1
|
Chmiel J, Kurpas D, Stępień-Słodkowska M. The Potential of Transcranial Direct Current Stimulation (tDCS) in Improving Quality of Life in Patients with Multiple Sclerosis: A Review and Discussion of Mechanisms of Action. J Clin Med 2025; 14:373. [PMID: 39860377 PMCID: PMC11766291 DOI: 10.3390/jcm14020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/21/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Multiple sclerosis (MS) is the most prevalent incurable nontraumatic neurological disability in young individuals. It causes numerous symptoms, including tingling, fatigue, muscle spasms, cognitive deficits, and neuropsychiatric disorders. This disease significantly worsens quality of life (QoL), and this dimension of general functioning provides valuable information about the effectiveness of treatment and well-being. There are psychological interventions that can improve QoL, but their number is limited. Therefore, searching for new methods that are as effective and safe as possible is ongoing. Methods: This review examines the potential effectiveness of transcranial direct current stimulation (tDCS) in improving the quality of life in patients with MS. Searches were conducted in the PubMed/Medline, Research Gate, and Cochrane databases. Results: The search yielded seven studies in which QoL was a primary or secondary outcome. Stimulation protocols displayed heterogeneity, especially concerning the choice of the stimulation site. Four studies demonstrated the effectiveness of tDCS in improving QoL, all of which (two) used anodal stimulation of the left DLPFC. Stimulation of the motor cortex has produced mixed results. The potential mechanisms of action of tDCS in improving QoL in MS are explained. These include improved synaptic plasticity, increased cerebral blood flow, salience network engagement through tDCS, and reduction of beta-amyloid deposition. The limitations are also detailed, and recommendations for future research are made. Conclusions: While the evidence is limited, tDCS has shown potential to improve QoL in MS patients in some studies. Prefrontal stimulation appears promising, and further research is recommended to explore this approach.
Collapse
Affiliation(s)
- James Chmiel
- Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B Block 6, 71-065 Szczecin, Poland
| | - Donata Kurpas
- Department of Family and Pediatric Nursing, Faculty of Health Sciences, Wrocław Medical University, 51-618 Wrocław, Poland;
| | - Marta Stępień-Słodkowska
- Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B Block 6, 71-065 Szczecin, Poland
| |
Collapse
|
2
|
Fernandes MGF, Pernin F, Antel JP, Kennedy TE. From BBB to PPP: Bioenergetic requirements and challenges for oligodendrocytes in health and disease. J Neurochem 2025; 169:e16219. [PMID: 39253904 PMCID: PMC11657931 DOI: 10.1111/jnc.16219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2024] [Revised: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024]
Abstract
Mature myelinating oligodendrocytes, the cells that produce the myelin sheath that insulates axons in the central nervous system, have distinct energetic and metabolic requirements compared to neurons. Neurons require substantial energy to execute action potentials, while the energy needs of oligodendrocytes are directed toward building the lipid-rich components of myelin and supporting neuronal metabolism by transferring glycolytic products to axons as additional fuel. The utilization of energy metabolites in the brain parenchyma is tightly regulated to meet the needs of different cell types. Disruption of the supply of metabolites can lead to stress and oligodendrocyte injury, contributing to various neurological disorders, including some demyelinating diseases. Understanding the physiological properties, structures, and mechanisms involved in oligodendrocyte energy metabolism, as well as the relationship between oligodendrocytes and neighboring cells, is crucial to investigate the underlying pathophysiology caused by metabolic impairment in these disorders. In this review, we describe the particular physiological properties of oligodendrocyte energy metabolism and the response of oligodendrocytes to metabolic stress. We delineate the relationship between oligodendrocytes and other cells in the context of the neurovascular unit, and the regulation of metabolite supply according to energetic needs. We focus on the specific bioenergetic requirements of oligodendrocytes and address the disruption of metabolic energy in demyelinating diseases. We encourage further studies to increase understanding of the significance of metabolic stress on oligodendrocyte injury, to support the development of novel therapeutic approaches for the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Milton Guilherme Forestieri Fernandes
- Neuroimmunological Diseases and Glia Biology Research Group, Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | - Florian Pernin
- Neuroimmunological Diseases and Glia Biology Research Group, Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | - Jack P. Antel
- Neuroimmunological Diseases and Glia Biology Research Group, Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | - Timothy E. Kennedy
