1
|
Zhou L, Zhu Q, Wu B, Qin B, Hu H, Qian Z. A comparison of directed functional connectivity among fist-related brain activities during movement imagery, movement execution, and movement observation. Brain Res 2021; 1777:147769. [PMID: 34971597 DOI: 10.1016/j.brainres.2021.147769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/03/2021] [Accepted: 12/24/2021] [Indexed: 12/22/2022]
Abstract
Brain-computer interface (BCI) has been widely used in sports training and rehabilitation training. It is primarily based on action simulation, including movement imagery (MI) and movement observation (MO). However, the development of BCI technology is limited due to the challenge of getting an in-depth understanding of brain networks involved in MI, MO, and movement execution (ME). To better understand the brain activity changes and the communications across various brain regions under MO, ME, and MI, this study conducted the fist experiment under MO, ME, and MI. We recorded 64-channel electroencephalography (EEG) from 39 healthy subjects (25 males, 14 females, all right-handed) during fist tasks, obtained intensities and locations of sources using EEG source imaging (ESI), computed source activation modes, and finally investigated the brain networks using spectral Granger causality (GC). The brain regions involved in the three motor conditions are similar, but the degree of participation of each brain region and the network connections among the brain regions are different. MO, ME, and MI did not recruit shared brain connectivity networks. In addition, both source activation modes and brain network connectivity had lateralization advantages.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Qiaoqiao Zhu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Biao Wu
- Electronic Information Department, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Bing Qin
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Haixu Hu
- Sports Training Academy, Nanjing Sport Institute, Nanjing, China
| | - Zhiyu Qian
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| |
Collapse
|
2
|
Innocenti GM, Schmidt K, Milleret C, Fabri M, Knyazeva MG, Battaglia-Mayer A, Aboitiz F, Ptito M, Caleo M, Marzi CA, Barakovic M, Lepore F, Caminiti R. The functional characterization of callosal connections. Prog Neurobiol 2021; 208:102186. [PMID: 34780864 PMCID: PMC8752969 DOI: 10.1016/j.pneurobio.2021.102186] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022]
Abstract
The functional characterization of callosal connections is informed by anatomical data. Callosal connections play a conditional driving role depending on the brain state and behavioral demands. Callosal connections play a modulatory function, in addition to a driving role. The corpus callosum participates in learning and interhemispheric transfer of sensorimotor habits. The corpus callosum contributes to language processing and cognitive functions.
The brain operates through the synaptic interaction of distant neurons within flexible, often heterogeneous, distributed systems. Histological studies have detailed the connections between distant neurons, but their functional characterization deserves further exploration. Studies performed on the corpus callosum in animals and humans are unique in that they capitalize on results obtained from several neuroscience disciplines. Such data inspire a new interpretation of the function of callosal connections and delineate a novel road map, thus paving the way toward a general theory of cortico-cortical connectivity. Here we suggest that callosal axons can drive their post-synaptic targets preferentially when coupled to other inputs endowing the cortical network with a high degree of conditionality. This might depend on several factors, such as their pattern of convergence-divergence, the excitatory and inhibitory operation mode, the range of conduction velocities, the variety of homotopic and heterotopic projections and, finally, the state-dependency of their firing. We propose that, in addition to direct stimulation of post-synaptic targets, callosal axons often play a conditional driving or modulatory role, which depends on task contingencies, as documented by several recent studies.
Collapse
Affiliation(s)
- Giorgio M Innocenti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale (EPFL), Lausanne, Switzerland
| | - Kerstin Schmidt
- Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Chantal Milleret
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U 1050, Label Memolife, PSL Research University, Paris, France
| | - Mara Fabri
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Maria G Knyazeva
- Laboratoire de Recherche en Neuroimagerie (LREN), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Leenaards Memory Centre and Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | | | - Francisco Aboitiz
- Centro Interdisciplinario de Neurociencias and Departamento de Psiquiatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maurice Ptito
- Harland Sanders Chair in Visual Science, École d'Optométrie, Université de Montréal, Montréal, Qc, Canada; Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Qc, Canada; Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Matteo Caleo
- Department of Biomedical Sciences, University of Padua, Italy; CNR Neuroscience Institute, Pisa, Italy
| | - Carlo A Marzi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Muhamed Barakovic
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale (EPFL), Lausanne, Switzerland
| | - Franco Lepore
- Department of Psychology, Centre de Recherche en Neuropsychologie et Cognition, University of Montréal, Montréal, QC, Canada
| | - Roberto Caminiti
- Department of Physiology and Pharmacology, University of Rome SAPIENZA, Rome, Italy; Neuroscience and Behavior Laboratory, Istituto Italiano di Tecnologia, Rome, Italy.
| |
Collapse
|
3
|
Dan HD, Zhou FQ, Huang X, Xing YQ, Shen Y. Altered intra- and inter-regional functional connectivity of the visual cortex in individuals with peripheral vision loss due to retinitis pigmentosa. Vision Res 2019; 159:68-75. [PMID: 30904614 DOI: 10.1016/j.visres.2019.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/04/2019] [Accepted: 02/27/2019] [Indexed: 01/05/2023]
Abstract
This study investigated changes in intra- and inter-regional functional connectivity (FC) in individuals with retinitis pigmentosa (RP) by using regional homogeneity (ReHo) and FC methods. Sixteen RP individuals and 14 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging scans (fMRI). A combined ReHo and FC method was conducted to evaluate synchronization of brain activity. Compared with HCs, RP individuals had significantly lower ReHo values in the bilateral lingual gyrus/cerebellum posterior lobe (LGG/CPL). In FC analysis, the RP group showed decreased positive FC relative to the HC group, from bilateral LGG/CPL to bilateral LGG/cuneus (CUN) and to left postcentral gyrus (PosCG). In contrast, the RP group showed increased negative FC relative to the HC group, from bilateral LGG/CPL to bilateral thalamus, and decreased negative FC from bilateral LGG/CPL to right middle frontal gyrus (MFG), and to left inferior parietal lobule (IPL). Moreover, ReHo values of the bilateral LGG/CPL showed negative correlations with the duration of RP. FC values of the bilateral LGG/CPL-left IPL showed negative correlations with best-corrected visual acuity (BCVA) of the right eye and left eye in RP individuals. Our results reveal reduced synchronicity of neural activity changes in the primary visual area in RP individuals. Moreover, RP individuals showed intrinsic visual network disconnection and reorganization of the retino-thalamocortical pathway and dorsal visual stream, suggesting impaired visuospatial and stereoscopic vision.
