1
|
Reduced parietal activation in participants with mild cognitive impairments during visual-spatial processing measured with functional near-infrared spectroscopy. J Psychiatr Res 2022; 146:31-42. [PMID: 34953303 DOI: 10.1016/j.jpsychires.2021.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/02/2021] [Accepted: 12/10/2021] [Indexed: 01/08/2023]
Abstract
Functional Near Infrared Spectroscopy (fNIRS) may be a suitable, simple, and cost-effective brain imaging technique for detecting divergent neuronal patterns at an early stage of neurodegeneration. In course of Mild Cognitive Impairment (MCI) or Alzheimer's disease (AD), a deficit in visual-spatial processing, located in the parietal cortex, is a reliable risk factor. Earlier, we established the application of the clock-hand-angle-discrimination task (ADT) during fNIRS to identify neuronal correlates of the visual-spatial processing in a healthy elderly sample. In this analysis, we aimed to measure and find out differences in the hemodynamic response in MCI participants compared to matched healthy controls. As expected, MCI participants showed more errors over all conditions of pointer length and a higher reaction time in the long and middle pointer length condition. Moreover, results revealed a significant reduction of cortical activation in MCI patients. There was a generally increased activity in both the right as compared to the left hemisphere and the superior parietal brain region as compared to the inferior parietal brain region in both groups. In summary, fNIRS can be implemented in the measurement of visual-spatial processing in MCI patients and healthy elderly based on ADT. MCI participants had difficulties to cope with the ADT. Since neuronal hypoactivity occurs with concomitant behavioral deficits, an additional analysis was performed on a subgroup of MCI patients who performed as well as the control group in behavior. This subgroup analysis also showed a hypoactivation of the parietal cortex, without evidence of a compensatory activation. Therefore, we assume that MCI patients are characterized by a deficit in the parietal cortex. Overall, these findings confirm our hypothesis that hemodynamic deficits in visual-spatial processing, localized in the parietal cortex, are reliable and early diagnostic markers for cognitive decline in risk groups for the development of AD.
Collapse
|
2
|
Haberstumpf S, Seidel A, Lauer M, Polak T, Deckert J, Herrmann MJ. Neuronal correlates of the visual-spatial processing measured with functional near-infrared spectroscopy in healthy elderly individuals. Neuropsychologia 2020; 148:107650. [PMID: 33045230 DOI: 10.1016/j.neuropsychologia.2020.107650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI) are a globally rising issue. It is necessary to detect such diseases early to find strategies for prevention. Typically, patients with MCI or AD show deviant neuronal patterns, which could be detected early through brain imaging techniques enabling assumptions about pre-existing diseases. Functional Near-Infrared Spectroscopy (fNIRS) is an appropriate imaging method because of its easy and economical nature with hardly any drawbacks. An early measurable risk factor indicating neurodegenerative processes could be a deficit in visual-spatial processing, which is localized in the parietal cortex. In this study, we aimed to measure the hemodynamic response of the visual-spatial processing in the healthy elderly participants of our long-term Vogel Study with fNIRS during the clock-hand-angle-discrimination task (ADT) to deepen our understanding of healthy brain mechanisms. Our results revealed for our healthy sample a significantly increased neuronal brain activity with increasing task difficulties, namely from the long to the middle to the short clock hand during ADT and significantly higher activation in the right hemisphere compared to the left hemisphere as well as in the superior parietal cortex compared to the inferior parietal cortex. Additionally, our behavioral data demonstrated longer reaction times and more errors with an increasing task requirement. We, therefore, assume that visual-spatial processing can successfully be operationalized with fNIRS for healthy elderly people based on ADT. Further fNIRS analyses are planned to investigate pathological neuronal correlates of visual-spatial function in MCI or AD study participants.
