurons in the PIC were found to be sensitized under inflammatory pain conditions. Chemogenetic activation of excitatory CaMKIIa-expressing PIC neurons in non-injured conditions produced an increase in reflexive and affective pain- and anxiety-like behaviors. Moreover, activation of PIC CaMKIIa-expressing neurons during inflammatory pain conditions exacerbated hyperalgesia and decreased pain tolerance. However, Chemogenetic activation did not alter heat nociception via hot plate latency or body temperature. Conversely, inhibiting CaMKIIa-expressing neurons did not alter either sensory or affective pain-like behaviors in non-injured or under inflammatory pain conditions, but it did decrease body temperature and decreased hot plate latency. Our findings reveal that PIC CaMKIIa-expressing neurons are a critical hub for producing both sensory and affective pain-like behaviors and important for thermoregulatory processing. PERSPECTIVE: The present study reveals that activation of the posterior insula produces hyperalgesia and negative affect, and has a role in thermal tolerance and thermoregulation. These findings highlight the insula as a key player in contributing to the multidimensionality of pain.
Collapse
Affiliation(s)
- Feni Kadakia
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Akansha Khadka
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Jake Yazell
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Steve Davidson
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
8
|
Mandonnet V, Obaid S, Descoteaux M, St-Onge E, Devaux B, Levé C, Froelich S, Rheault F, Mandonnet E. Electrostimulation of the white matter of the posterior insula and medial operculum: perception of vibrations, heat, and pain. Pain 2024; 165:565-572. [PMID: 37862047 DOI: 10.1097/j.pain.0000000000003069] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/02/2023] [Indexed: 10/21/2023]
Abstract
ABSTRACT This study aimed to characterize the sensory responses observed when electrically stimulating the white matter surrounding the posterior insula and medial operculum (PIMO). We reviewed patients operated on under awake conditions for a glioma located in the temporoparietal junction. Patients' perceptions were retrieved from operative reports. Stimulation points were registered in the Montreal Neurological Institute template. A total of 12 stimulation points in 8 patients were analyzed. Painful sensations in the contralateral leg were reported (5 sites in 5 patients) when stimulating the white matter close to the parcel OP2/3 of the Glasser atlas. Pain had diverse qualities: burning, tingling, crushing, or electric shock. More laterally, in the white matter of OP1, pain and heat sensations in the upper part of the body were described (5 sites in 2 patients). Intermingled with these sites, vibration sensations were also reported (3 sites in 2 patients). Based on the tractograms of 44 subjects from the Human Connectome Project data set, we built a template of the pathways linking the thalamus to OP2/3 and OP1. Pain sites were located in the thalamo-OP2/3 and thalamo-OP1 tracts. Heat sites were located in the thalamo-OP1 tract. In the 227 awake surgeries performed for a tumor located outside of the PIMO region, no patients ever reported pain or heat sensations when stimulating the white matter. Thus, we propose that the thalamo-PIMO connections constitute the main cortical inputs for nociception and thermoception and emphasize that preserving these fibers is of utmost importance to prevent the postoperative onset of a debilitating insulo-opercular pain syndrome.
Collapse
Affiliation(s)
- Valéry Mandonnet
- Frontlab, Paris Brain Institute, CNRS UMR 7225, INSERM U1127, Paris, France
- Department of Neurosurgery, Lariboisière Hospital, Paris, France
- Université de Paris Cité, Paris, France
| | - Sami Obaid
- Division of Neurosurgery, Department of Surgery, University of Montreal Hospital Center (CHUM), Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
- Neuroscience Research Axis, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab, Department of Computer Science, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Imeka Solutions, Sherbrooke, QC, Canada
| | - Etienne St-Onge
- Neuroimaging and Surgical Technologies Laboratory (NIST), Montreal Neurological Institute (MNI), Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Computer Science and Engineering, Université du Québec en Outaouais, Saint-Jérôme, QC, Canada
| | - Bertrand Devaux
- Department of Neurosurgery, Lariboisière Hospital, Paris, France
- Université de Paris Cité, Paris, France
| | - Charlotte Levé
- Department of Anesthesiology, Lariboisière Hospital, Paris, France
| | - Sébastien Froelich
- Department of Neurosurgery, Lariboisière Hospital, Paris, France
- Université de Paris Cité, Paris, France
| | - François Rheault
- Sherbrooke Connectivity Imaging Lab, Department of Computer Science, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Emmanuel Mandonnet
- Frontlab, Paris Brain Institute, CNRS UMR 7225, INSERM U1127, Paris, France
- Department of Neurosurgery, Lariboisière Hospital, Paris, France
- Université de Paris Cité, Paris, France
| |
Collapse
|
9
|
Hirata A, Niitsu M, Phang CR, Kodera S, Kida T, Rashed EA, Fukunaga M, Sadato N, Wasaka T. High-resolution EEG source localization in personalized segmentation-free head model with multi-dipole fitting. Phys Med Biol 2024; 69:055013. [PMID: 38306964 DOI: 10.1088/1361-6560/ad25c3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/02/2024] [Indexed: 02/04/2024]
Abstract
Objective. Electroencephalograms (EEGs) are often used to monitor brain activity. Several source localization methods have been proposed to estimate the location of brain activity corresponding to EEG readings. However, only a few studies evaluated source localization accuracy from measured EEG using personalized head models in a millimeter resolution. In this study, based on a volume conductor analysis of a high-resolution personalized human head model constructed from magnetic resonance images, a finite difference method was used to solve the forward problem and to reconstruct the field distribution.Approach. We used a personalized segmentation-free head model developed using machine learning techniques, in which the abrupt change of electrical conductivity occurred at the tissue interface is suppressed. Using this model, a smooth field distribution was obtained to address the forward problem. Next, multi-dipole fitting was conducted using EEG measurements for each subject (N= 10 male subjects, age: 22.5 ± 0.5), and the source location and electric field distribution were estimated.Main results.For measured somatosensory evoked potential for electrostimulation to the wrist, a multi-dipole model with lead field matrix computed with the volume conductor model was found to be superior than a single dipole model when using personalized segmentation-free models (6/10). The correlation coefficient between measured and estimated scalp potentials was 0.89 for segmentation-free head models and 0.71 for conventional segmented models. The proposed method is straightforward model development and comparable localization difference of the maximum electric field from the target wrist reported using fMR (i.e. 16.4 ± 5.2 mm) in previous study. For comparison, DUNEuro based on sLORETA was (EEG: 17.0 ± 4.0 mm). In addition, somatosensory evoked magnetic fields obtained by Magnetoencephalography was 25.3 ± 8.5 mm using three-layer sphere and sLORETA.Significance. For measured EEG signals, our procedures using personalized head models demonstrated that effective localization of the somatosensory cortex, which is located in a non-shallower cortex region. This method may be potentially applied for imaging brain activity located in other non-shallow regions.
Collapse
Affiliation(s)
- Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Masamune Niitsu
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Chun Ren Phang
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Sachiko Kodera
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Tetsuo Kida
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Japan
| | - Essam A Rashed
- Graduate School of Information Science, University of Hyogo, Kobe 650-0047, Japan
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Norihiro Sadato
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Toshiaki Wasaka
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| |
Collapse
|
10
|
Mironer YE, Hutcheson JK, Haasis JC, Worobel MA, Sakla ES. Epidural Laterality and Pain Relief With Burst Spinal Cord Stimulation. Neuromodulation 2023; 26:1465-1470. [PMID: 36180323 DOI: 10.1016/j.neurom.2022.04.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/08/2022] [Accepted: 04/24/2022] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Burst spinal cord stimulation (SCS) can achieve excellent clinical reduction of pain, alongside improvements in function, quality of life, and related outcomes. Good outcomes likely depend on good lead placement, thereby enabling recruitment of the relevant neural targets. Several competing approaches exist for lead implantation, such as the use of single vs bilateral leads and leads lateralized vs placed at midline. The objective of this study was to examine the relationship between paresthesia locations and pain relief with burst SCS in a prospective double-blind crossover design. MATERIALS AND METHODS All participants had bilateral back and leg pain, with more intense pain experienced on one side of the body. A trial SCS system was placed, during which brief intraoperative mapping with conventional stimulation was used to characterize paresthesia locations. Two programs for subperception burst SCS treatment were then applied for two days each, in random order: bilateral paresthesia coverage vs unilateral paresthesia coverage contralateral to the side of the body with more intense pain. Pain ratings (visual analog scale [VAS]) and pain reductions (scaling pain relief [SPR]) were reported for each. RESULTS Of the 30 participants who completed the study, 24 (80%) had good pain relief with at least one program. A baseline VAS score of 8.75 was reduced to 5.98 with contralateral stimulation and to 2.88 with bilateral stimulation; with SPR, this equated to 31.25% and 67.50% improvement, respectively. The incremental benefit of bilateral stimulation over contralateral stimulation was statistically significant (p < 0.001). Of the 24 participants, 87.5% preferred bilateral stimulation, whereas 12.5% preferred unilateral stimulation. The six participants who failed the trial had no preference. DISCUSSION When burst stimulation is delivered to spinal targets that can generate paresthesias contralateral to the side of worst pain, suboptimal therapy is achieved. Thus, attention to laterality and pain coverage is critical for successful therapy, and it may be important to carefully consider lead implantation techniques.
Collapse
Affiliation(s)
| | | | - John C Haasis
- Carolinas Center for Advanced Management of Pain, Greenville, SC, USA
| | - Michael A Worobel
- Carolinas Center for Advanced Management of Pain, Greenville, SC, USA
| | - Emmanuel S Sakla
- Carolinas Center for Advanced Management of Pain, Greenville, SC, USA
| |
Collapse
|
11
|
Tang X, Li B, Wang M, Gao L, He Y, Xia G. Frequency-Dependent Alterations in the Amplitude of Low-Frequency Fluctuations in Patients with Acute Pericoronitis: A Resting-State fMRI Study. J Pain Res 2023; 16:501-511. [PMID: 36815124 PMCID: PMC9939792 DOI: 10.2147/jpr.s397523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/25/2023] [Indexed: 02/17/2023] Open
Abstract
Background Acute pericoronitis (AP) is a common cause of odontogenic toothache. Pain significantly affects the structure and function of the brain, but alterations in spontaneous brain activity in patients with AP are unclear. Purpose To apply the amplitude of low-frequency fluctuations (ALFF) method in resting-state functional magnetic resonance imaging to investigate altered spontaneous brain activity characteristics in patients with AP in different frequency bands (typical, slow-4, and slow-5 bands) and assess their correlation with clinical scores. Patients and Methods Thirty-four right-handed patients with AP and 31 healthy controls (HC), matched for age, sex, education, and right-handedness, were enrolled. All subjects underwent resting-state functional magnetic resonance imaging. DPABI software was used for data preprocessing and extracting the ALFF values in different frequency bands. Subsequently, differences in ALFF values in the three bands were compared between the two groups. Correlation between ALFF values in the differential brain regions and clinical scores was assessed. Results In the typical band, ALFF values were higher in the left insula, left superior occipital gyrus, left inferior parietal lobule, left posterior cerebellar lobule, and right postcentral gyrus in the AP than in the HC group. In the slow-4 band, ALFF values in the left superior occipital gyrus, right superior occipital gyrus, and right middle occipital gyrus were higher, and those in the right cingulate gyrus and right superior temporal gyrus were lower in the AP than in the HC group. In the slow-5 band, the ALFF values in the left insula and left superior occipital gyrus were higher in the AP than in the HC group. The ALFF values of the typical bands in the left insula, left inferior parietal lobule, and right postcentral gyrus correlated negatively, those of the slow-4 band in the right middle occipital gyrus correlated positively, and those of the slow-5 band in the left insula correlated negatively with the visual analogue scale score in the AP group. Conclusion Our results suggested that the intrinsic brain activity of AP patients was abnormal and frequency-dependent. This provides new insights to explore the neurophysiological mechanisms of AP.