Collapse
Affiliation(s)
- Han-Dong Dan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Fu-Qing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, Jiangxi, China
| | - Xin Huang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Yi-Qiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China.
| |
Collapse
|
4
|
Song C, Rees G. Intra-hemispheric integration underlies perception of tilt illusion. Neuroimage 2018; 175:80-90. [PMID: 29609007 PMCID: PMC5971216 DOI: 10.1016/j.neuroimage.2018.03.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 11/19/2022] Open
Abstract
The integration of inputs across the entire visual field into a single conscious experience is fundamental to human visual perception. This integrated nature of visual experience is illustrated by contextual illusions such as the tilt illusion, in which the perceived orientation of a central grating appears tilted away from its physical orientation, due to the modulation by a surrounding grating with a different orientation. Here we investigated the relative contribution of local, intra-hemispheric and global, inter-hemispheric integration mechanisms to perception of the tilt illusion. We used Dynamic Causal Modelling of fMRI signals to estimate effective connectivity in human early visual cortices (V1, V2, V3) during bilateral presentation of a tilt illusion stimulus. Our analysis revealed that neural responses associated with the tilt illusion were modulated by intra- rather than inter-hemispheric connectivity. Crucially, across participants, intra-hemispheric connectivity in V1 correlated with the magnitude of the tilt illusion, while no such correlation was observed for V1 inter-hemispheric connectivity, or V2, V3 connectivity. Moreover, when the illusion stimulus was presented unilaterally rather than bilaterally, the illusion magnitude did not change. Together our findings suggest that perception of the tilt illusion reflects an intra-hemispheric integration mechanism. This is in contrast to the existing literature, which suggests inter-hemispheric modulation of neural activity as early as V1. This discrepancy with our findings may reflect the diversity and complexity of integration mechanisms involved in visual processing and visual perception.
Collapse
Affiliation(s)
- Chen Song
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK; Department of Psychiatry, University of Wisconsin-Madison, Madison, 53719, USA.
| | - Geraint Rees
- Institute of Cognitive Neuroscience, University College London, London, WC1N 3AR, UK; Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N 3BG, UK
| |
Collapse
|
5
|
Bland NS, Mattingley JB, Sale MV. No Evidence for Phase-Specific Effects of 40 Hz HD-tACS on Multiple Object Tracking. Front Psychol 2018; 9:304. [PMID: 29593608 PMCID: PMC5854687 DOI: 10.3389/fpsyg.2018.00304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/23/2018] [Indexed: 11/13/2022] Open
Abstract
Phase synchronization drives connectivity between neural oscillators, providing a flexible mechanism through which information can be effectively and selectively routed between task-relevant cortical areas. The ability to keep track of objects moving between the left and right visual hemifields, for example, requires the integration of information between the two cerebral hemispheres. Both animal and human studies have suggested that coherent (or phase-locked) gamma oscillations (30–80 Hz) might underlie this ability. While most human evidence has been strictly correlational, high-density transcranial alternating current stimulation (HD-tACS) has been used to manipulate ongoing interhemispheric gamma phase relationships. Previous research showed that 40 Hz tACS delivered bilaterally over human motion complex could bias the perception of a bistable ambiguous motion stimulus (Helfrich et al., 2014). Specifically, this work showed that in-phase (0° offset) stimulation boosted endogenous interhemispheric gamma coherence and biased perception toward the horizontal (whereby visual tokens moved between visual hemifields—requiring interhemispheric integration). By contrast, anti-phase (180° offset) stimulation decreased interhemispheric gamma coherence and biased perception toward the vertical (whereby tokens moved within separate visual hemifields). Here we devised a multiple object tracking arena comprised of four quadrants whereby discrete objects moved either entirely within the left and right visual hemifields, or could cross freely between visual hemifields, thus requiring interhemispheric integration. Using the same HD-tACS montages as Helfrich et al. (2014), we found no phase-specific effect of 40 Hz stimulation on overall tracking performance. While tracking performance was generally lower during between-hemifield trials (presumably reflecting a cost of integration), this difference was unchanged by in- vs. anti-phase stimulation. Our null results could be due to a failure to reliably modulate coherence in our study, or that our task does not rely as heavily on this network of coherent gamma oscillations as other visual integration paradigms.
Collapse
Affiliation(s)
- Nicholas S Bland
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Jason B Mattingley
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia.,School of Psychology, University of Queensland, St Lucia, QLD, Australia
| | - Martin V Sale
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia.,School of Health and Rehabilitation Sciences, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
6
|
Intact hemisphere and corpus callosum compensate for visuomotor functions after early visual cortex damage. Proc Natl Acad Sci U S A 2017; 114:E10475-E10483. [PMID: 29133428 PMCID: PMC5715784 DOI: 10.1073/pnas.1714801114] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Unilateral damage to the primary visual cortex (V1) leads to clinical blindness in the opposite visual hemifield, yet nonconscious ability to transform unseen visual input into motor output can be retained, a condition known as "blindsight." Here we combined psychophysics, functional magnetic resonance imaging, and tractography to investigate the functional and structural properties that enable the developing brain to partly overcome the effects of early V1 lesion in one blindsight patient. Visual stimuli appeared in either the intact or blind hemifield and simple responses were given with either the left or right hand, thereby creating conditions where visual input and motor output involve the same or opposite hemisphere. When the V1-damaged hemisphere was challenged by incoming visual stimuli, or controlled manual responses to these unseen stimuli, the corpus callosum (CC) dynamically recruited areas in the visual dorsal stream and premotor cortex of the intact hemisphere to compensate for altered visuomotor functions. These compensatory changes in functional brain activity were paralleled by increased connections in posterior regions of the CC, where fibers connecting homologous areas of the parietal cortex course.