Collapse
Affiliation(s)
- Sophia Haberstumpf
- Center for Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, D - 97080, Würzburg, Germany
| | - Alexandra Seidel
- Center for Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, D - 97080, Würzburg, Germany
| | - Martin Lauer
- Center for Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, D - 97080, Würzburg, Germany
| | - Thomas Polak
- Center for Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, D - 97080, Würzburg, Germany
| | - Jürgen Deckert
- Center for Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, D - 97080, Würzburg, Germany
| | - Martin J Herrmann
- Center for Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, D - 97080, Würzburg, Germany.
| |
Collapse
|
3
|
Wu T, Dufford AJ, Egan LJ, Mackie MA, Chen C, Yuan C, Chen C, Li X, Liu X, Hof PR, Fan J. Hick-Hyman Law is Mediated by the Cognitive Control Network in the Brain. Cereb Cortex 2018; 28:2267-2282. [PMID: 28531252 PMCID: PMC5998988 DOI: 10.1093/cercor/bhx127] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 05/01/2017] [Accepted: 05/04/2017] [Indexed: 01/14/2023] Open
Abstract
The Hick-Hyman law describes a linear increase in reaction time (RT) as a function of the information entropy of response selection, which is computed as the binary logarithm of the number of response alternatives. While numerous behavioral studies have provided evidence for the Hick-Hyman law, its neural underpinnings have rarely been examined and are still unclear. In this functional magnetic resonance imaging study, by utilizing a choice reaction time task to manipulate the entropy of response selection, we examined brain activity mediating the input and the output, as well as the connectivity between corresponding regions in human participants. Beyond confirming the Hick-Hyman law in RT performance, we found that activation of the cognitive control network (CCN) increased and activation of the default mode network (DMN) decreased, both as a function of entropy. However, only the CCN, but not the DMN, was involved in mediating the relationship between entropy and RT. The CCN was involved in both stages of uncertainty representation and response generation, while the DMN was mainly involved at the stage of uncertainty representation. These findings indicate that the CCN serves as a core entity underlying the Hick-Hyman law by coordinating uncertainty representation and response generation in the brain.
Collapse
Affiliation(s)
- Tingting Wu
- Department of Psychology, Queens College, The City University of New York, Queens, NY, USA
| | - Alexander J Dufford
- Department of Psychology, Queens College, The City University of New York, Queens, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura J Egan
- Department of Psychology, Queens College, The City University of New York, Queens, NY, USA
| | - Melissa-Ann Mackie
- Department of Psychology, Queens College, The City University of New York, Queens, NY, USA
- Department of Psychology, The Graduate Center, The City University of New York, New York, NY, USA
| | - Cong Chen
- Department of Computer Science, The Graduate Center, The City University of New York, New York, NY, USA
| | - Changhe Yuan
- Department of Computer Science, Queens College, The City University of New York, Queens, NY, USA
| | - Chao Chen
- Department of Computer Science, Queens College, The City University of New York, Queens, NY, USA
| | - Xiaobo Li
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Xun Liu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
| | - Patrick R Hof
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jin Fan
- Department of Psychology, Queens College, The City University of New York, Queens, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychology, The Graduate Center, The City University of New York, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
4
|
Longitudinal changes in resting-state fMRI from age 5 to age 6years covary with language development. Neuroimage 2015; 128:116-124. [PMID: 26690809 PMCID: PMC4767215 DOI: 10.1016/j.neuroimage.2015.12.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/30/2015] [Accepted: 12/06/2015] [Indexed: 01/01/2023] Open
Abstract
Resting-state functional magnetic resonance imaging is a powerful technique to study the whole-brain neural connectivity that underlies cognitive systems. The present study aimed to define the changes in neural connectivity in their relation to language development. Longitudinal resting-state functional data were acquired from a cohort of preschool children at age 5 and one year later, and changes in functional connectivity were correlated with language performance in sentence comprehension. For this, degree centrality, a voxel-based network measure, was used to assess age-related differences in connectivity at the whole-brain level. Increases in connectivity with age were found selectively in a cluster within the left posterior superior temporal gyrus and sulcus (STG/STS). In order to further specify the connection changes, a secondary seed-based functional connectivity analysis on this very cluster was performed. The correlations between resting-state functional connectivity (RSFC) and language performance revealed developmental effects with age and, importantly, also dependent on the advancement in sentence comprehension ability over time. In children with greater advancement in language abilities, the behavioral improvement was positively correlated with RSFC increase between left posterior STG/STS and other regions of the language network, i.e., left and right inferior frontal cortex. The age-related changes observed in this study provide evidence for alterations in the language network as language develops and demonstrates the viability of this approach for the investigation of normal and aberrant language development.