Collapse
Affiliation(s)
- Xin Tang
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Bin Li
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Mengting Wang
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Yulin He
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China,Correspondence: Yulin He; Guojin Xia, Department of Radiology, the First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiang Xi, 330006, People’s Republic of China, Tel +86 0791 8869 3802, Email ;
| | - Guojin Xia
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
12
|
Vision- and touch-dependent brain correlates of body-related mental processing. Cortex 2022; 157:30-52. [PMID: 36272330 DOI: 10.1016/j.cortex.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/17/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Abstract
In humans, the nature of sensory input influences body-related mental processing. For instance, behavioral differences (e.g., response time) can be found between mental spatial transformations (e.g., mental rotation) of viewed and touched body parts. It can thus be hypothesized that distinct brain activation patterns are associated with such sensory-dependent body-related mental processing. However, direct evidence that the neural correlates of body-related mental processing can be modulated by the nature of the sensory stimuli is still missing. We thus analyzed event-related functional magnetic resonance imaging (fMRI) data from thirty-one healthy participants performing mental rotation of visually- (images) and haptically-presented (plastic) hands. We also dissociated the neural activity related to rotation or task-related performance using models that either regressed out or included the variance associated with response time. Haptically-mediated mental rotation recruited mostly the sensorimotor brain network. Visually-mediated mental rotation led to parieto-occipital activations. In addition, faster mental rotation was associated with sensorimotor activity, while slower mental rotation was associated with parieto-occipital activations. The fMRI results indicated that changing the type of sensory inputs modulates the neural correlates of body-related mental processing. These findings suggest that distinct sensorimotor brain dynamics can be exploited to execute similar tasks depending on the available sensory input. The present study can contribute to a better evaluation of body-related mental processing in experimental and clinical settings.
Collapse
|
13
|
Deak B, Eggert T, Mayr A, Stankewitz A, Filippopulos F, Jahn P, Witkovsky V, Straube A, Schulz E. Intrinsic Network Activity Reflects the Fluctuating Experience of Tonic Pain. Cereb Cortex 2022; 32:4098-4109. [PMID: 35024821 DOI: 10.1093/cercor/bhab468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/14/2022] Open
Abstract
Although we know sensation is continuous, research on long-lasting and continuously changing stimuli is scarce and the dynamic nature of ongoing cortical processing is largely neglected. In a longitudinal study, 38 participants across four sessions were asked to continuously rate the intensity of an applied tonic heat pain for 20 min. Using group-independent component analysis and dual regression, we extracted the subjects' time courses of intrinsic network activity. The relationship between the dynamic fluctuation of network activity with the varying time courses of three pain processing entities was computed: pain intensity, the direction of pain intensity changes, and temperature. We were able to dissociate the spatio-temporal patterns of objective (temperature) and subjective (pain intensity/changes of pain intensity) aspects of pain processing in the human brain. We found two somatosensory networks with distinct functions: one network that encodes the small fluctuations in temperature and consists mainly of bilateral primary somatosensory cortex (SI), and a second right-lateralized network that encodes the intensity of the subjective experience of pain consisting of SI, secondary somatosensory cortex, the posterior cingulate cortex, and the thalamus. We revealed the somatosensory dynamics that build up toward a current subjective percept of pain. The timing suggests a cascade of subsequent processing steps toward the current pain percept.
Collapse
Affiliation(s)
- Bettina Deak
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Thomas Eggert
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Astrid Mayr
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.,Department of Radiology, LMU University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Anne Stankewitz
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Filipp Filippopulos
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Pauline Jahn
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Viktor Witkovsky
- Department of Theoretical Methods, Institute of Measurement Science, Slovak Academy of Sciences, 841 04 Bratislava, Slovak Republic
| | - Andreas Straube
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Enrico Schulz
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.,Department of Medical Psychology, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| |
Collapse
|
14
|
Rahimi F, Nejati V, Nassadj G, Ziaei B, Mohammadi HK. The effect of transcranial direct stimulation as an add-on treatment to conventional physical therapy on pain intensity and functional ability in individuals with knee osteoarthritis: A randomized controlled trial. Neurophysiol Clin 2021; 51:507-516. [PMID: 34518098 DOI: 10.1016/j.neucli.2021.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To investigate the effect of adding transcranial direct current stimulation (tDCS) to conventional physiotherapy treatment (PT) on pain and performance of individuals with knee osteoarthritis (KOA). METHODS Eighty people suffering from chronic KOA participated in this study. They were randomly divided into four treatment groups, including PT combined with tDCS over the primary motor cortex (M1), PT combined with tDCS over the primary sensory cortex (S1), PT combined with tDCS over the dorsolateral prefrontal cortex (DLPFC), and PT combined with sham tDCS. A visual analog scale (VAS) for pain intensity, the Knee Injury and Osteoarthritis Outcome Score (KOOS) questionnaire for knee-related disability, and several performance tests (stepping 15 s, chair stand test in 30 s, and walking 4 × 10 m) were used for assessment following 10 sessions of tDCS (T1), and one month after the last session of tDCS (T2). RESULTS Differential effects on pain intensity, knee-related disability, and performance were found between groups. Compared to sham tDCS: (i) tDCS over M1 improved VAS pain score, KOOS disability score, and performance tests at T1 and T2; (ii) tDCS over S1 improved VAS pain score at T1 and T2 and KOOS disability score and performance tests at T2; (iii) tDCS over the DLPFC improved VAS pain score at T1 and performance tests at T1 and T2. CONCLUSION tDCS could be a beneficial add-on treatment to conventional PT for pain relief, disability reduction and functional improvement in patients with KOA.
Collapse
Affiliation(s)
- Fatemeh Rahimi
- Department of Physiotherapy, Musculoskeletal Rehabilitation Research Center, Rehabilitation School, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Nejati
- Cognitive Neurosciences, Shahid Beheshti University, Tehran, Iran
| | - Gholamhossein Nassadj
- Department of Physiotherapy, Musculoskeletal Rehabilitation Research Center, Rehabilitation School, Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Bahare Ziaei
- Department of Physiotherapy, Musculoskeletal Rehabilitation Research Center, Rehabilitation School, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Kouhzad Mohammadi
- Department of Physiotherapy, Musculoskeletal Rehabilitation Research Center, Rehabilitation School, Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
15
|
Pamplona GSP, Salgado JAD, Staempfli P, Seifritz E, Gassert R, Ionta S. Illusory Body Ownership Affects the Cortical Response to Vicarious Somatosensation. Cereb Cortex 2021; 32:312-328. [PMID: 34240141 PMCID: PMC8754387 DOI: 10.1093/cercor/bhab210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/30/2022] Open
Abstract
Fundamental human feelings such as body ownership (“this” body is “my” body) and vicariousness (first-person-like experience of events occurring to others) are based on multisensory integration. Behavioral links between body ownership and vicariousness have been shown, but the neural underpinnings remain largely unexplored. To fill this gap, we investigated the neural effects of altered body ownership on vicarious somatosensation. While recording functional brain imaging data, first, we altered participants’ body ownership by robotically delivering tactile stimulations (“tactile” stroking) in synchrony or not with videos of a virtual hand being brushed (“visual” stroking). Then, we manipulated vicarious somatosensation by showing videos of the virtual hand being touched by a syringe’s plunger (touch) or needle (pain). Only after the alteration of body ownership (synchronous visuo-tactile stroking) and specifically during late epochs of vicarious somatosensation, vicarious pain was associated with lower activation in premotor and anterior cingulate cortices with respect to vicarious touch. At the methodological level, the present study highlights the importance of the neural response’s temporal evolution. At the theoretical level, it shows that the higher-level (cognitive) impact of a lower-level (sensory) body-related processing (visuo-tactile) is not limited to body ownership but also extends to other psychological body-related domains, such as vicarious somatosensation.
Collapse
Affiliation(s)
- Gustavo S P Pamplona
- Sensory-Motor Lab (SeMoLa), Department of Ophthalmology-University of Lausanne, Jules Gonin Eye Hospital-Fondation Asile des Aveugles, Lausanne, Switzerland
- Rehabilitation Engineering Laboratory (RELab), Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Julio A D Salgado
- Rehabilitation Engineering Laboratory (RELab), Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Philipp Staempfli
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Roger Gassert
- Rehabilitation Engineering Laboratory (RELab), Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Silvio Ionta
- Address correspondence to Silvio Ionta, Fondation Asile des Aveugles, Av. de France 15, 1002 Lausanne, Switzerland.
| |
Collapse
|
16
|
Hartmann H, Riva F, Rütgen M, Lamm C. Placebo Analgesia Does Not Reduce Empathy for Naturalistic Depictions of Others' Pain in a Somatosensory Specific Way. Cereb Cortex Commun 2021; 2:tgab039. [PMID: 34296184 PMCID: PMC8276832 DOI: 10.1093/texcom/tgab039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 01/10/2023] Open
Abstract
The shared representations account postulates that sharing another's pain recruits underlying brain functions also engaged during first-hand pain. Critically, direct causal evidence for this was mainly shown for affective pain processing, while the contribution of somatosensory processes to empathy remains controversial. This controversy may be explained, however, by experimental paradigms that did not direct attention towards a specific body part, or that did not employ naturalistic depictions of others' pain. In this preregistered functional magnetic resonance imaging study, we aimed to test whether causal manipulation of first-hand pain affects empathy for naturalistic depictions of pain in a somatosensory-matched manner. Forty-five participants underwent a placebo analgesia induction in their right hand and observed pictures of other people's right and left hands in pain. We found neither behavioral nor neural evidence for somatosensory-specific modulation of pain empathy. However, exploratory analyses revealed a general effect of the placebo on empathy, and higher brain activity in bilateral anterior insula when viewing others' right hands in pain (i.e., corresponding to one's own placebo hand). These results refine our knowledge regarding the neural mechanisms of pain empathy, and imply that the sharing of somatosensory representations seems to play less of a causal role than the one of affective representations.