Collapse
|
7
|
Costa GN, Duarte JV, Martins R, Wibral M, Castelo-Branco M. Interhemispheric Binding of Ambiguous Visual Motion Is Associated with Changes in Beta Oscillatory Activity but Not with Gamma Range Synchrony. J Cogn Neurosci 2017; 29:1829-1844. [PMID: 28654360 DOI: 10.1162/jocn_a_01158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In vision, perceptual features are processed in several regions distributed across the brain. Yet, the brain achieves a coherent perception of visual scenes and objects through integration of these features, which are encoded in spatially segregated brain areas. How the brain seamlessly achieves this accurate integration is currently unknown and is referred to as the "binding problem." Among the proposed mechanisms meant to resolve the binding problem, the binding-by-synchrony hypothesis proposes that binding is carried out by the synchronization of distant neuronal assemblies. This study aimed at providing a critical test to the binding-by-synchrony hypothesis by evaluating long-range connectivity using EEG during a motion integration visual task that entails binding across hemispheres. Our results show that large-scale perceptual binding is not associated with long-range interhemispheric gamma synchrony. However, distinct perceptual interpretations were found to correlate with changes in beta power. Increased beta activity was observed during binding under ambiguous conditions and originates mainly from parietal regions. These findings reveal that the visual experience of binding can be identified by distinct signatures of oscillatory activity, regardless of long-range gamma synchrony, suggesting that such type of synchrony does not underlie perceptual binding.
Collapse
|
8
|
Serrien DJ, Sovijärvi-Spapé MM. Manual dexterity: Functional lateralisation patterns and motor efficiency. Brain Cogn 2016; 108:42-6. [DOI: 10.1016/j.bandc.2016.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 06/10/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022]
|
9
|
Barzegaran E, van Damme B, Meuli R, Knyazeva MG. Perception-related EEG is more sensitive to Alzheimer's disease effects than resting EEG. Neurobiol Aging 2016; 43:129-39. [DOI: 10.1016/j.neurobiolaging.2016.03.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 01/06/2023]
|
10
|
Fornari E, Rytsar R, Knyazeva MG. Development of spatial integration depends on top-down and interhemispheric connections that can be perturbed in migraine: a DCM analysis. Neurol Sci 2015; 35 Suppl 1:215-24. [PMID: 24867869 DOI: 10.1007/s10072-014-1777-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In humans, spatial integration develops slowly, continuing through childhood into adolescence. On the assumption that this protracted course depends on the formation of networks with slowly developing top-down connections, we compared effective connectivity in the visual cortex between 13 children (age 7-13) and 14 adults (age 21-42) using a passive perceptual task. The subjects were scanned while viewing bilateral gratings, which either obeyed Gestalt grouping rules [colinear gratings (CG)] or violated them [non-colinear gratings (NG)]. The regions of interest for dynamic causal modeling were determined from activations in functional MRI contrasts stimuli > background and CG > NG. They were symmetrically located in V1 and V3v areas of both hemispheres. We studied a common model, which contained reciprocal intrinsic and modulatory connections between these regions. An analysis of effective connectivity showed that top-down modulatory effects generated at an extrastriate level and interhemispheric modulatory effects between primary visual areas (all inhibitory) are significantly weaker in children than in adults, suggesting that the formation of feedback and interhemispheric effective connections continues into adolescence. These results are consistent with a model in which spatial integration at an extrastriate level results in top-down messages to the primary visual areas, where they are supplemented by lateral (interhemispheric) messages, making perceptual encoding more efficient and less redundant. Abnormal formation of top-down inhibitory connections can lead to the reduction of habituation observed in migraine patients.
Collapse
Affiliation(s)
- Eleonora Fornari
- CHUV Unit, CIBM (Centre d'Imagérie Biomédicale), Centre Hospitalier Universitaire Vaudois (CHUV), and University of Lausanne, Rue du Bugnon, 46, 1011, Lausanne, Switzerland,
| | | | | |
Collapse
|
11
|
Bocci T, Pietrasanta M, Cerri C, Restani L, Caleo M, Sartucci F. Visual callosal connections: role in visual processing in health and disease. Rev Neurosci 2014; 25:113-27. [DOI: 10.1515/revneuro-2013-0025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/07/2013] [Indexed: 11/15/2022]
|
12
|
The visual callosal connection: a connection like any other? Neural Plast 2013; 2013:397176. [PMID: 23634306 PMCID: PMC3619632 DOI: 10.1155/2013/397176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/27/2013] [Indexed: 11/23/2022] Open
Abstract
Recent work about the role of visual callosal connections in ferrets and cats is reviewed, and morphological and functional homologies between the lateral intrinsic and callosal network in early visual areas are discussed. Both networks selectively link distributed neuronal groups with similar response properties, and the actions exerted by callosal input reflect the functional topography of those networks. This supports the notion that callosal connections perpetuate the function of the lateral intrahemispheric circuit onto the other hemisphere. Reversible deactivation studies indicate that the main action of visual callosal input is a multiplicative shift of responses rather than a changing response selectivity. Both the gain of that action and its excitatory-inhibitory balance seem to be dynamically adapted to the feedforward drive by the visual stimulus onto primary visual cortex. Taken together anatomical and functional evidence from corticocortical and lateral circuits further leads to the conclusion that visual callosal connections share more features with lateral intrahemispheric connections on the same hierarchical level and less with feedback connections. I propose that experimental results about the callosal circuit in early visual areas can be interpreted with respect to lateral connectivity in general.