Collapse
|
5
|
Domagalik A, Beldzik E, Oginska H, Marek T, Fafrowicz M. Inconvenient correlation – RT–BOLD relationship for homogeneous and fast reactions. Neuroscience 2014; 278:211-21. [DOI: 10.1016/j.neuroscience.2014.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/25/2014] [Accepted: 08/17/2014] [Indexed: 10/24/2022]
|
6
|
Evidence for a cognitive control network for goal-directed attention in simple sustained attention. Brain Cogn 2013; 81:193-202. [DOI: 10.1016/j.bandc.2012.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 10/23/2012] [Accepted: 10/29/2012] [Indexed: 11/19/2022]
|
7
|
Chaves S, Vannini P, Jann K, Wurtz P, Federspiel A, Nyffeler T, Luethi M, Hubl D, Wiest R, Dierks T, Müri RM. The link between visual exploration and neuronal activity: A multi-modal study combining eye tracking, functional magnetic resonance imaging and transcranial magnetic stimulation. Neuroimage 2012; 59:3652-61. [DOI: 10.1016/j.neuroimage.2011.10.094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 08/15/2011] [Accepted: 10/31/2011] [Indexed: 11/26/2022] Open
|
8
|
Cardin V, Friston KJ, Zeki S. Top-down modulations in the visual form pathway revealed with dynamic causal modeling. Cereb Cortex 2011; 21:550-62. [PMID: 20621984 PMCID: PMC3041008 DOI: 10.1093/cercor/bhq122] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Perception entails interactions between activated brain visual areas and the records of previous sensations, allowing for processes like figure-ground segregation and object recognition. The aim of this study was to characterize top-down effects that originate in the visual cortex and that are involved in the generation and perception of form. We performed a functional magnetic resonance imaging experiment, where subjects viewed 3 groups of stimuli comprising oriented lines with different levels of recognizable high-order structure (none, collinearity, and meaning). Our results showed that recognizable stimuli cause larger activations in anterior visual and frontal areas. In contrast, when stimuli are random or unrecognizable, activations are greater in posterior visual areas, following a hierarchical organization where areas V1/V2 were less active with "collinearity" and the middle occipital cortex was less active with "meaning." An effective connectivity analysis using dynamic causal modeling showed that high-order visual form engages higher visual areas that generate top-down signals, from multiple levels of the visual hierarchy. These results are consistent with a model in which if a stimulus has recognizable attributes, such as collinearity and meaning, the areas specialized for processing these attributes send top-down messages to the lower levels to facilitate more efficient encoding of visual form.
Collapse
Affiliation(s)
- Velia Cardin
- Wellcome Laboratory of Neurobiology, Anatomy Department, University College London, London, WC1E 6BT, UK.