Collapse
Affiliation(s)
- Helena Hartmann
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria
| | - Federica Riva
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria
| | - Markus Rütgen
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria
| |
Collapse
|
17
|
Nagasaka K, Nemoto K, Takashima I, Bando D, Matsuda K, Higo N. Structural Plastic Changes of Cortical Gray Matter Revealed by Voxel-Based Morphometry and Histological Analyses in a Monkey Model of Central Post-Stroke Pain. Cereb Cortex 2021; 31:4439-4449. [PMID: 33861857 DOI: 10.1093/cercor/bhab098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/17/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
Central post-stroke pain (CPSP) is a chronic pain caused by stroke lesions of somatosensory pathways. Several brain imaging studies among patients with CPSP demonstrate that the pathophysiological mechanism underlying this condition is the maladaptive plasticity of pain-related brain regions. However, the temporal profile of the regional plastic changes, as suggested by brain imaging of CPSP patients, as well as their cellular basis, is unknown. To investigate these issues, we performed voxel-based morphometry (VBM) using T1-weighted magnetic resonance imaging and immunohistochemical analysis with our established CPSP monkey model. From 8 weeks after a hemorrhagic lesion to the unilateral ventral posterolateral nucleus of the thalamus, the monkeys exhibited significant behavioral changes that were interpreted as reflecting allodynia. The present VBM results revealed a decrease in gray matter volume in the pain-related areas after several weeks following the lesion. Furthermore, immunohistochemical staining in the ipsilesional posterior insular cortex (ipsi-PIC) and secondary somatosensory cortex (ipsi-SII), where the significant reduction in gray matter volume was observed in the VBM result, displayed a significant reduction in both excitatory and inhibitory synaptic terminals compared to intact monkeys. Our results suggest that progressive changes in neuronal morphology, including synaptic loss in the ipsi-PIC/SII, are involved in theCPSP.
Collapse
Affiliation(s)
- Kazuaki Nagasaka
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8568, Japan.,Institute for Human Movement and Medical Science, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Kiyotaka Nemoto
- Department of Psychiatry, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Ichiro Takashima
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8568, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Daigo Bando
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8568, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Keiji Matsuda
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8568, Japan
| | - Noriyuki Higo
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8568, Japan
| |
Collapse
|
18
|
Hartmann H, Rütgen M, Riva F, Lamm C. Another's pain in my brain: No evidence that placebo analgesia affects the sensory-discriminative component in empathy for pain. Neuroimage 2021; 224:117397. [PMID: 32971262 DOI: 10.1016/j.neuroimage.2020.117397] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/04/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
The shared representations account of empathy suggests that sharing other people's emotions relies on neural processes similar to those engaged when directly experiencing such emotions. Recent research corroborated this by showing that placebo analgesia induced for first-hand pain resulted in reduced pain empathy and decreased activation in shared neural networks. However, those studies did not report any placebo-related variation of somatosensory engagement during pain empathy. The experimental paradigms used in these studies did not direct attention towards a specific body part in pain, which may explain the absence of effects for somatosensation. The main objective of this preregistered study was to implement a paradigm overcoming this limitation, and to investigate whether placebo analgesia may also modulate the sensory-discriminative component of empathy for pain. We induced a localized, first-hand placebo analgesia effect in the right hand of 45 participants by means of a placebo gel and conditioning techniques, and compared this to the left hand as a control condition. Participants underwent a pain task in the MRI scanner, receiving painful or non-painful electrical stimulation on their left or right hand, or witnessing another person receiving such stimulation. In contrast to a robust localized placebo analgesia effect for self-experienced pain, the empathy condition showed no differences between the two hands, neither for behavioral nor neural responses. We thus report no evidence for somatosensory sharing in empathy, while replicating previous studies showing overlapping brain activity in the affective-motivational component for first-hand and empathy for pain. Hence, in a more rigorous test aiming to overcome limitations of previous work, we again find no causal evidence for the engagement of somatosensory sharing in empathy. Our study refines the understanding of the neural underpinnings of empathy for pain, and the use of placebo analgesia in investigating such models.
Collapse
Affiliation(s)
- Helena Hartmann
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria
| | - Markus Rütgen
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria
| | - Federica Riva
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria.
| |
Collapse
|
19
|
Najafi P, Dufor O, Ben Salem D, Misery L, Carré JL. Itch processing in the brain. J Eur Acad Dermatol Venereol 2020; 35:1058-1066. [PMID: 33145804 DOI: 10.1111/jdv.17029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 09/17/2020] [Accepted: 10/02/2020] [Indexed: 01/04/2023]
Abstract
Itch is a sensation defined as the urge to scratch. The central mechanisms of itch are being increasingly studied. These studies are usually based on experimental itch induction methods, which can be classified into the following categories: histamine-induced, induction by other non-histamine chemicals (e.g. cowhage), physically induced (e.g. electrical) and mentally induced (e.g. audio-visual). Because pain has been more extensively studied, some extrapolations to itch can be proposed and verified by experiments. Recent studies suggest that the itch-processing network in the brain could be disrupted in certain diseases. This disruption could be related to the implication of new regions or the exclusion of already engaged brain regions from itch-processing network in the brain.
Collapse
Affiliation(s)
| | - O Dufor
- LIEN, Univ Brest, Brest, France.,LabISEN Yncréa Ouest ISEN, Brest, France
| | - D Ben Salem
- Univ Brest, LaTIM, INSERM, UMR 1101, Brest, France.,University Hospital of Brest, Brest, France
| | - L Misery
- LIEN, Univ Brest, Brest, France.,University Hospital of Brest, Brest, France
| | - J-L Carré
- LIEN, Univ Brest, Brest, France.,University Hospital of Brest, Brest, France
| |
Collapse
|
20
|
Tinnermann A, Büchel C, Cohen-Adad J. Cortico-spinal imaging to study pain. Neuroimage 2020; 224:117439. [PMID: 33039624 DOI: 10.1016/j.neuroimage.2020.117439] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
Functional magnetic resonance imaging of the brain has helped to reveal mechanisms of pain perception in health and disease. Recently, imaging approaches have been developed that allow recording neural activity simultaneously in the brain and in the spinal cord. These approaches offer the possibility to examine pain perception in the entire central pain system and in addition, to investigate cortico-spinal interactions during pain processing. Although cortico-spinal imaging is a promising technique, it bears challenges concerning data acquisition and data analysis strategies. In this review, we discuss studies that applied simultaneous imaging of the brain and spinal cord to explore central pain processing. Furthermore, we describe different MR-related acquisition techniques, summarize advantages and disadvantages of approaches that have been implemented so far and present software that has been specifically developed for the analysis of spinal fMRI data to address challenges of spinal data analysis.
Collapse
Affiliation(s)
- Alexandra Tinnermann
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Max Planck School of Cognition, Leipzig, Germany.
| | - Christian Büchel
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Max Planck School of Cognition, Leipzig, Germany
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
21
|
Unno S, Shinoda M, Soma K, Kubo A, Sessle BJ, Matsui T, Ando M, Asaka J, Otsuki K, Yonemoto H, Onose H, Sakanashi K, Iwata K. Properties of heat-sensitive neurons in the premotor cortex of conscious monkeys. J Oral Sci 2020; 62:382-386. [PMID: 32741851 DOI: 10.2334/josnusd.19-0512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
To investigate neuronal activity involved in responses to noxious stimuli in conscious monkeys, the animals were subjected to a task that required them to detect a small change in facial skin temperature or light (second temperature: T2, second light: V2) relative to an initial condition (T1 or V1), and to detect changes in V2 along with a heat task. Recordings were obtained from 57 neurons in the ventral premotor cortex (PMv) during the heat or light detection task. T1 neurons and T2 neurons showed increased activity only during T1 or T2, and T1/T2 neurons were activated by both T1 and T2 stimuli. T1/T2 neurons showed an increase in firing at higher T1 temperatures, whereas T1 neurons did not. About half of the non-light/heat-sensitive T1/T2 neurons showed increased firing at higher T2 temperatures, whereas T2 neurons showed no such increase. The heat responses of heat-sensitive PMv neurons were significantly suppressed when monkeys shifted their attention from heat to light. The present findings suggest that heat-sensitive PMv neurons may be involved in motor responses to noxious heat, whereas light/heat-PMv neurons may be involved in emotional and motivational aspects of pain and inappropriate motor responses to allow escape from noxious stimuli.
Collapse
Affiliation(s)
- Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University
| | | | - Kumi Soma
- Department of Pediatric Dentistry, Nihon University School of Dentistry
| | - Asako Kubo
- Department of Physiology, Nihon University School of Dentistry
| | - Barry J Sessle
- Faculty of Dentistry and Department of Physiology, Faculty of Medicine, University of Toronto
| | - Tomoyuki Matsui
- Department of Pediatric Dentistry, Nihon University School of Dentistry
| | - Masatoshi Ando
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry
| | - Junichi Asaka
- Department of Physiology, Nihon University School of Dentistry
| | | | | | - Hiroki Onose
- Department of Physiology, Nihon University School of Dentistry
| | | | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry
| |
Collapse
|
22
|
Spatial Information of Somatosensory Stimuli in the Brain: Multivariate Pattern Analysis of Functional Magnetic Resonance Imaging Data. Neural Plast 2020; 2020:8307580. [PMID: 32684924 PMCID: PMC7341392 DOI: 10.1155/2020/8307580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
Background Multivoxel pattern analysis has provided new evidence on somatotopic representation in the human brain. However, the effects of stimulus modality (e.g., penetrating needle versus non-penetrating touch) and level of classification (e.g., multiclass versus binary classification) on patterns of brain activity encoding spatial information of body parts have not yet been studied. We hypothesized that performance of brain-based prediction models may vary across the types of stimuli, and neural patterns of voxels in the SI and parietal cortex would significantly contribute to the prediction of stimulated locations. Objective We aimed to (1) test whether brain responses to tactile stimuli could distinguish among stimulated locations on the body surface, (2) investigate whether the stimulus modality and number of classes affect classification performance, and (3) localize brain regions encoding the spatial information of somatosensory stimuli. Methods Fifteen healthy participants completed two functional magnetic resonance imaging (MRI) scans and were stimulated via the insertion of acupuncture needles or by non-invasive touch stimuli (5.46-sized von Frey filament). Participants received the stimuli at four different locations on the upper and lower limbs (two sites each) for 5 min while blood-oxygen-level-dependent activity (BOLD) was measured using 3-Tesla MRI. We performed multivariate pattern analysis (MVPA) using parameter estimate images of each trial for each participant and the support vector classifier (SVC) function, and the prediction accuracy and other MVPA outcomes were evaluated using stratified five-fold cross validation. We estimated the significance of the classification accuracy using a permutation test with randomly labeled training data (n = 10,000). Searchlight analysis was conducted to identify brain regions associated with significantly higher accuracy compared to predictions based on chance as obtained from a random classifier. Results For the four-class classification (classifying four stimulated points on the body), SVC analysis of whole-brain beta values in response to acupuncture stimulation was able to discriminate among stimulated locations (mean accuracy, 0.31; q < 0.01). The searchlight analysis found that values related to the right primary somatosensory cortex (SI) and intraparietal sulcus were significantly more accurate than those due to chance (p < 0.01). On the other hand, the same classifier did not predict stimulated locations accurately for touch stimulation (mean accuracy, 0.25; q = 0.66). For binary classification (discriminating between two stimulated body parts, i.e., the arm or leg), the SVC algorithm successfully predicted the stimulated body parts for both acupuncture (mean accuracy, 0.63; q < 0.001) and touch stimulation (mean accuracy, 0.60; q < 0.01). Searchlight analysis revealed that predictions based on the right SI, primary motor cortex (MI), paracentral gyrus, and superior frontal gyrus were significantly more accurate compared to predictions based on chance (p < 0.05). Conclusion Our findings suggest that the SI, as well as the MI, intraparietal sulcus, paracentral gyrus, and superior frontal gyrus, is responsible for the somatotopic representation of body parts stimulated by tactile stimuli. The MVPA approach for identifying neural patterns encoding spatial information of somatosensory stimuli may be affected by the stimulus type (penetrating needle versus non-invasive touch) and the number of classes (classification of four small points on the body versus two large body parts). Future studies with larger samples will identify stimulus-specific neural patterns representing stimulated locations, independent of subjective tactile perception and emotional responses. Identification of distinct neural patterns of body surfaces will help in improving neural biomarkers for pain and other sensory percepts in the future.