Collapse
|
13
|
Splenium of corpus callosum: patterns of interhemispheric interaction in children and adults. Neural Plast 2013; 2013:639430. [PMID: 23577273 PMCID: PMC3610378 DOI: 10.1155/2013/639430] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/08/2013] [Accepted: 02/09/2013] [Indexed: 01/09/2023] Open
Abstract
The splenium of the corpus callosum connects the posterior cortices with fibers varying in size from thin late-myelinating axons in the anterior part, predominantly connecting parietal and temporal areas, to thick early-myelinating fibers in the posterior part, linking primary and secondary visual areas. In the adult human brain, the function of the splenium in a given area is defined by the specialization of the area and implemented via excitation and/or suppression of the contralateral homotopic and heterotopic areas at the same or different level of visual hierarchy. These mechanisms are facilitated by interhemispheric synchronization of oscillatory activity, also supported by the splenium. In postnatal ontogenesis, structural MRI reveals a protracted formation of the splenium during the first two decades of human life. In doing so, the slow myelination of the splenium correlates with the formation of interhemispheric excitatory influences in the extrastriate areas and the EEG synchronization, while the gradual increase of inhibitory effects in the striate cortex is linked to the local inhibitory circuitry. Reshaping interactions between interhemispherically distributed networks under various perceptual contexts allows sparsification of responses to superfluous information from the visual environment, leading to a reduction of metabolic and structural redundancy in a child's brain.
Collapse
|
14
|
Berlucchi G. Visual interhemispheric communication and callosal connections of the occipital lobes. Cortex 2013; 56:1-13. [PMID: 23489777 DOI: 10.1016/j.cortex.2013.02.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/24/2012] [Accepted: 02/03/2013] [Indexed: 12/12/2022]
Abstract
Callosal connections of the occipital lobes, coursing in the splenium of the corpus callosum, have long been thought to be crucial for interactions between the cerebral hemispheres in vision in both experimental animals and humans. Yet the callosal connections of the temporal and parietal lobes appear to have more important roles than those of the occipital callosal connections in at least some high-order interhemispheric visual functions. The partial intermixing and overlap of temporal, parietal and occipital callosal connections within the splenium has made it difficult to attribute the effects of splenial pathological lesions or experimental sections to splenial components specifically related to select cortical areas. The present review describes some current contributions from the modern techniques for the tracking of commissural fibers within the living human brain to the tentative assignation of specific visual functions to specific callosal tracts, either occipital or extraoccipital.
Collapse
Affiliation(s)
- Giovanni Berlucchi
- National Neuroscience Institute, Italy; Dipartimento di Scienze Neurologiche, Sezione di Fisiologia e Psicologia, Università di Verona, Italy.
| |
Collapse
|
15
|
Müller-Oehring EM, Schulte T, Rohlfing T, Pfefferbaum A, Sullivan EV. Visual search and the aging brain: discerning the effects of age-related brain volume shrinkage on alertness, feature binding, and attentional control. Neuropsychology 2013; 27:48-59. [PMID: 23356596 PMCID: PMC3718286 DOI: 10.1037/a0030921] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Decline in visuospatial abilities with advancing age has been attributed to a demise of bottom-up and top-down functions involving sensory processing, selective attention, and executive control. These functions may be differentially affected by age-related volume shrinkage of subcortical and cortical nodes subserving the dorsal and ventral processing streams and the corpus callosum mediating interhemispheric information exchange. METHOD Fifty-five healthy adults (25-84 years) underwent structural MRI and performed a visual search task to test perceptual and attentional demands by combining feature-conjunction searches with "gestalt" grouping and attentional cueing paradigms. RESULTS Poorer conjunction, but not feature, search performance was related to older age and volume shrinkage of nodes in the dorsolateral processing stream. When displays allowed perceptual grouping through distractor homogeneity, poorer conjunction-search performance correlated with smaller ventrolateral prefrontal cortical and callosal volumes. An alerting cue attenuated age effects on conjunction search, and the alertness benefit was associated with thalamic, callosal, and temporal cortex volumes. CONCLUSION Our results indicate that older adults can capitalize on early parallel stages of visual information processing, whereas age-related limitations arise at later serial processing stages requiring self-guided selective attention and executive control. These limitations are explained in part by age-related brain volume shrinkage and can be mitigated by external cues.
Collapse
Affiliation(s)
- Eva M Müller-Oehring
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, and Neuroscience Program, SRI International, Menlo Park, California 94305-5723, USA.
| | | | | | | | | |
Collapse
|
16
|
Zhu DC, Majumdar S. Integration of resting-state FMRI and diffusion-weighted MRI connectivity analyses of the human brain: limitations and improvement. J Neuroimaging 2012; 24:176-86. [PMID: 23279672 DOI: 10.1111/j.1552-6569.2012.00768.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 06/12/2012] [Accepted: 08/27/2012] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Integration of functional connectivity analysis based on resting-state functional Magnetic Resonance Imaging (fMRI) and structural connectivity analysis based on Diffusion-Weighted Imaging (DWI) has shown great potential to improve understanding of the neural networks in the human brain. However, there are sensitivity and specificity-related interpretation issues that must be addressed. METHODS We assessed the long-range functional and structural connections of the default-mode, attention, visual and motor networks on 25 healthy subjects. For each network, we first integrated these two analyses based on one common seed region. We then introduced a functional-assisted fiber tracking strategy, where seed regions were defined based on independent component analysis of the resting-state fMRI dataset. RESULTS The single-seed based technique successfully identified the expected functional connections within these networks at both subject and group levels. However, the success rate of structural connectivity analysis showed a high level of variation among the subjects. The functional-assisted fiber tracking strategy highly improved the rate of successful fiber tracking. CONCLUSIONS This fMRI/DWI integration study suggests that functional connectivity analysis might be a more sensitive and robust approach in understanding the connectivity between cortical regions, and can be used to improve DWI-based structural connectivity analysis.