- Neuroimmunological Diseases and Glia Biology Research Group, Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
3
|
Chmiel J, Stępień-Słodkowska M. Efficacy of Transcranial Direct Current Stimulation (tDCS) on Neuropsychiatric Symptoms in Multiple Sclerosis (MS)-A Review and Insight into Possible Mechanisms of Action. J Clin Med 2024; 13:7793. [PMID: 39768715 PMCID: PMC11728448 DOI: 10.3390/jcm13247793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/04/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction: Neuropsychiatric symptoms such as depression and anxiety are a significant burden on patients with multiple sclerosis (MS). Their pathophysiology is complex and yet to be fully understood. There is an urgent need for non-invasive treatments that directly target the brain and help patients with MS. One such possible treatment is transcranial direct current stimulation (tDCS), a popular and effective non-invasive brain stimulation technique. Methods: This mechanistic review explores the efficacy of tDCS in treating depression and anxiety in MS while focusing on the underlying mechanisms of action. Understanding these mechanisms is crucial, as neuropsychiatric symptoms in MS arise from complex neuroinflammatory and neurodegenerative processes. This review offers insights that may direct more focused and efficient therapeutic approaches by investigating the ways in which tDCS affects inflammation, brain plasticity, and neural connections. Searches were conducted using the PubMed/Medline, ResearchGate, Cochrane, and Google Scholar databases. Results: The literature search yielded 11 studies to be included in this review, with a total of 175 patients participating in the included studies. In most studies, tDCS did not significantly reduce depression or anxiety scores as the studied patients did not have elevated scores indicating depression and anxiety. In the few studies where the patients had scores indicating mild/moderate dysfunction, tDCS was more effective. The risk of bias in the included studies was assessed as moderate. Despite the null or near-null results, tDCS may still prove to be an effective treatment option for depression and anxiety in MS, because tDCS produces a neurobiological effect on the brain and nervous system. To facilitate further work, several possible mechanisms of action of tDCS have been reported, such as the modulation of the frontal-midline theta, reductions in neuroinflammation, the modulation of the HPA axis, and cerebral blood flow regulation. Conclusions: Although tDCS did not overall demonstrate positive effects in reducing depression and anxiety in the studied MS patients, the role of tDCS in this area should not be underestimated. Evidence from other studies indicates the effectiveness of tDCS in reducing depression and anxiety, but the studies included in this review did not include patients with sufficient depression or anxiety. Future studies are needed to confirm the effectiveness of tDCS in neuropsychiatric dysfunctions in MS.
Collapse
Affiliation(s)
- James Chmiel
- Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B blok 6, 71-065 Szczecin, Poland
- Doctoral School of the University of Szczecin, University of Szczecin, Mickiewicza 16, 70-384 Szczecin, Poland
| | - Marta Stępień-Słodkowska
- Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B blok 6, 71-065 Szczecin, Poland
| |
Collapse
|
4
|
Hansen CE, Hollaus D, Kamermans A, de Vries HE. Tension at the gate: sensing mechanical forces at the blood-brain barrier in health and disease. J Neuroinflammation 2024; 21:325. [PMID: 39696463 PMCID: PMC11657007 DOI: 10.1186/s12974-024-03321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/07/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024] Open
Abstract
Microvascular brain endothelial cells tightly limit the entry of blood components and peripheral cells into the brain by forming the blood-brain barrier (BBB). The BBB is regulated by a cascade of mechanical and chemical signals including shear stress and elasticity of the adjacent endothelial basement membrane (BM). During physiological aging, but especially in neurological diseases including multiple sclerosis (MS), stroke, small vessel disease, and Alzheimer's disease (AD), the BBB is exposed to inflammation, rigidity changes of the BM, and disturbed cerebral blood flow (CBF). These altered forces lead to increased vascular permeability, reduced endothelial reactivity to vasoactive mediators, and promote leukocyte transmigration. Whereas the molecular players involved in leukocyte infiltration have been described in detail, the importance of mechanical signalling throughout this process has only recently been recognized. Here, we review relevant features of mechanical forces acting on the BBB under healthy and pathological conditions, as well as the endothelial mechanosensory elements detecting and responding to altered forces. We demonstrate the underlying complexity by focussing on the family of transient receptor potential (TRP) ion channels. A better understanding of these processes will provide insights into the pathogenesis of several neurological disorders and new potential leads for treatment.