Collapse
|
23
|
Effects of transcranial direct current stimulation on joint flexibility and pain in sedentary male individuals. Sci Sports 2020. [DOI: 10.1016/j.scispo.2019.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Heid C, Mouraux A, Treede RD, Schuh-Hofer S, Rupp A, Baumgärtner U. Early gamma-oscillations as correlate of localized nociceptive processing in primary sensorimotor cortex. J Neurophysiol 2020; 123:1711-1726. [PMID: 32208893 DOI: 10.1152/jn.00444.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recent studies put forward the idea that stimulus-evoked gamma-band oscillations (GBOs; 30-100 Hz) play a specific role in nociception. So far, evidence for the specificity of GBOs for nociception, their possible involvement in nociceptive sensory discriminatory abilities, and knowledge regarding their cortical sources is just starting to grow. To address these questions, we used electroencephalography (EEG) to record brain activity evoked by phasic nociceptive laser stimuli and tactile stimuli applied at different intensities to the right hand and foot of 12 healthy volunteers. The EEG was analyzed in the time domain to extract phase-locked event-related brain potentials (ERPs) and in three regions of interest in the time-frequency domain (delta/theta, 40-Hz gamma, 70-Hz gamma) to extract stimulus-evoked changes in the magnitude of non-phase-locked brain oscillations. Both nociceptive and tactile stimuli, matched with respect to subjective intensity, elicited phase locked ERPs of increasing amplitude with increasing stimulus intensity. In contrast, only nociceptive stimuli elicited a significant enhancement of GBOs (65-85 Hz, 150-230 ms after stimulus onset), whose magnitude encoded stimulus intensity, whereas tactile stimuli led to a GBO decrease. Following nociceptive hand stimulation, the topographical distribution of GBOs was maximal at contralateral electrode C3, whereas maximum activity following foot stimulation was recorded at the midline electrode Cz, compatible with generation of GBOs in the representations of the hand and foot of the primary sensorimotor cortex, respectively. The differential behavior of high-frequency GBOs and low-frequency 40-Hz GBOs is indicating different functional roles and regions in sensory processing.NEW & NOTEWORTHY Gamma-band oscillations show hand-foot somatotopy compatible with generation in primary sensorimotor cortex and are present following nociceptive but not tactile stimulation of the hand and foot in humans.
Collapse
Affiliation(s)
- C Heid
- Department of Neurophysiology, Mannheim Center for Translational Neurosciences (MCTN), University of Heidelberg, Mannheim, Germany
| | - A Mouraux
- Institute of Neuroscience (IONS), Université catholique de Louvain, Brussels B-1200, Belgium
| | - R-D Treede
- Department of Neurophysiology, Mannheim Center for Translational Neurosciences (MCTN), University of Heidelberg, Mannheim, Germany
| | - S Schuh-Hofer
- Department of Neurophysiology, Mannheim Center for Translational Neurosciences (MCTN), University of Heidelberg, Mannheim, Germany
| | - A Rupp
- Department of Neurology, Section of Biomagnetism, University of Heidelberg, Heidelberg, Germany
| | - U Baumgärtner
- Department of Neurophysiology, Mannheim Center for Translational Neurosciences (MCTN), University of Heidelberg, Mannheim, Germany.,Department of Human Medicine, Faculty of Life Sciences, Medical School Hamburg (MSH), Hamburg, Germany
| |
Collapse
|
25
|
Testing the exteroceptive function of nociception: The role of visual experience in shaping the spatial representations of nociceptive inputs. Cortex 2020; 126:26-38. [PMID: 32062141 DOI: 10.1016/j.cortex.2019.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/21/2019] [Accepted: 12/14/2019] [Indexed: 01/30/2023]
Abstract
Adequately localizing pain is crucial to protect the body against physical damage and react to the stimulus in external space having caused such damage. Accordingly, it is hypothesized that nociceptive inputs are remapped from a somatotopic reference frame, representing the skin surface, towards a spatiotopic frame, representing the body parts in external space. This ability is thought to be developed and shaped by early visual experience. To test this hypothesis, normally sighted and early blind participants performed temporal order judgment tasks during which they judged which of two nociceptive stimuli applied on each hand's dorsum was perceived as first delivered. Crucially, tasks were performed with the hands either in an uncrossed posture or crossed over body midline. While early blinds were not affected by the posture, performances of the normally sighted participants decreased in the crossed condition relative to the uncrossed condition. This indicates that nociceptive stimuli were automatically remapped into a spatiotopic representation that interfered with somatotopy in normally sighted individuals, whereas early blinds seemed to mostly rely on a somatotopic representation to localize nociceptive inputs. Accordingly, the plasticity of the nociceptive system would not purely depend on bodily experiences but also on crossmodal interactions between nociception and vision during early sensory experience.
Collapse
|
26
|
Xu A, Larsen B, Baller EB, Scott JC, Sharma V, Adebimpe A, Basbaum AI, Dworkin RH, Edwards RR, Woolf CJ, Eickhoff SB, Eickhoff CR, Satterthwaite TD. Convergent neural representations of experimentally-induced acute pain in healthy volunteers: A large-scale fMRI meta-analysis. Neurosci Biobehav Rev 2020; 112:300-323. [PMID: 31954149 DOI: 10.1016/j.neubiorev.2020.01.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/17/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Characterizing a reliable, pain-related neural signature is critical for translational applications. Many prior fMRI studies have examined acute nociceptive pain-related brain activation in healthy participants. However, synthesizing these data to identify convergent patterns of activation can be challenging due to the heterogeneity of experimental designs and samples. To address this challenge, we conducted a comprehensive meta-analysis of fMRI studies of stimulus-induced pain in healthy participants. Following pre-registration, two independent reviewers evaluated 4,927 abstracts returned from a search of 8 databases, with 222 fMRI experiments meeting inclusion criteria. We analyzed these experiments using Activation Likelihood Estimation with rigorous type I error control (voxel height p < 0.001, cluster p < 0.05 FWE-corrected) and found a convergent, largely bilateral pattern of pain-related activation in the secondary somatosensory cortex, insula, midcingulate cortex, and thalamus. Notably, these regions were consistently recruited regardless of stimulation technique, location of induction, and participant sex. These findings suggest a highly-conserved core set of pain-related brain areas, encouraging applications as a biomarker for novel therapeutics targeting acute nociceptive pain.
Collapse
Affiliation(s)
- Anna Xu
- Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Bart Larsen
- Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Erica B Baller
- Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard University, Boston, MA, USA
| | - J Cobb Scott
- Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104, USA; VISN4 Mental Illness Research, Education, and Clinical Center at the Philadelphia VA Medical Center, Philadelphia, PA, 19104, USA
| | - Vaishnavi Sharma
- Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Azeez Adebimpe
- Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Allan I Basbaum
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Robert H Dworkin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Robert R Edwards
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Clifford J Woolf
- FM Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University, D-40225 Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-1, INM-7), Research Centre Jülich, Germany
| | - Claudia R Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-1, INM-7), Research Centre Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | | |
Collapse
|
27
|
Zheng W, Woo CW, Yao Z, Goldstein P, Atlas LY, Roy M, Schmidt L, Krishnan A, Jepma M, Hu B, Wager TD. Pain-Evoked Reorganization in Functional Brain Networks. Cereb Cortex 2019; 30:2804-2822. [PMID: 31813959 DOI: 10.1093/cercor/bhz276] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/21/2019] [Accepted: 10/27/2019] [Indexed: 12/18/2022] Open
Abstract
Recent studies indicate that a significant reorganization of cerebral networks may occur in patients with chronic pain, but how immediate pain experience influences the organization of large-scale functional networks is not yet well characterized. To investigate this question, we used functional magnetic resonance imaging in 106 participants experiencing both noxious and innocuous heat. Painful stimulation caused network-level reorganization of cerebral connectivity that differed substantially from organization during innocuous stimulation and standard resting-state networks. Noxious stimuli increased somatosensory network connectivity with (a) frontoparietal networks involved in context representation, (b) "ventral attention network" regions involved in motivated action selection, and (c) basal ganglia and brainstem regions. This resulted in reduced "small-worldness," modularity (fewer networks), and global network efficiency and in the emergence of an integrated "pain supersystem" (PS) whose activity predicted individual differences in pain sensitivity across 5 participant cohorts. Network hubs were reorganized ("hub disruption") so that more hubs were localized in PS, and there was a shift from "connector" hubs linking disparate networks to "provincial" hubs connecting regions within PS. Our findings suggest that pain reorganizes the network structure of large-scale brain systems. These changes may prioritize responses to painful events and provide nociceptive systems privileged access to central control of cognition and action during pain.