Collapse
Affiliation(s)
- David C Zhu
- Departments of Psychology and Radiology, and Cognitive Imaging Research Center, Michigan State University
| | | |
Collapse
|
17
|
Barzegaran E, Joudaki A, Jalili M, Rossetti AO, Frackowiak RS, Knyazeva MG. Properties of functional brain networks correlate with frequency of psychogenic non-epileptic seizures. Front Hum Neurosci 2012; 6:335. [PMID: 23267325 PMCID: PMC3526831 DOI: 10.3389/fnhum.2012.00335] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 12/05/2012] [Indexed: 11/13/2022] Open
Abstract
Abnormalities in the topology of brain networks may be an important feature and etiological factor for psychogenic non-epileptic seizures (PNES). To explore this possibility, we applied a graph theoretical approach to functional networks based on resting state EEGs from 13 PNES patients and 13 age- and gender-matched controls. The networks were extracted from Laplacian-transformed time-series by a cross-correlation method. PNES patients showed close to normal local and global connectivity and small-world structure, estimated with clustering coefficient, modularity, global efficiency, and small-worldness (SW) metrics, respectively. Yet the number of PNES attacks per month correlated with a weakness of local connectedness and a skewed balance between local and global connectedness quantified with SW, all in EEG alpha band. In beta band, patients demonstrated above-normal resiliency, measured with assortativity coefficient, which also correlated with the frequency of PNES attacks. This interictal EEG phenotype may help improve differentiation between PNES and epilepsy. The results also suggest that local connectivity could be a target for therapeutic interventions in PNES. Selective modulation (strengthening) of local connectivity might improve the skewed balance between local and global connectivity and so prevent PNES events.
Collapse
Affiliation(s)
- Elham Barzegaran
- Department of Computer Engineering, Sharif University of Technology Tehran, Iran
| | | | | | | | | | | |
Collapse
|
18
|
Chassy P, Gobet F. A Hypothesis about the Biological Basis of Expert Intuition. REVIEW OF GENERAL PSYCHOLOGY 2011. [DOI: 10.1037/a0023958] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is well established that intuition plays an important role in experts’ decision making and thinking generally. However, the theories that have been developed at the cognitive level have limits in their explanatory power and lack detailed explanation of the underlying biological mechanisms. In this paper, we bridge this gap by proposing that Hebb's (1949) concept of cell assembly is the biological realization of Simon's (1974) concept of chunking. This view provides mechanisms at the biological level that are consistent with both biological and psychological findings. To further address the limits of previous theories, we introduce emotions as a component of intuition by showing how they modulate the perception-memory interaction. The idea that intuition lies at the crossroads between perception, knowledge, and emotional modulation sheds new light on the phenomena of expertise and intuition.
Collapse
Affiliation(s)
- Philippe Chassy
- Institute of Medical Psychology and Behavioral Neurobiology University of Tübingen
| | - Fernand Gobet
- Centre for the Study of Expertise, Brunel University
| |
Collapse
|
19
|
Rytsar R, Fornari E, Frackowiak RS, Ghika JA, Knyazeva MG. Inhibition in early Alzheimer's disease: An fMRI-based study of effective connectivity. Neuroimage 2011; 57:1131-9. [PMID: 21616155 DOI: 10.1016/j.neuroimage.2011.05.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/11/2011] [Accepted: 05/09/2011] [Indexed: 12/29/2022] Open
|
20
|
Dong G, Zhou H, Zhao X. Male Internet addicts show impaired executive control ability: evidence from a color-word Stroop task. Neurosci Lett 2011; 499:114-8. [PMID: 21645588 DOI: 10.1016/j.neulet.2011.05.047] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/19/2011] [Accepted: 05/19/2011] [Indexed: 10/18/2022]
Abstract
This study investigated the executive control ability of male students with Internet addiction disorder (IAD) by recording event-related brain potentials (ERP) during a color-word Stroop task. Seventeen IAD and 17 male normal university students participated. Behavior results showed that IAD students were associated with longer reaction time and more response errors in incongruent conditions than the control group. ERP results revealed that participants with IAD showed reduced medial frontal negativity (MFN) deflection in incongruent conditions than the control group. Both of the behavioral performance and ERP results indicate that people with IAD show impaired executive control ability than the normal group.
Collapse
Affiliation(s)
- Guangheng Dong
- Department of Psychology, Zhejiang Normal University, PR China.
| | | | | |
Collapse
|
21
|
Knyazeva MG, Carmeli C, Fornari E, Meuli R, Small M, Frackowiak RS, Maeder P. Binding under conflict conditions: state-space analysis of multivariate EEG synchronization. J Cogn Neurosci 2010; 23:2363-75. [PMID: 20946055 DOI: 10.1162/jocn.2010.21588] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Real-world objects are often endowed with features that violate Gestalt principles. In our experiment, we examined the neural correlates of binding under conflict conditions in terms of the binding-by-synchronization hypothesis. We presented an ambiguous stimulus ("diamond illusion") to 12 observers. The display consisted of four oblique gratings drifting within circular apertures. Its interpretation fluctuates between bound ("diamond") and unbound (component gratings) percepts. To model a situation in which Gestalt-driven analysis contradicts the perceptually explicit bound interpretation, we modified the original diamond (OD) stimulus by speeding up one grating. Using OD and modified diamond (MD) stimuli, we managed to dissociate the neural correlates of Gestalt-related (OD vs. MD) and perception-related (bound vs. unbound) factors. Their interaction was expected to reveal the neural networks synchronized specifically in the conflict situation. The synchronization topography of EEG was analyzed with the multivariate S-estimator technique. We found that good Gestalt (OD vs. MD) was associated with a higher posterior synchronization in the beta-gamma band. The effect of perception manifested itself as reciprocal modulations over the posterior and anterior regions (theta/beta-gamma bands). Specifically, higher posterior and lower anterior synchronization supported the bound percept, and the opposite was true for the unbound percept. The interaction showed that binding under challenging perceptual conditions is sustained by enhanced parietal synchronization. We argue that this distributed pattern of synchronization relates to the processes of multistage integration ranging from early grouping operations in the visual areas to maintaining representations in the frontal networks of sensory memory.