| | | | | |
Collapse
|
9
|
Wirth M, Jann K, Dierks T, Federspiel A, Wiest R, Horn H. Semantic memory involvement in the default mode network: A functional neuroimaging study using independent component analysis. Neuroimage 2011; 54:3057-66. [DOI: 10.1016/j.neuroimage.2010.10.039] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 10/05/2010] [Accepted: 10/13/2010] [Indexed: 10/18/2022] Open
|
10
|
de Graaf TA, Roebroeck A, Goebel R, Sack AT. Brain Network Dynamics Underlying Visuospatial Judgment: An fMRI Connectivity Study. J Cogn Neurosci 2010; 22:2012-26. [DOI: 10.1162/jocn.2009.21345] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Previous functional imaging research has consistently indicated involvement of bilateral fronto-parietal networks during the execution of visuospatial tasks. Studies with TMS have suggested that the right hemispheric network, but not the left, is functionally relevant for visuospatial judgments. However, very little is still known about the interactions within these fronto-parietal networks underlying visuospatial processing. In the current study, we investigated task modulation of functional connectivity (instantaneous correlations of regional time courses), and task-specific effective connectivity (direction of influences), within the right fronto-parietal network activated during visuospatial judgments. Ten healthy volunteers performed a behaviorally controlled visuospatial judgment task (ANGLE) or a control task (COLOR) in an fMRI experiment. Visuospatial task-specific activations were found in posterior parietal cortex (PPC) and middle/inferior frontal gyrus (MFG). Functional connectivity within this network was task-modulated, with significantly higher connectivity between PPC and MFG during ANGLE than during COLOR. Effective connectivity analysis for directed influence revealed that visuospatial task-specific projections within this network were predominantly in a frontal-to-parietal direction. Moreover, ANGLE-specific influences from thalamic nuclei to PPC were identified. Exploratory effective connectivity analysis revealed that closely neighboring clusters, within visuospatial regions, were differentially involved in the network. These neighboring clusters had opposite effective connectivity patterns to other nodes of the fronto-parietal network. Our data thus reveal that visuospatial judgments are supported by massive fronto-parietal backprojections, thalamo-parietal influence, and multiple stages, or loops, of information flow within the visuospatial network. We speculate on possible functional contributions of the various network nodes and informational loops in a neurocognitive model.
Collapse
Affiliation(s)
- Tom A. de Graaf
- 1Maastricht University, The Netherlands
- 2Maastricht Brain Imaging Center, Maastricht, The Netherlands
| | - Alard Roebroeck
- 1Maastricht University, The Netherlands
- 2Maastricht Brain Imaging Center, Maastricht, The Netherlands
| | - Rainer Goebel
- 1Maastricht University, The Netherlands
- 2Maastricht Brain Imaging Center, Maastricht, The Netherlands
| | - Alexander T. Sack
- 1Maastricht University, The Netherlands
- 2Maastricht Brain Imaging Center, Maastricht, The Netherlands
| |
Collapse
|
11
|
Graves WW, Desai R, Humphries C, Seidenberg MS, Binder JR. Neural systems for reading aloud: a multiparametric approach. Cereb Cortex 2010; 20:1799-815. [PMID: 19920057 PMCID: PMC2901017 DOI: 10.1093/cercor/bhp245] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Reading aloud involves computing the sound of a word from its visual form. This may be accomplished 1) by direct associations between spellings and phonology and 2) by computation from orthography to meaning to phonology. These components have been studied in behavioral experiments examining lexical properties such as word frequency; length in letters or phonemes; spelling-sound consistency; semantic factors such as imageability, measures of orthographic, or phonological complexity; and others. Effects of these lexical properties on specific neural systems, however, are poorly understood, partially because high intercorrelations among lexical factors make it difficult to determine if they have independent effects. We addressed this problem by decorrelating several important lexical properties through careful stimulus selection. Functional magnetic resonance imaging data revealed distributed neural systems for mapping orthography directly to phonology, involving left supramarginal, posterior middle temporal, and fusiform gyri. Distinct from these were areas reflecting semantic processing, including left middle temporal gyrus/inferior-temporal sulcus, bilateral angular gyrus, and precuneus/posterior cingulate. Left inferior frontal regions generally showed increased activation with greater task load, suggesting a more general role in attention, working memory, and executive processes. These data offer the first clear evidence, in a single study, for the separate neural correlates of orthography-phonology mapping and semantic access during reading aloud.