Collapse
Affiliation(s)
- Weihao Zheng
- School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.,Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Choong-Wan Woo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon 16419, Republic of Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Zhijun Yao
- School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Pavel Goldstein
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309, USA.,Institute of Cognitive Science, University of Colorado, Boulder, CO 80309, USA.,The School of Public Health, University of Haifa, Haifa, 3498838, Israel
| | - Lauren Y Atlas
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA.,National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.,National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mathieu Roy
- Department of Psychology, McGill University, Montréal, Quebec H3A 0G4, Canada
| | - Liane Schmidt
- Control-Interoception-Attention (CIA) team, Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne University / CNRS / INSERM, 75013 Paris, France
| | - Anjali Krishnan
- Department of Psychology, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA
| | - Marieke Jepma
- Department of Psychology, University of Amsterdam, Amsterdam, 1018 WS, The Netherlands
| | - Bin Hu
- School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Tor D Wager
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309, USA.,Institute of Cognitive Science, University of Colorado, Boulder, CO 80309, USA.,Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
28
|
Najafi P, Carré JL, Ben Salem D, Brenaut E, Misery L, Dufor O. Central mechanisms of itch: A systematic literature review and meta-analysis. J Neuroradiol 2019; 47:450-457. [PMID: 31809769 DOI: 10.1016/j.neurad.2019.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022]
Abstract
In recent years, studying the central mechanism of itch has gained momentum. However, a proper meta-analysis has not been conducted in this domain. In this study, we tried to respond to this need. A systematic search and a meta-analysis were carried out to estimate the central mechanism of itch. The itch matrix comprises the thalamus and the parietal, secondary somatosensory, insular and cingulate cortices. We have shown that the basal ganglia (BG) play an important role in itch reduction. Finally, we explored itch processing in AD patients and observed that the itch matrix in these patients was different. In conclusion, this is the first meta-analysis on the central mechanisms of itch perception and processing. Our study demonstrated that different modalities of itch induction can produce a common pattern of activity in the brain and provided further insights into understanding the underlying nature of itch central perception.
Collapse
Affiliation(s)
| | - Jean-Luc Carré
- LIEN, université Brest, 29200 Brest, France; University Hospital of Brest, 29200 Brest, France
| | - Douraied Ben Salem
- LaTIM, Inserm UMR 1101, université Brest, 29200 Brest, France; University Hospital of Brest, 29200 Brest, France
| | - Emilie Brenaut
- LIEN, université Brest, 29200 Brest, France; University Hospital of Brest, 29200 Brest, France
| | - Laurent Misery
- LIEN, université Brest, 29200 Brest, France; University Hospital of Brest, 29200 Brest, France.
| | | |
Collapse
|
29
|
The influence of visual experience and cognitive goals on the spatial representations of nociceptive stimuli. Pain 2019; 161:328-337. [DOI: 10.1097/j.pain.0000000000001721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
Abstract
INTRODUCTION The wording used before and during painful medical procedures might significantly affect the painfulness and discomfort of the procedures. Two theories might account for these effects: the motivational priming theory (Lang, 1995, American Psychologist, 50, 372) and the theory of neural networks (Hebb, 1949, The organization of behavior. New York, NY: Wiley; Pulvermuller, 1999, Behavioral and Brain Sciences, 22, 253; Pulvermüller and Fadiga, 2010, Nature Reviews Neuroscience, 11, 351). METHODS Using fMRI, we investigated how negative, pain-related, and neutral words that preceded the application of noxious stimuli as priming stimuli affect the cortical processing and pain ratings of following noxious stimuli. RESULTS Here, we show that both theories are applicable: Stronger pain and stronger activation were observed in several brain areas in response to noxious stimuli preceded by both, negative and pain-related words, respectively, as compared to preceding neutral words, thus supporting motivational priming theory. Furthermore, pain ratings and activation in somatosensory cortices, primary motor cortex, premotor cortex, thalamus, putamen, and precuneus were even stronger for preceding pain-related than for negative words supporting the theory of neural networks. CONCLUSION Our results explain the influence of wording on pain perception and might have important consequences for clinical work.
Collapse
Affiliation(s)
- Alexander Ritter
- Section of Neurological Rehabilitation, Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Marcel Franz
- Institute of Psychology, Friedrich Schiller University of Jena, Jena, Germany
| | | | - Thomas Weiss
- Institute of Psychology, Friedrich Schiller University of Jena, Jena, Germany
| |
Collapse
|
31
|
Naser Moghadasi A. When an octopus has MS: Application of neurophysiology and immunology of octopuses for multiple sclerosis. Med Hypotheses 2019; 131:109297. [PMID: 31443774 DOI: 10.1016/j.mehy.2019.109297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/14/2019] [Accepted: 06/30/2019] [Indexed: 11/30/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated disease which can cause different symptoms due to the involvement of different regions of the central nervous system (CNS). Although this disease is characterized by the demyelination process, the most important feature of the disease is its degenerative nature. This nature is clinically manifested as progressive symptoms, especially in patients' walking, which can even lead to complete debilitation. Therefore, finding a treatment to prevent the degenerative processes is one of the most important goals in MS studies. To better understand the process and the effect of drugs, scientists use animal models which mostly consisting of mouse, rat, and monkey. In evolutionary terms, octopuses belong to the invertebrates which have many substantial differences with vertebrates. One of these differences is related to the nervous system of these organisms, which is divided into central and peripheral parts. The difference lies in the fact that the main volume of this system expands in the limbs of these organisms instead of their brain. This offers a kind of freedom of action and processing strength in the octopus limbs. Also, the brain of these organisms follows a non-somatotopic model. Although the complex actions of this organism are stimulated by the brain, in contrast to the human brain, this activity is not related to a specific region of the brain; rather the entire brain area of the octopus is activated during a process. Indeed, the brain mapping or the topological perception of a particular action, such as moving the limbs, reflects itself in how that activity is distributed in the octopus brain neurons. Accordingly, various actions are known with varying degrees of activity of neurons in the brain of octopus. Another important feature of octopuses is their ability to regenerate defective tissues including the central and peripheral nervous system. These characteristics raise the question of what features can an octopus show when it is used as an organism to create experimental autoimmune encephalomyelitis (EAE). Can the immune system damage of the octopus brain cause a regeneration process? Will the autonomy of the organs reduce the severity of the symptoms? This article seeks to provide evidence to prove that use of octopuses as laboratory samples for generation of EAE may open up new approaches for researchers to better approach MS.
Collapse
Affiliation(s)
- Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Michelle Welman FHS, Smit AE, Jongen JLM, Tibboel D, van der Geest JN, Holstege JC. Pain Experience is Somatotopically Organized and Overlaps with Pain Anticipation in the Human Cerebellum. THE CEREBELLUM 2019; 17:447-460. [PMID: 29480507 PMCID: PMC6028829 DOI: 10.1007/s12311-018-0930-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many fMRI studies have shown activity in the cerebellum after peripheral nociceptive stimulation. We investigated whether the areas in the cerebellum that were activated after nociceptive thumb stimulation were separate from those after nociceptive toe stimulation. In an additional experiment, we investigated the same for the anticipation of a nociceptive stimulation on the thumb or toe. For his purpose, we used fMRI after an electrical stimulation of the thumb and toe in 19 adult healthy volunteers. Following nociceptive stimulation, different areas were activated by stimulation on the thumb (lobule VI ipsilaterally and Crus II mainly contralaterally) and toe (lobules VIII-IX and IV-V bilaterally and lobule VI contralaterally), i.e., were somatotopically organized. Cerebellar areas innervated non-somatotopically by both toe and thumb stimulation were the posterior vermis and Crus I, bilaterally. In the anticipation experiment, similar results were found. However, here, the somatotopically activated areas were relatively small for thumb and negligible for toe stimulation, while the largest area was innervated non-somatotopically and consisted mainly of Crus I and lobule VI bilaterally. These findings indicate that nociceptive stimulation and anticipation of nociceptive stimulation are at least partly processed by the same areas in the cerebellum. This was confirmed by an additional conjunction analysis. Based on our findings, we hypothesize that input that is organized in a somatotopical manner reflects direct input from the spinal cord, while non-somatotopically activated parts of the cerebellum receive their information indirectly through cortical and subcortical connections, possibly involved in processing contextual emotional states, like the expectation of pain.
Collapse
Affiliation(s)
- F H S Michelle Welman
- Department of Neuroscience, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
| | - Albertine E Smit
- Department of Neuroscience, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
| | - Joost L M Jongen
- Department of Neurology, Erasmus MC, Room G3-78, Groene Hilledijk 301, 3075 EA, Rotterdam, the Netherlands.
| | - Dick Tibboel
- Department of Intensive Care and Pediatric Surgery, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
| | - Jos N van der Geest
- Department of Neuroscience, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
| | - Jan C Holstege
- Department of Neuroscience, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
| |
Collapse
|
33
|
Wittenberg MA, Morr M, Schnitzler A, Lange J. 10 Hz tACS Over Somatosensory Cortex Does Not Modulate Supra-Threshold Tactile Temporal Discrimination in Humans. Front Neurosci 2019; 13:311. [PMID: 31001078 PMCID: PMC6456678 DOI: 10.3389/fnins.2019.00311] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/19/2019] [Indexed: 12/23/2022] Open
Abstract
Perception of physical identical stimuli can differ over time depending on the brain state. One marker of this brain state can be neuronal oscillations in the alpha band (8–12 Hz). A previous study showed that the power of prestimulus alpha oscillations in the contralateral somatosensory area negatively correlate with the ability to temporally discriminate between two subsequent tactile suprathreshold stimuli. That is, with high alpha power subjects were impaired in discriminating two stimuli and more frequently reported to perceive only one stimulus. While this previous study found correlative evidence for a role of alpha oscillations on tactile temporal discrimination, here, we aimed to study the causal influence of alpha power on tactile temporal discrimination by using transcranial alternating current stimulation (tACS). We hypothesized that tACS in the alpha frequency should entrain alpha oscillations and thus modulate alpha power. This modulated alpha power should alter temporal discrimination ability compared to a control frequency or sham. To this end, 17 subjects received one or two electrical stimuli to their left index finger with different stimulus onset asynchronies (SOAs). They reported whether they perceived one or two stimuli. Subjects performed the paradigm before (pre), during (peri), and 25 min after tACS (post). tACS was applied to the contralateral somatosensory-parietal area with either 10, 5 Hz or sham on three different days. We found no significant difference in discrimination abilities between 10 Hz tACS and the control conditions, independent of SOAs. In addition to choosing all SOAs as the independent variable, we chose individually different SOAs, for which we expected the strongest effects of tACS. Again, we found no significant effects of 10 Hz tACS on temporal discrimination abilities. We discuss potential reasons for the inability to modulate tactile temporal discrimination abilities with tACS.