Collapse
Affiliation(s)
- Maria G Knyazeva
- Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
22
|
Mental Imagery for Full and Upper Human Bodies: Common Right Hemisphere Activations and Distinct Extrastriate Activations. Brain Topogr 2010; 23:321-32. [DOI: 10.1007/s10548-010-0138-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 02/12/2010] [Indexed: 11/25/2022]
|
23
|
Nikolaev AR, Gepshtein S, Gong P, van Leeuwen C. Duration of coherence intervals in electrical brain activity in perceptual organization. Cereb Cortex 2009; 20:365-82. [PMID: 19596712 PMCID: PMC2803735 DOI: 10.1093/cercor/bhp107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigated the relationship between visual experience and temporal intervals of synchronized brain activity. Using high-density scalp electroencephalography, we examined how synchronized activity depends on visual stimulus information and on individual observer sensitivity. In a perceptual grouping task, we varied the ambiguity of visual stimuli and estimated observer sensitivity to this variation. We found that durations of synchronized activity in the beta frequency band were associated with both stimulus ambiguity and sensitivity: the lower the stimulus ambiguity and the higher individual observer sensitivity the longer were the episodes of synchronized activity. Durations of synchronized activity intervals followed an extreme value distribution, indicating that they were limited by the slowest mechanism among the multiple neural mechanisms engaged in the perceptual task. Because the degree of stimulus ambiguity is (inversely) related to the amount of stimulus information, the durations of synchronous episodes reflect the amount of stimulus information processed in the task. We therefore interpreted our results as evidence that the alternating episodes of desynchronized and synchronized electrical brain activity reflect, respectively, the processing of information within local regions and the transfer of information across regions.
Collapse
Affiliation(s)
- Andrey R Nikolaev
- Laboratory for Perceptual Dynamics, RIKEN Brain Science Institute, Wako-shi 351-0198, Japan.
| | | | | | | |
Collapse
|
24
|
Rochefort NL, Buzás P, Quenech'du N, Koza A, Eysel UT, Milleret C, Kisvárday ZF. Functional Selectivity of Interhemispheric Connections in Cat Visual Cortex. Cereb Cortex 2009; 19:2451-65. [DOI: 10.1093/cercor/bhp001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Schadow J, Dettler N, Paramei GV, Lenz D, Fründ I, Sabel BA, Herrmann CS. Impairments of Gestalt perception in the intact hemifield of hemianopic patients are reflected in gamma-band EEG activity. Neuropsychologia 2008; 47:556-68. [PMID: 18996403 DOI: 10.1016/j.neuropsychologia.2008.10.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 09/26/2008] [Accepted: 10/03/2008] [Indexed: 10/21/2022]
Abstract
Gamma-band responses (GBRs) are associated with Gestalt perception processes. In the present EEG study, we investigated the effects of perceptual grouping on the visual GBR in the perimetrically intact visual field of patients with homonymous hemianopia and compared them to healthy participants. All observers were presented either random arrays of Gabor elements or arrays with an embedded circular arrangement. For the hemianopic patients, the circle was presented in their intact hemifield only. For controls, the hemifield for the circle presentation was counterbalanced across subjects. The participants were instructed to detect the circle by pressing a corresponding button. A wavelet transform based on Morlet wavelets was employed for the calculation of oscillatory GBRs. The early evoked GBR exhibited a larger amplitude and shorter latency for the healthy group compared to hemianopic patients and was associated with behavioral measures. The late total GBR between 200 and 400ms after stimulus onset was significantly increased for Gestalt-like patterns in healthy participants. This effect was not manifested in patients. The present findings indicate deficits in the early and late visual processing of Gestalt patterns even in the intact hemifield of hemianopic patients compared to healthy participants.
Collapse
Affiliation(s)
- Jeanette Schadow
- Department of Biological Psychology, Otto-von-Guericke-University of Magdeburg, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Dynamic interactions between the cerebral hemispheres. Exp Brain Res 2008; 192:417-23. [PMID: 18685835 DOI: 10.1007/s00221-008-1484-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 06/28/2008] [Indexed: 10/21/2022]
Abstract
The cortical areas of the two hemispheres interact via the corpus callosum. This paper reviews recent findings in animals and man, showing that the visual areas of the two hemispheres control each other's dynamics. The interaction is stimulus-dependent and stimulus-specific. It consists of both excitatory and inhibitory inputs controlling the formation of synchronous neuronal assemblies across and within the hemispheres. The findings are consistent with the geometry of callosal axons and their inferred computational properties. These are the first findings to suggest a direct relationship between the geometry of cortical connections, and the formation of stimulus-driven synchronous neuronal assemblies.
Collapse
|
27
|
Plewnia C, Rilk AJ, Soekadar SR, Arfeller C, Huber HS, Sauseng P, Hummel F, Gerloff C. Enhancement of long-range EEG coherence by synchronous bifocal transcranial magnetic stimulation. Eur J Neurosci 2008; 27:1577-83. [PMID: 18336566 DOI: 10.1111/j.1460-9568.2008.06124.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interregional coupling of distant brain regions can be measured by electroencephalographic (EEG) coherence reflecting the spatial-temporal correlation between two oscillatory signals. It has been suggested that this coherence in activity is a signature of functional integration of multimodal neuronal networks. Repetitive transcranial magnetic stimulation (rTMS) is a well-established technique for non-invasive cortical stimulation. Its modulating effects outlast the train of stimulation and affect behavior. In the present study, we tested the hypothesis that cortico-cortical coherence between distant brain areas can be selectively enhanced by synchronous bifocal rTMS. Cortico-cortical coherence was assessed in 16 healthy human subjects before and after three trains of synchronous high-frequency (10 Hz) rTMS to the left primary motor cortex and the visual cortex at the occipital pole simultaneously. Stimulation of the left M1 alone served as the control condition. Coherence and spectral power were measured between these areas on the stimulated and the homologue contralateral side. Synchronous bifocal rTMS induced an increase of interregional coupling in the alpha and lower beta band on the stimulated side without effects on spectral power. These data indicate that synchronous bifocal rTMS is a feasible technique for selective modulation of interregional EEG coherence. Furthermore, they raise the hypothesis that interventional enhancement of long-range coherence may effectively modulate interregional integration with behavioral consequences.