Collapse
Affiliation(s)
- William W. Graves
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rutvik Desai
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Colin Humphries
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mark S. Seidenberg
- Department of Psychology, University of Wisconsin, Madison, WI 53706, USA
| | - Jeffrey R. Binder
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
12
|
Perneczky R, Drzezga A, Boecker H, Ceballos-Baumann AO, Valet M, Feurer R, Förstl H, Kurz A, Häussermann P. Metabolic alterations associated with impaired clock drawing in Lewy body dementia. Psychiatry Res 2010; 181:85-9. [PMID: 20074912 DOI: 10.1016/j.pscychresns.2009.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 08/03/2009] [Accepted: 08/03/2009] [Indexed: 11/29/2022]
Abstract
The clock drawing test (CDT) is a widely used dementia screening instrument that assesses executive and visuospatial abilities; studies in patients with Alzheimer's disease (AD) suggest frontoposterior networks to be involved in clock drawing. Clock drawing errors are also often observed in dementia with Lewy bodies (DLB), but the functional neuroanatomical substrate of impaired clock drawing has not been firmly established in this disorder. The present study was designed to provide initial evidence for brain metabolic alterations associated with CDT performance in DLB. Twenty-one patients with DLB were enrolled. CDT ratings were correlated with the regional cerebral metabolic rate of glucose (rCMRglc) measured by (18)F-fluoro-2-deoxy-glucose positron emission tomography ((18)F-FDG PET) in the statistical parametric mapping software package SPM5, controlling for overall cognitive impairment as measured by the Mini-Mental-State Examination (MMSE) score. There was a significant negative association between test scores and rCMRglc in a left-hemispheric posterofrontal network including the temporoparietal and dorsal pre-motor cortices and the precuneus. The present study provides evidence for a direct association between frontoparietal dysfunction and impaired CDT performance in DLB. These findings also suggest that the CDT is an appropriate screening instrument for this disorder and that metabolic dysfunction, and therefore disease severity, is mirrored by performance on the test.
Collapse
Affiliation(s)
- Robert Perneczky
- Department of Psychiatry and Psychotherapy, Technische Ismaninger Str. 22, 81675 München, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Binder JR, Desai RH, Graves WW, Conant LL. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 2009; 19:2767-96. [PMID: 19329570 PMCID: PMC2774390 DOI: 10.1093/cercor/bhp055] [Citation(s) in RCA: 2561] [Impact Index Per Article: 170.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Semantic memory refers to knowledge about people, objects, actions, relations, self, and culture acquired through experience. The neural systems that store and retrieve this information have been studied for many years, but a consensus regarding their identity has not been reached. Using strict inclusion criteria, we analyzed 120 functional neuroimaging studies focusing on semantic processing. Reliable areas of activation in these studies were identified using the activation likelihood estimate (ALE) technique. These activations formed a distinct, left-lateralized network comprised of 7 regions: posterior inferior parietal lobe, middle temporal gyrus, fusiform and parahippocampal gyri, dorsomedial prefrontal cortex, inferior frontal gyrus, ventromedial prefrontal cortex, and posterior cingulate gyrus. Secondary analyses showed specific subregions of this network associated with knowledge of actions, manipulable artifacts, abstract concepts, and concrete concepts. The cortical regions involved in semantic processing can be grouped into 3 broad categories: posterior multimodal and heteromodal association cortex, heteromodal prefrontal cortex, and medial limbic regions. The expansion of these regions in the human relative to the nonhuman primate brain may explain uniquely human capacities to use language productively, plan, solve problems, and create cultural and technological artifacts, all of which depend on the fluid and efficient retrieval and manipulation of semantic knowledge.