Collapse
Affiliation(s)
- Marc A Wittenberg
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Mitjan Morr
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.,Division of Medical Psychology, University of Bonn, Bonn, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Joachim Lange
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
34
|
Szabó E, Galambos A, Kocsel N, Édes AE, Pap D, Zsombók T, Kozák LR, Bagdy G, Kökönyei G, Juhász G. Association between migraine frequency and neural response to emotional faces: An fMRI study. NEUROIMAGE-CLINICAL 2019; 22:101790. [PMID: 31146320 PMCID: PMC6462777 DOI: 10.1016/j.nicl.2019.101790] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/12/2019] [Accepted: 03/23/2019] [Indexed: 01/03/2023]
Abstract
Previous studies have demonstrated that migraine is associated with enhanced perception and altered cerebral processing of sensory stimuli. More recently, it has been suggested that this sensory hypersensitivity might reflect a more general enhanced response to aversive emotional stimuli. Using functional magnetic resonance imaging and emotional face stimuli (fearful, happy and sad faces), we compared whole-brain activation between 41 migraine patients without aura in interictal period and 49 healthy controls. Migraine patients showed increased neural activation to fearful faces compared to neutral faces in the right middle frontal gyrus and frontal pole relative to healthy controls. We also found that higher attack frequency in migraine patients was related to increased activation mainly in the right primary somatosensory cortex (corresponding to the face area) to fearful expressions and in the right dorsal striatal regions to happy faces. In both analyses, activation differences remained significant after controlling for anxiety and depressive symptoms. These findings indicate that enhanced response to emotional stimuli might explain the migraine trigger effect of psychosocial stressors that gradually leads to increased somatosensory response to emotional clues and thus contributes to the progression or chronification of migraine. First fMRI study to explore neural response to emotional faces in migraine patients Migraine patients showed increased activation to fear in the right frontal regions Migraine frequency was related to enhanced activation to fearful and happy faces Activation in the right S1 and dorsal striatum was linked to migraine frequency Sensitivity to emotional stimuli might have a role in triggering migraine
Collapse
Affiliation(s)
- Edina Szabó
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Izabella street 46, H-1064 Budapest, Hungary; Institute of Psychology, ELTE Eötvös Loránd University, Izabella street 46, H-1064 Budapest, Hungary; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary.
| | - Attila Galambos
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Izabella street 46, H-1064 Budapest, Hungary; Institute of Psychology, ELTE Eötvös Loránd University, Izabella street 46, H-1064 Budapest, Hungary; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary.
| | - Natália Kocsel
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Izabella street 46, H-1064 Budapest, Hungary; Institute of Psychology, ELTE Eötvös Loránd University, Izabella street 46, H-1064 Budapest, Hungary; SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad square 4, H-1089 Budapest, Hungary.
| | - Andrea Edit Édes
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad square 4, H-1089 Budapest, Hungary.
| | - Dorottya Pap
- Department of Neurology, Faculty of Medicine, Semmelweis University, Balassa street 6, H-1083 Budapest, Hungary
| | - Terézia Zsombók
- MR Research Center, Semmelweis University, Balassa street 6, H-1083 Budapest, Hungary
| | - Lajos Rudolf Kozák
- Neuroscience and Psychiatry Unit, The University of Manchester and Manchester Academic Health Sciences Centre, Stopford Building, Oxford Road, Manchester, United Kingdom.
| | - György Bagdy
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad square 4, H-1089 Budapest, Hungary.
| | - Gyöngyi Kökönyei
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella street 46, H-1064 Budapest, Hungary; SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad square 4, H-1089 Budapest, Hungary.
| | - Gabriella Juhász
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad square 4, H-1089 Budapest, Hungary; Neuroscience and Psychiatry Unit, The University of Manchester and Manchester Academic Health Sciences Centre, Stopford Building, Oxford Road, Manchester, United Kingdom.
| |
Collapse
|
35
|
Vigilance-related attention systems subserve the discrimination of relative intensity differences between painful stimuli. Pain 2019; 159:359-370. [PMID: 29076920 DOI: 10.1097/j.pain.0000000000001086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Humans require the ability to discriminate intensities of noxious stimuli to avoid future harm. This discrimination process seems to be biased by an individual's attention to pain and involves modulation of the relative intensity differences between stimuli (ie, Weber fraction). Here, we ask whether attention networks in the brain modulate the discrimination process and investigate the neural correlates reflecting the Weber fraction for pain intensity. In a delayed discrimination task, participants differentiated the intensity of 2 sequentially applied stimuli after a delay interval. Compared with nonpain discrimination, pain discrimination performance was modulated by participants' vigilance to pain, which was reflected by the functional connectivity between the left inferior parietal lobule and the right thalamus. Of note, this vigilance-related functional coupling specifically predicted participants' behavioral ability to differentiate pain intensities. Moreover, unique to pain discrimination tasks, the response in the right superior frontal gyrus linearly represented the Weber fraction for pain intensity, which significantly biased participants' pain discriminability. These findings suggest that pain intensity discrimination in humans relies on vigilance-related enhancement in the parieto-thalamic attention network, thereby allowing the prefrontal cortex to estimate the relative intensity differences between noxious stimuli.
Collapse
|
36
|
Lerman I, Davis B, Huang M, Huang C, Sorkin L, Proudfoot J, Zhong E, Kimball D, Rao R, Simon B, Spadoni A, Strigo I, Baker DG, Simmons AN. Noninvasive vagus nerve stimulation alters neural response and physiological autonomic tone to noxious thermal challenge. PLoS One 2019; 14:e0201212. [PMID: 30759089 PMCID: PMC6373934 DOI: 10.1371/journal.pone.0201212] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/12/2018] [Indexed: 11/23/2022] Open
Abstract
The mechanisms by which noninvasive vagal nerve stimulation (nVNS) affect central and peripheral neural circuits that subserve pain and autonomic physiology are not clear, and thus remain an area of intense investigation. Effects of nVNS vs sham stimulation on subject responses to five noxious thermal stimuli (applied to left lower extremity), were measured in 30 healthy subjects (n = 15 sham and n = 15 nVNS), with fMRI and physiological galvanic skin response (GSR). With repeated noxious thermal stimuli a group × time analysis showed a significantly (p < .001) decreased response with nVNS in bilateral primary and secondary somatosensory cortices (SI and SII), left dorsoposterior insular cortex, bilateral paracentral lobule, bilateral medial dorsal thalamus, right anterior cingulate cortex, and right orbitofrontal cortex. A group × time × GSR analysis showed a significantly decreased response in the nVNS group (p < .0005) bilaterally in SI, lower and mid medullary brainstem, and inferior occipital cortex. Finally, nVNS treatment showed decreased activity in pronociceptive brainstem nuclei (e.g. the reticular nucleus and rostral ventromedial medulla) and key autonomic integration nuclei (e.g. the rostroventrolateral medulla, nucleus ambiguous, and dorsal motor nucleus of the vagus nerve). In aggregate, noninvasive vagal nerve stimulation reduced the physiological response to noxious thermal stimuli and impacted neural circuits important for pain processing and autonomic output.
Collapse
Affiliation(s)
- Imanuel Lerman
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, United States of America
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA, United States of America
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, United States of America
- * E-mail:
| | - Bryan Davis
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA, United States of America
| | - Mingxiong Huang
- Department of Radiology, University of California San Diego School of Medicine, La Jolla, CA, United States of America
- Department of Radiology, VA San Diego Healthcare System, La Jolla, CA, United States of America
| | - Charles Huang
- Department of Radiology, University of California San Diego School of Medicine, La Jolla, CA, United States of America
- Department of Radiology, VA San Diego Healthcare System, La Jolla, CA, United States of America
| | - Linda Sorkin
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA, United States of America
| | - James Proudfoot
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA, United States of America
| | - Edward Zhong
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, United States of America
| | - Donald Kimball
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, United States of America
| | - Ramesh Rao
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, United States of America
| | - Bruce Simon
- electroCore LLC, Basking Ridge NJ, United States of America
| | - Andrea Spadoni
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, United States of America
- Department of Psychiatry University of California San Diego School of Medicine, La Jolla, CA, United States of America
| | - Irina Strigo
- Department of Psychiatry, VA San Francisco Healthcare System, San Francisco, CA, United States of America
| | - Dewleen G. Baker
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, United States of America
- Department of Psychiatry University of California San Diego School of Medicine, La Jolla, CA, United States of America
| | - Alan N. Simmons
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, United States of America
- Department of Psychiatry University of California San Diego School of Medicine, La Jolla, CA, United States of America
| |
Collapse
|
37
|
Beukema P, Cecil KL, Peterson E, Mann VR, Matsushita M, Takashima Y, Navlakha S, Barth AL. TrpM8-mediated somatosensation in mouse neocortex. J Comp Neurol 2018; 526:1444-1456. [PMID: 29484652 PMCID: PMC5899639 DOI: 10.1002/cne.24418] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 12/29/2022]
Abstract
Somatosensation is a complex sense mediated by more than a dozen distinct neural subtypes in the periphery. Although pressure and touch sensation have been mapped to primary somatosensory cortex in rodents, it has been controversial whether pain and temperature inputs are also directed to this area. Here we use a well-defined somatosensory modality, cool sensation mediated by peripheral TrpM8-receptors, to investigate the neural substrate for cool perception in the mouse neocortex. Using activation of cutaneous TrpM8 receptor-expressing neurons, we identify candidate neocortical areas responsive for cool sensation. Initially, we optimized TrpM8 stimulation and determined that menthol, a selective TrpM8 agonist, was more effective than cool stimulation at inducing expression of the immediate-early gene c-fos in the spinal cord. We developed a broad-scale brain survey method for identification of activated brain areas, using automated methods to quantify c-fos immunoreactivity (fos-IR) across animals. Brain areas corresponding to the posterior insular cortex and secondary somatosensory (S2) show elevated fos-IR after menthol stimulation, in contrast to weaker activation in primary somatosensory cortex (S1). In addition, menthol exposure triggered fos-IR in piriform cortex, the amygdala, and the hypothalamus. Menthol-mediated activation was absent in TrpM8-knock-out animals. Our results indicate that cool somatosensory input broadly drives neural activity across the mouse brain, with neocortical signal most elevated in the posterior insula, as well as S2 and S1. These findings are consistent with data from humans indicating that the posterior insula is specialized for somatosensory information encoding temperature, pain, and gentle touch.
Collapse
Affiliation(s)
- Patrick Beukema
- Department of Neuroscience, Center for Neuroscience at the University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
| | | | - Elena Peterson
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095
| | - Victor R Mann
- Department of Chemistry, University of California, Berkeley, California, 94720
| | - Megumi Matsushita
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213
| | - Yoshio Takashima
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095
| | - Saket Navlakha
- Integrative Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, 92037
| | - Alison L Barth
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213
| |
Collapse
|
38
|
Long-term effect of motor cortex stimulation in patients suffering from chronic neuropathic pain: An observational study. PLoS One 2018; 13:e0191774. [PMID: 29381725 PMCID: PMC5790239 DOI: 10.1371/journal.pone.0191774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 12/27/2017] [Indexed: 11/20/2022] Open
Abstract
Background Motor cortex stimulation (MCS) was introduced as a last-resort treatment for chronic neuropathic pain. Over the years, MCS has been used for the treatment of various pain syndromes but long-term follow-up is unknown. Methods This paper reports the results of MCS from 2005 until 2012 with a 3-year follow-up. Patients who suffered from chronic neuropathic pain treated with MCS were studied. The analgesic effect was determined as successful by decrease in pain-intensity on the visual analog scale (VAS) of at least 40%. The modifications in drug regimens were monitored with use of the medication quantification scale (MQS). Stimulation parameters and complications were also noted. Interference of pain with quality of life (QoL), the Quality of Life Index (QLI), was determined with use of a specific subset of questions from the MPQ-DLV score. Results Eighteen patients were included. Mean pre-operative VAS changed from 89.4 ± 11.2 to 53.1 ± 25.0 after three years of follow-up (P < 0.0001). A successful outcome was achieved in seven responders (38.9%). All patients in the responder group suffered from pain caused by a central lesion. With regard to all the patients with central pain lesions (n = 10) and peripheral lesions (n = 8), a significant difference in response to MCS was noticed (P = 0.002). MQS scores and QLI-scores diminished during the follow-up period (P = 0.210 and P = 0.007, respectively). Conclusion MCS seems a promising therapeutic option for patients with refractory pain syndromes of central origin.