Collapse
Affiliation(s)
- Christian Plewnia
- Department of Psychiatry and Psychotherapy, University of Tübingen, Osianderstrasse 24, D-72076 Tübingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Croft RJ, Hamblin DL, Spong J, Wood AW, McKenzie RJ, Stough C. The effect of mobile phone electromagnetic fields on the alpha rhythm of human electroencephalogram. Bioelectromagnetics 2008; 29:1-10. [PMID: 17786925 DOI: 10.1002/bem.20352] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mobile phones (MP) emit low-level electromagnetic fields that have been reported to affect neural function in humans; however, demonstrations of such effects have not been conclusive. The purpose of the present study was to test one of the strongest findings in the literature; that of increased "alpha" power in response to MP-type radiation. Healthy participants (N = 120) were tested using a double-blind counterbalanced crossover design, with each receiving a 30-min Active and a 30-min Sham Exposure 1 week apart, while electroencephalogram (EEG) data were recorded. Resting alpha power (8-12 Hz) was then derived as a function of time, for periods both during and following exposure. Non-parametric analyses were employed as data could not be normalized. Previous reports of an overall alpha power enhancement during the MP exposure were confirmed (relative to Sham), with this effect larger at ipsilateral than contralateral sites over posterior regions. No overall change to alpha power was observed following exposure cessation; however, there was less alpha power contralateral to the exposure source during this period (relative to ipsilateral). Employing a strong methodology, the current findings support previous research that has reported an effect of MP exposure on EEG alpha power.
Collapse
Affiliation(s)
- R J Croft
- Brain Sciences Institute, Swinburne University of Technology, Melbourne, Australia.
| | | | | | | | | | | |
Collapse
|
29
|
Makarov VA, Schmidt KE, Castellanos NP, Lopez-Aguado L, Innocenti GM. Stimulus-Dependent Interaction between the Visual Areas 17 and 18 of the 2 Hemispheres of the Ferret (Mustela putorius). Cereb Cortex 2007; 18:1951-60. [DOI: 10.1093/cercor/bhm222] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Jalili M, Lavoie S, Deppen P, Meuli R, Do KQ, Cuénod M, Hasler M, De Feo O, Knyazeva MG. Dysconnection topography in schizophrenia revealed with state-space analysis of EEG. PLoS One 2007; 2:e1059. [PMID: 17957243 PMCID: PMC2020441 DOI: 10.1371/journal.pone.0001059] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 10/01/2007] [Indexed: 12/02/2022] Open
Abstract
Background The dysconnection hypothesis has been proposed to account for pathophysiological mechanisms underlying schizophrenia. Widespread structural changes suggesting abnormal connectivity in schizophrenia have been imaged. A functional counterpart of the structural maps would be the EEG synchronization maps. However, due to the limits of currently used bivariate methods, functional correlates of dysconnection are limited to the isolated measurements of synchronization between preselected pairs of EEG signals. Methods/Results To reveal a whole-head synchronization topography in schizophrenia, we applied a new method of multivariate synchronization analysis called S-estimator to the resting dense-array (128 channels) EEG obtained from 14 patients and 14 controls. This method determines synchronization from the embedding dimension in a state-space domain based on the theoretical consequence of the cooperative behavior of simultaneous time series—the shrinking of the state-space embedding dimension. The S-estimator imaging revealed a specific synchronization landscape in schizophrenia patients. Its main features included bilaterally increased synchronization over temporal brain regions and decreased synchronization over the postcentral/parietal region neighboring the midline. The synchronization topography was stable over the course of several months and correlated with the severity of schizophrenia symptoms. In particular, direct correlations linked positive, negative, and general psychopathological symptoms to the hyper-synchronized temporal clusters over both hemispheres. Along with these correlations, general psychopathological symptoms inversely correlated within the hypo-synchronized postcentral midline region. While being similar to the structural maps of cortical changes in schizophrenia, the S-maps go beyond the topography limits, demonstrating a novel aspect of the abnormalities of functional cooperation: namely, regionally reduced or enhanced connectivity. Conclusion/Significance The new method of multivariate synchronization significantly boosts the potential of EEG as an imaging technique compatible with other imaging modalities. Its application to schizophrenia research shows that schizophrenia can be explained within the concept of neural dysconnection across and within large-scale brain networks.
Collapse
Affiliation(s)
- Mahdi Jalili
- École Polytechnique Fédérale de Lausanne (EPFL), IC – School of Computer and Communication Sciences, Laboratory of Nonlinear Systems (ICLANOS), Lausanne, Switzerland
| | - Suzie Lavoie
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Patricia Deppen
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Reto Meuli
- Department of Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Kim Q. Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Michel Cuénod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Martin Hasler
- École Polytechnique Fédérale de Lausanne (EPFL), IC – School of Computer and Communication Sciences, Laboratory of Nonlinear Systems (ICLANOS), Lausanne, Switzerland
| | - Oscar De Feo
- Microelectronic Engineering, University College Cork, Cork City, Ireland
| | - Maria G. Knyazeva
- Department of Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Department of Neurology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
31
|
Fornari E, Knyazeva MG, Meuli R, Maeder P. Myelination shapes functional activity in the developing brain. Neuroimage 2007; 38:511-8. [PMID: 17889561 DOI: 10.1016/j.neuroimage.2007.07.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 06/25/2007] [Accepted: 07/03/2007] [Indexed: 11/23/2022] Open
Abstract
In humans, the function of spatial integration (SI) develops slowly, continuing through childhood into adolescence. To reveal its neural substrate in children and to examine the role of myelination in shaping SI-dependent functional activity, we applied a combined fMRI/MTI technique capable of tracking functional (BOLD response) and morphological (myelination) signs of maturation. Fourteen children (age 7-13) were scanned while viewing bilateral gratings, which either obeyed Gestalt grouping rules or violated them. A contrast between these stimuli revealed the BOLD response presumably induced by interhemispheric SI. It was limited to a small ventral stream territory in the lingual gyrus that corresponds to the VP part of the SI-induced activation found in adults in VP/V4 areas. The BOLD response correlated with myelination of splenial fibers. The data suggest that the activation of the extrastriate areas that enable an SI function depends on the maturation of long-range cortico-cortical connections.