Collapse
Affiliation(s)
- Jeffrey R Binder
- Language Imaging Laboratory, Department of Neurology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | |
Collapse
|
14
|
Cavina-Pratesi C, Kentridge RW, Heywood CA, Milner AD. Separate processing of texture and form in the ventral stream: evidence from FMRI and visual agnosia. ACTA ACUST UNITED AC 2009; 20:433-46. [PMID: 19478035 DOI: 10.1093/cercor/bhp111] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Real-life visual object recognition requires the processing of more than just geometric (shape, size, and orientation) properties. Surface properties such as color and texture are equally important, particularly for providing information about the material properties of objects. Recent neuroimaging research suggests that geometric and surface properties are dealt with separately within the lateral occipital cortex (LOC) and the collateral sulcus (CoS), respectively. Here we compared objects that differed either in aspect ratio or in surface texture only, keeping all other visual properties constant. Results on brain-intact participants confirmed that surface texture activates an area in the posterior CoS, quite distinct from the area activated by shape within LOC. We also tested 2 patients with visual object agnosia, one of whom (DF) performed well on the texture task but at chance on the shape task, whereas the other (MS) showed the converse pattern. This behavioral double dissociation was matched by a parallel neuroimaging dissociation, with activation in CoS but not LOC in patient DF and activation in LOC but not CoS in patient MS. These data provide presumptive evidence that the areas respectively activated by shape and texture play a causally necessary role in the perceptual discrimination of these features.
Collapse
Affiliation(s)
- C Cavina-Pratesi
- Department of Psychology, Durham University, Durham DH1 3LE, UK.
| | | | | | | |
Collapse
|
15
|
Vannini P, Lehmann C, Dierks T, Jann K, Viitanen M, Wahlund LO, Almkvist O. Failure to modulate neural response to increased task demand in mild Alzheimer's disease: fMRI study of visuospatial processing. Neurobiol Dis 2008; 31:287-97. [DOI: 10.1016/j.nbd.2008.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 04/25/2008] [Accepted: 04/30/2008] [Indexed: 11/16/2022] Open
|
16
|
Vannini P, Almkvist O, Dierks T, Lehmann C, Wahlund LO. Reduced neuronal efficacy in progressive mild cognitive impairment: a prospective fMRI study on visuospatial processing. Psychiatry Res 2007; 156:43-57. [PMID: 17719211 DOI: 10.1016/j.pscychresns.2007.02.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 01/19/2007] [Accepted: 02/12/2007] [Indexed: 11/18/2022]
Abstract
Mild cognitive impairment (MCI) often refers to the preclinical stage of dementia, where the majority develop Alzheimer's disease (AD). Given that neurodegenerative burden and compensatory mechanisms might exist before accepted clinical symptoms of AD are noticeable, the current prospective study aimed to investigate the functioning of brain regions in the visuospatial networks responsible for preclinical symptoms in AD using event-related functional magnetic resonance imaging (fMRI). Eighteen MCI patients were evaluated and clinically followed for approximately 3 years. Five progressed to AD (PMCI) and eight remained stable (SMCI). Thirteen age-, gender- and education-matched controls also participated. An angle discrimination task with varying task demands was used. Brain activation patterns as well as task demand-dependent and -independent signal changes between the groups were investigated by using an extended general linear model including individual performance (reaction time [RT]) of each single trial. Similar behavioral (RT and accuracy) responses were observed between MCI patients and controls. A network of bilateral activations, e.g. dorsal pathway, which increased linearly with increasing task demand, was engaged in all subjects. Compared with SMCI patients and controls, PMCI patients showed a stronger relation between task demand and brain activity in left superior parietal lobules (SPL) as well as a general task demand-independent increased activation in left precuneus. Altered brain function can be detected at a group level in individuals that progress to AD before changes occur at the behavioral level. Increased parietal activation in PMCI could reflect a reduced neuronal efficacy due to accumulating AD pathology and might predict future clinical decline in patients with MCI.
Collapse
Affiliation(s)
- Patrizia Vannini
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Karolinska University Hospital, Huddinge, 141 86 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|