Collapse
|
39
|
Grice-Jackson T, Critchley HD, Banissy MJ, Ward J. Consciously Feeling the Pain of Others Reflects Atypical Functional Connectivity between the Pain Matrix and Frontal-Parietal Regions. Front Hum Neurosci 2017; 11:507. [PMID: 29104537 PMCID: PMC5655021 DOI: 10.3389/fnhum.2017.00507] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/06/2017] [Indexed: 01/21/2023] Open
Abstract
Around a quarter of the population report “mirror pain” experiences in which bodily sensations of pain are elicited in response to viewing another person in pain. We have shown that this population of responders further fractionates into two distinct subsets (Sensory/localized and Affective/General), which presents an important opportunity to investigate the neural underpinnings of individual differences in empathic responses. Our study uses fMRI to determine how regions involved in the perception of pain interact with regions implicated in empathic regulation in these two groups, relative to controls. When observing pain in others (minor injuries to the hands and feet), the two responder groups show activation in both the sensory/discriminative and affective/motivational components of the pain matrix. The control group only showed activation in the latter. The two responder groups showed clear differences in functional connectivity. Notably, Sensory/Localized responders manifest significant coupling between the right temporo-parietal junction (rTPJ) and bilateral anterior insula. We conclude that conscious experiences of vicarious pain is supported by specific patterns of functional connectivity between pain-related and regulatory regions, and not merely increased activity within the pain matrix itself.
Collapse
Affiliation(s)
- Thomas Grice-Jackson
- School of Psychology, University of Sussex, Falmer, United Kingdom.,Sackler Centre for Consciousness Science, University of Sussex, Falmer, United Kingdom
| | - Hugo D Critchley
- Sackler Centre for Consciousness Science, University of Sussex, Falmer, United Kingdom.,Brighton and Sussex Medical School, University of Sussex, Falmer, United Kingdom
| | - Michael J Banissy
- Department of Psychology, Goldsmith's College, University of London, London, United Kingdom
| | - Jamie Ward
- School of Psychology, University of Sussex, Falmer, United Kingdom.,Sackler Centre for Consciousness Science, University of Sussex, Falmer, United Kingdom
| |
Collapse
|
40
|
Hird EJ, Jones AKP, Talmi D, El-Deredy W. A comparison between the neural correlates of laser and electric pain stimulation and their modulation by expectation. J Neurosci Methods 2017; 293:117-127. [PMID: 28935423 DOI: 10.1016/j.jneumeth.2017.09.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/05/2017] [Accepted: 09/16/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Pain is modulated by expectation. Event-related potential (ERP) studies of the influence of expectation on pain typically utilise laser heat stimulation to provide a controllable nociceptive-specific stimulus. Painful electric stimulation has a number of practical advantages, but is less nociceptive-specific. We compared the modulation of electric versus laser-evoked pain by expectation, and their corresponding pain-evoked and anticipatory ERPs. NEW METHOD We developed understanding of recognised methods of laser and electric stimulation. We tested whether pain perception and neural activity induced by electric stimulation was modulated by expectation, whether this expectation elicited anticipatory neural correlates, and how these measures compared to those associated with laser stimulation by eliciting cue-evoked expectations of high and low pain in a within-participant design. RESULTS Despite sensory and affective differences between laser and electric pain, intensity ratings and pain-evoked potentials were modulated equivalently by expectation, though ERPs only correlated with pain ratings in the laser pain condition. Anticipatory correlates differentiated pain intensity expectation to laser but not electric pain. COMPARISON WITH EXISTING METHOD Previous studies show that laser-evoked potentials are modulated by expectation. We extend this by showing electric pain-evoked potentials are equally modulated by expectation, within the same participants. We also show a difference between the pain types in anticipation. CONCLUSIONS Though laser-evoked potentials express a stronger relationship with pain perception, both laser and electric stimulation may be used to study the modulation of pain-evoked potentials by expectation. Anticipatory-evoked potentials are elicited by both pain types, but they may reflect different processes.
Collapse
Affiliation(s)
- E J Hird
- Division of Neuroscience and Experimental Psychology, University of Manchester, M139GB, United Kingdom.
| | - A K P Jones
- Division of Neuroscience and Experimental Psychology, University of Manchester, M139GB, United Kingdom.
| | - D Talmi
- Division of Neuroscience and Experimental Psychology, University of Manchester, M139GB, United Kingdom.
| | - W El-Deredy
- Division of Neuroscience and Experimental Psychology, University of Manchester, M139GB, United Kingdom; School of Biomedical Engineering, University of Valparaiso, Chile.
| |
Collapse
|
41
|
Filbrich L, Alamia A, Blandiaux S, Burns S, Legrain V. Shaping visual space perception through bodily sensations: Testing the impact of nociceptive stimuli on visual perception in peripersonal space with temporal order judgments. PLoS One 2017; 12:e0182634. [PMID: 28777824 PMCID: PMC5544212 DOI: 10.1371/journal.pone.0182634] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/22/2017] [Indexed: 01/02/2023] Open
Abstract
Coordinating spatial perception between body space and its external surrounding space is essential to adapt behaviors to objects, especially when they are noxious. Such coherent multisensory representation of the body extended into external space is conceptualized by the notion of peripersonal reference frame, mapping the portion of space in which somatic and extra-somatic inputs interact closely. Studies on crossmodal interactions between nociception and vision have been scarce. Here we investigated how the perception of visual stimuli, especially those surrounding the body, can be impacted by a nociceptive and potentially harmful stimulus inflicted on a particular body part. In two temporal order judgment tasks, participants judged which of two lateralized visual stimuli, presented either near or far from the body, had been presented first. Visual stimuli were preceded by nociceptive stimuli, either applied unilaterally (on one single hand) or bilaterally (on both hands simultaneously). In Experiment 1 participants' hands were always placed next to the visual stimuli presented near the trunk, while in Experiment 2 they could also be placed next to the visual stimuli presented far from the trunk. In Experiment 1, the presence of unilateral nociceptive stimuli prioritized the perception of visual stimuli presented in the same side of space as the stimulated hand, with a significantly larger effect when visual stimuli were presented near the body than when presented farther away. Experiment 2 showed that these visuospatial biases were related to the spatial congruency between the hand on which nociceptive stimuli were applied and the visual stimuli, independently of the relative distance of both the stimulated hand and the visual stimuli from the trunk. Indeed, nociceptive stimuli mostly impacted the perception of the closest visual stimuli. It is hypothesized that these crossmodal interactions may rely on representations of the space directly surrounding specific body parts.
Collapse
Affiliation(s)
- Lieve Filbrich
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Andrea Alamia
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Séverine Blandiaux
- Faculty of Psychology and Educational Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Soline Burns
- Faculty of Psychology and Educational Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Valéry Legrain
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
42
|
Quantifying cerebral contributions to pain beyond nociception. Nat Commun 2017; 8:14211. [PMID: 28195170 PMCID: PMC5316889 DOI: 10.1038/ncomms14211] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 12/05/2016] [Indexed: 12/21/2022] Open
Abstract
Cerebral processes contribute to pain beyond the level of nociceptive input and mediate psychological and behavioural influences. However, cerebral contributions beyond nociception are not yet well characterized, leading to a predominant focus on nociception when studying pain and developing interventions. Here we use functional magnetic resonance imaging combined with machine learning to develop a multivariate pattern signature-termed the stimulus intensity independent pain signature-1 (SIIPS1)-that predicts pain above and beyond nociceptive input in four training data sets (Studies 1-4, N=137). The SIIPS1 includes patterns of activity in nucleus accumbens, lateral prefrontal and parahippocampal cortices, and other regions. In cross-validated analyses of Studies 1-4 and in two independent test data sets (Studies 5-6, N=46), SIIPS1 responses explain variation in trial-by-trial pain ratings not captured by a previous fMRI-based marker for nociceptive pain. In addition, SIIPS1 responses mediate the pain-modulating effects of three psychological manipulations of expectations and perceived control. The SIIPS1 provides an extensible characterization of cerebral contributions to pain and specific brain targets for interventions.
Collapse
|
43
|
Mizuno T, Aramaki Y. Cathodal transcranial direct current stimulation over the Cz increases joint flexibility. Neurosci Res 2017; 114:55-61. [PMID: 27576117 DOI: 10.1016/j.neures.2016.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Takamasa Mizuno
- School of Health and Sport Sciences, Chukyo University, 101 Tokodachi kaizu-cho, Toyota 470-0393, Japan
| | - Yu Aramaki
- School of Health and Sport Sciences, Chukyo University, 101 Tokodachi kaizu-cho, Toyota 470-0393, Japan.
| |
Collapse
|
44
|
Perceptual learning to discriminate the intensity and spatial location of nociceptive stimuli. Sci Rep 2016; 6:39104. [PMID: 27996022 PMCID: PMC5171856 DOI: 10.1038/srep39104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/17/2016] [Indexed: 01/04/2023] Open
Abstract
Accurate discrimination of the intensity and spatial location of nociceptive stimuli is essential to guide appropriate behaviour. The ability to discriminate the attributes of sensory stimuli is continuously refined by practice, even throughout adulthood - a phenomenon called perceptual learning. In the visual domain, perceptual learning to discriminate one of the features that define a visual stimulus (e.g., its orientation) can transfer to a different feature of the same stimulus (e.g., its contrast). Here, we performed two experiments on 48 volunteers to characterize perceptual learning in nociception, which has been rarely studied. We investigated whether learning to discriminate either the intensity or the location of nociceptive stimuli (1) occurs during practice and is subsequently maintained, (2) requires feedback on performance, and (3) transfers to the other, unpractised stimulus feature. First, we found clear evidence that perceptual learning in discriminating both the intensity and the location of nociceptive stimuli occurs, and is maintained for at least 3 hours after practice. Second, learning occurs only when feedback is provided during practice. Finally, learning is largely confined to the feature for which feedback was provided. We discuss these effects in a predictive coding framework, and consider implications for future studies.