Collapse
Affiliation(s)
- Eleonora Fornari
- Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, 1011 Lausanne, Switzerland.
| | | | | | | |
Collapse
|
32
|
Sasaki Y. Processing local signals into global patterns. Curr Opin Neurobiol 2007; 17:132-9. [PMID: 17369036 DOI: 10.1016/j.conb.2007.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 03/05/2007] [Indexed: 11/24/2022]
Abstract
Perceptual organization or grouping is one of the central issues in vision research. Recent reports in the neuroimaging literature suggest that perceptual organization is mediated by distributed visual areas that range from the primary visual cortex (V1) to higher visual areas, depending on the availability of grouping cues and on the weight of contribution of each visual area. Evidence suggests that grouping by proximity and collinearity, and also perhaps filling-in, involve V1, whereas grouping by similarity and symmetry seems to depend on activation of higher visual areas. Further studies should include deliberate controls for confounding factors such as attentional artifacts and radial orientation bias, to clarify how spatiotemporal information in visual areas is integrated to give rise to perceptual organization.
Collapse
Affiliation(s)
- Yuka Sasaki
- Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA.
| |
Collapse
|
33
|
Pei F, Pettet MW, Norcia AM. Sensitivity and configuration-specificity of orientation-defined texture processing in infants and adults. Vision Res 2006; 47:338-48. [PMID: 17188321 PMCID: PMC1994821 DOI: 10.1016/j.visres.2006.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 10/01/2006] [Accepted: 10/12/2006] [Indexed: 11/16/2022]
Abstract
Here we use textures made up of widely spaced Gabor patches to compare infant and adult sensitivity to the global organization of the elements comprising the textures. Visual Evoked Potentials (VEPs) were recorded to alterations between random images and images containing varying proportions of patches that were of the same orientation. The patches were placed on rectangular, hexagonal or random lattices. Texture-specific responses were robust in adults and their VEP threshold was reached when 1-17% of the patches had the same orientation in the structured image. Infant thresholds were approximately 20-60%. While infants are capable of detecting the global structure of our textures, their sensitivity is low. In adults we found, unexpectedly, that sensitivity and response gain were higher for horizontal compared to vertical global orientations. Infant sensitivity was the same for the two orientations. Comparable orientation anisotropies have not been previously reported for gratings, suggesting that the Gabor-defined textures are tapping different mechanisms. There were small, but measurable effects of the lattice type in adults, with the rectangular lattice producing the largest responses.
Collapse
Affiliation(s)
- Francesca Pei
- Department of Physiology and Biochemistry, University of Pisa, Italy
| | | | | |
Collapse
|
34
|
Knyazeva MG, Fornari E, Meuli R, Maeder P. Interhemispheric integration at different spatial scales: the evidence from EEG coherence and FMRI. J Neurophysiol 2006; 96:259-75. [PMID: 16571734 DOI: 10.1152/jn.00687.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The early visual system processes different spatial frequencies (SFs) separately. To examine where in the brain the scale-specific information is integrated, we mapped the neural assemblies engaged in interhemispheric coupling with electroencephalographic (EEG) coherence and blood-oxygen-level dependent (BOLD) signal. During similar EEG and functional magnetic resonance imaging (fMRI) experiments, our subjects viewed centrally presented bilateral gratings of different SF (0.25-8.0 cpd), which either obeyed Gestalt grouping rules (iso-oriented, IG) or violated them (orthogonally oriented, OG). The IG stimuli (0.5-4.0 cpd) synchronized EEG at discrete beta frequencies (beta1, beta2) and increased BOLD (0.5 and 2.0 cpd tested) in ventral (around collateral sulcus) and dorsal (parieto-occipital fissure) regions compared with OG. At both SF, the beta1 coherence correlated with the ventral activations, whereas the beta2 coherence correlated with the dorsal ones. Thus distributed neural substrates mediated interhemispheric integration at single SF. The relative impact of the ventral versus dorsal networks was modulated by the SF of the stimulus.
Collapse
Affiliation(s)
- Maria G Knyazeva
- Department of Radiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
35
|
Ohara S, Crone NE, Weiss N, Lenz FA. Analysis of synchrony demonstrates 'pain networks' defined by rapidly switching, task-specific, functional connectivity between pain-related cortical structures. Pain 2006; 123:244-253. [PMID: 16563627 DOI: 10.1016/j.pain.2006.02.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2005] [Revised: 01/09/2006] [Accepted: 02/06/2006] [Indexed: 11/29/2022]
Abstract
Imaging studies indicate that experimental pain is processed in multiple cortical areas which are often characterized as a network. However, the functional connectivity within the network and the other properties of the network is poorly understood. Substantial evidence demonstrates that synchronous oscillations between two cortical areas may indicate functional connectivity between those areas. We test the hypothesis that cortical areas with pain-related activity are functionally connected during attention to a painful stimulus. We stimulated with a painful, cutaneous, laser stimulus and recorded the response directly from the cortical surface (electrocorticography--ECoG) over primary somatosensory (SI), parasylvian (PS), and medial frontal (MF) cortex through subdural electrodes implanted for treatment of epilepsy. The results demonstrate synchrony of ECoGs between cortical structures receiving input from nociceptors, as indicated by the occurrence of laser-evoked potentials (LEPs) and/or event-related desynchronization (ERD). Prior to the stimulus, directed attention to the painful stimulus consistently increased the degree of synchrony between SI and PS regions, as the subject anticipated the stimulus. After the laser stimulus, directed attention to the painful stimulus consistently increased the degree of synchrony between SI and MF cortex, as the subject responded by counting the stimulus. Therefore, attention to painful stimuli always enhanced synchrony between cortical pain-related structures. The pattern of this synchrony changed as the patient switched tasks from anticipation of the stimulus to counting the stimulus. These results are the first compelling evidence of pain networks characterized by rapidly switching, task-specific functional connectivity.
Collapse
Affiliation(s)
- S Ohara
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD 21287, USA Department of Neurology, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|