Collapse
|
45
|
Petschow C, Scheef L, Paus S, Zimmermann N, Schild HH, Klockgether T, Boecker H. Central Pain Processing in Early-Stage Parkinson's Disease: A Laser Pain fMRI Study. PLoS One 2016; 11:e0164607. [PMID: 27776130 PMCID: PMC5077078 DOI: 10.1371/journal.pone.0164607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/28/2016] [Indexed: 01/08/2023] Open
Abstract
Background & Objective Pain is a common non-motor symptom in Parkinson’s disease. As dopaminergic dysfunction is suggested to affect intrinsic nociceptive processing, this study was designed to characterize laser-induced pain processing in early-stage Parkinson’s disease patients in the dopaminergic OFF state, using a multimodal experimental approach at behavioral, autonomic, imaging levels. Methods 13 right-handed early-stage Parkinson’s disease patients without cognitive or sensory impairment were investigated OFF medication, along with 13 age-matched healthy control subjects. Measurements included warmth perception thresholds, heat pain thresholds, and central pain processing with event-related functional magnetic resonance imaging (erfMRI) during laser-induced pain stimulation at lower (E = 440 mJ) and higher (E = 640 mJ) target energies. Additionally, electrodermal activity was characterized during delivery of 60 randomized pain stimuli ranging from 440 mJ to 640 mJ, along with evaluation of subjective pain ratings on a visual analogue scale. Results No significant differences in warmth perception thresholds, heat pain thresholds, electrodermal activity and subjective pain ratings were found between Parkinson’s disease patients and controls, and erfMRI revealed a generally comparable activation pattern induced by laser-pain stimuli in brain areas belonging to the central pain matrix. However, relatively reduced deactivation was found in Parkinson’s disease patients in posterior regions of the default mode network, notably the precuneus and the posterior cingulate cortex. Conclusion Our data during pain processing extend previous findings suggesting default mode network dysfunction in Parkinson’s disease. On the other hand, they argue against a genuine pain-specific processing abnormality in early-stage Parkinson’s disease. Future studies are now required using similar multimodal experimental designs to examine pain processing in more advanced stages of Parkinson’s disease.
Collapse
Affiliation(s)
- Christine Petschow
- Functional Neuroimaging Group, Department of Radiology, University of Bonn, Bonn, Germany
| | - Lukas Scheef
- Functional Neuroimaging Group, Department of Radiology, University of Bonn, Bonn, Germany
| | - Sebastian Paus
- Department of Neurology, University of Bonn, Bonn, Germany
| | | | - Hans H. Schild
- Department of Radiology, University of Bonn, Bonn, Germany
| | | | - Henning Boecker
- Functional Neuroimaging Group, Department of Radiology, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
46
|
Revisiting the Corticomotor Plasticity in Low Back Pain: Challenges and Perspectives. Healthcare (Basel) 2016; 4:healthcare4030067. [PMID: 27618123 PMCID: PMC5041068 DOI: 10.3390/healthcare4030067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/29/2016] [Accepted: 09/02/2016] [Indexed: 12/19/2022] Open
Abstract
Chronic low back pain (CLBP) is a recurrent debilitating condition that costs billions to society. Refractoriness to conventional treatment, lack of improvement, and associated movement disorders could be related to the extensive brain plasticity present in this condition, especially in the sensorimotor cortices. This narrative review on corticomotor plasticity in CLBP will try to delineate how interventions such as training and neuromodulation can improve the condition. The review recommends subgrouping classification in CLBP owing to brain plasticity markers with a view of better understanding and treating this complex condition.
Collapse
|
47
|
Qi HX, Wang F, Liao CC, Friedman RM, Tang C, Kaas JH, Avison MJ. Spatiotemporal trajectories of reactivation of somatosensory cortex by direct and secondary pathways after dorsal column lesions in squirrel monkeys. Neuroimage 2016; 142:431-453. [PMID: 27523450 DOI: 10.1016/j.neuroimage.2016.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/23/2016] [Accepted: 08/09/2016] [Indexed: 11/17/2022] Open
Abstract
After lesions of the somatosensory dorsal column (DC) pathway, the cortical hand representation can become unresponsive to tactile stimuli, but considerable responsiveness returns over weeks of post-lesion recovery. The reactivation suggests that preserved subthreshold sensory inputs become potentiated and axon sprouting occurs over time to mediate recovery. Here, we studied the recovery process in 3 squirrel monkeys, using high-resolution cerebral blood volume-based functional magnetic resonance imaging (CBV-fMRI) mapping of contralateral somatosensory cortex responsiveness to stimulation of distal finger pads with low and high level electrocutaneous stimulation (ES) before and 2, 4, and 6weeks after a mid-cervical level contralateral DC lesion. Both low and high intensity ES of digits revealed the expected somatotopy of the area 3b hand representation in pre-lesion monkeys, while in areas 1 and 3a, high intensity stimulation was more effective in activating somatotopic patterns. Six weeks post-lesion, and irrespective of the severity of loss of direct DC inputs (98%, 79%, 40%), somatosensory cortical area 3b of all three animals showed near complete recovery in terms of somatotopy and responsiveness to low and high intensity ES. However there was significant variability in the patterns and amplitudes of reactivation of individual digit territories within and between animals, reflecting differences in the degree of permanent and/or transient silencing of primary DC and secondary inputs 2weeks post-lesion, and their spatio-temporal trajectories of recovery between 2 and 6weeks. Similar variations in the silencing and recovery of somatotopy and responsiveness to high intensity ES in areas 3a and 1 are consistent with individual differences in damage to and recovery of DC and spinocuneate pathways, and possibly the potentiation of spinothalamic pathways. Thus, cortical deactivation and subsequent reactivation depends not only on the degree of DC lesion, but also on the severity and duration of loss of secondary as well as primary inputs revealed by low and high intensity ES.
Collapse
Affiliation(s)
- Hui-Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA.
| | - Feng Wang
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37240, USA; Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Chia-Chi Liao
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - Robert M Friedman
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - Chaohui Tang
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37240, USA; Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA; Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Malcolm J Avison
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37240, USA; Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37240, USA; Pharmacology, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
48
|
Henssen DJHA, Kurt E, Kozicz T, van Dongen R, Bartels RHMA, van Cappellen van Walsum AM. New Insights in Trigeminal Anatomy: A Double Orofacial Tract for Nociceptive Input. Front Neuroanat 2016; 10:53. [PMID: 27242449 PMCID: PMC4861896 DOI: 10.3389/fnana.2016.00053] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/26/2016] [Indexed: 12/22/2022] Open
Abstract
Orofacial pain in patients relies on the anatomical pathways that conduct nociceptive information, originating from the periphery towards the trigeminal sensory nucleus complex (TSNC) and finally, to the thalami and the somatosensorical cortical regions. The anatomy and function of the so-called trigeminothalamic tracts have been investigated before. In these animal-based studies from the previous century, the intracerebral pathways were mapped using different retro- and anterograde tracing methods. We review the literature on the trigeminothalamic tracts focusing on these animal tracer studies. Subsequently, we related the observations of these studies to clinical findings using fMRI trials. The intracerebral trigeminal pathways can be subdivided into three pathways: a ventral (contralateral) and dorsal (mainly ipsilateral) trigeminothalamic tract and the intranuclear pathway. Based on the reviewed evidence we hypothesize the co-existence of an ipsilateral nociceptive conduction tract to the cerebral cortex and we translate evidence from animal-based research to the human anatomy. Our hypothesis differs from the classical idea that orofacial pain arises only from nociceptive information via the contralateral, ventral trigeminothalamic pathway. Better understanding of the histology, anatomy and connectivity of the trigeminal fibers could contribute to the discovery of a more effective pain treatment in patients suffering from various orofacial pain syndromes.
Collapse
Affiliation(s)
- Dylan J. H. A. Henssen
- Department of Anatomy, Donders Institute for Brain Cognition and Behavior, Radboud University Medical CenterNijmegen, Netherlands
- Department of Neurosurgery, Radboud University Medical CenterNijmegen, Netherlands
| | - Erkan Kurt
- Department of Neurosurgery, Radboud University Medical CenterNijmegen, Netherlands
| | - Tamas Kozicz
- Department of Anatomy, Donders Institute for Brain Cognition and Behavior, Radboud University Medical CenterNijmegen, Netherlands
| | - Robert van Dongen
- Department of Anaesthesiology, Pain and Palliative Care, Radboud University Medical CenterNijmegen, Netherlands
| | | | | |
Collapse
|
49
|
Ellingson LD, Stegner AJ, Schwabacher IJ, Koltyn KF, Cook DB. Exercise Strengthens Central Nervous System Modulation of Pain in Fibromyalgia. Brain Sci 2016; 6:brainsci6010008. [PMID: 26927193 PMCID: PMC4810178 DOI: 10.3390/brainsci6010008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/02/2016] [Accepted: 02/17/2016] [Indexed: 01/01/2023] Open
Abstract
To begin to elucidate the mechanisms underlying the benefits of exercise for chronic pain, we assessed the influence of exercise on brain responses to pain in fibromyalgia (FM). Complete data were collected for nine female FM patients and nine pain-free controls (CO) who underwent two functional neuroimaging scans, following exercise (EX) and following quiet rest (QR). Brain responses and pain ratings to noxious heat stimuli were compared within and between groups. For pain ratings, there was a significant (p < 0.05) Condition by Run interaction characterized by moderately lower pain ratings post EX compared to QR (d = 0.39–0.41) for FM but similar to ratings in CO (d = 0.10–0.26), thereby demonstrating that exercise decreased pain sensitivity in FM patients to a level that was analogous to pain-free controls. Brain responses demonstrated a significant within-group difference in FM patients, characterized by less brain activity bilaterally in the anterior insula following QR as compared to EX. There was also a significant Group by Condition interaction with FM patients showing less activity in the left dorsolateral prefrontal cortex following QR as compared to post-EX and CO following both conditions. These results suggest that exercise appeared to stimulate brain regions involved in descending pain inhibition in FM patients, decreasing their sensitivity to pain. Thus, exercise may benefit patients with FM via improving the functional capacity of the pain modulatory system.
Collapse
Affiliation(s)
- Laura D Ellingson
- Department of Kinesiology, Iowa State University, Ames, IA 50011, USA.
| | - Aaron J Stegner
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53706, USA.
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Isaac J Schwabacher
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53706, USA.
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Kelli F Koltyn
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Dane B Cook
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53706, USA.
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
50
|
Amirmohseni S, Segelcke D, Reichl S, Wachsmuth L, Görlich D, Faber C, Pogatzki-Zahn E. Characterization of incisional and inflammatory pain in rats using functional tools of MRI. Neuroimage 2016; 127:110-122. [DOI: 10.1016/j.neuroimage.2015.11.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/04/2015] [Accepted: 11/23/2015] [Indexed: 02/07/2023] Open
|