Collapse
Affiliation(s)
- Cathrin E Hansen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
| | - David Hollaus
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Alwin Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Williams T, Lange F, Smith KJ, Tachtsidis I, Chataway J. Investigating cortical hypoxia in multiple sclerosis via time-domain near-infrared spectroscopy. Ann Clin Transl Neurol 2024; 11:2372-2381. [PMID: 39037277 PMCID: PMC11537135 DOI: 10.1002/acn3.52150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/06/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024] Open
Abstract
OBJECTIVES Hypoperfusion and tissue hypoxia have been implicated as contributory mechanisms in the neuropathology of multiple sclerosis (MS). Our objective has been to study cortical oxygenation in vivo in patients with MS and age-matched controls. METHODS A custom, multiwavelength time-domain near-infrared spectroscopy system was developed for assessing tissue hypoxia from the prefrontal cortex. A cross-sectional case-control study was undertaken assessing patients with secondary progressive MS (SPMS) and age-matched controls. Co-registered magnetic resonance imaging was used to verify the location from which near-infrared spectroscopy data were obtained through Monte Carlo simulations of photon propagation. Additional clinical assessments of MS disease severity were carried out by trained neurologists. Linear mixed effect models were used to compare cortical oxygenation between cases and controls, and against measures of MS severity. RESULTS Thirty-three patients with secondary progressive MS (median expanded disability status scale 6 [IQR: 5-6.5]; median age 53.0 [IQR: 49-58]) and 20 age-matched controls were recruited. Modeling of photon propagation confirmed spectroscopy data were obtained from the prefrontal cortex. Patients with SPMS had significantly lower cortical hemoglobin oxygenation compared with controls (-6.0% [95% CI: -10.0 to -1.9], P = 0.004). There were no significant associations between cortical oxygenation and MS severity. INTERPRETATION Using an advanced, multiwavelength time-domain near-infrared spectroscopy system, we demonstrate that patients with SPMS have lower cortical oxygenation compared with controls.
Collapse
Affiliation(s)
- Thomas Williams
- UCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Frédéric Lange
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Kenneth J. Smith
- UCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Jeremy Chataway
- UCL Queen Square Institute of Neurology, University College LondonLondonUK
| |
Collapse
|
6
|
Mishra S, Bapuraj J, Srinivasan A. Multiple Sclerosis Part 2: Advanced Imaging and Emerging Techniques. Magn Reson Imaging Clin N Am 2024; 32:221-231. [PMID: 38555138 DOI: 10.1016/j.mric.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 04/02/2024]
Abstract
Multiple advanced imaging methods for multiple sclerosis (MS) have been in investigation to identify new imaging biomarkers for early disease detection, predicting disease prognosis, and clinical trial endpoints. Multiple techniques probing different aspects of tissue microstructure (ie, advanced diffusion imaging, magnetization transfer, myelin water imaging, magnetic resonance spectroscopy, glymphatic imaging, and perfusion) support the notion that MS is a global disease with microstructural changes evident in normal-appearing white and gray matter. These global changes are likely better predictors of disability compared with lesion load alone. Emerging techniques in glymphatic and molecular imaging may improve understanding of pathophysiology and emerging treatments.
Collapse
Affiliation(s)
- Shruti Mishra
- Department of Radiology, University of Michigan, 1500 East Medical Center Drive, UH B2A209, Ann Arbor, MI 48109-5030, USA.
| | - Jayapalli Bapuraj
- Department of Radiology, University of Michigan, 1500 East Medical Center Drive, UH B2A209, Ann Arbor, MI 48109-5030, USA
| | - Ashok Srinivasan
- Department of Radiology, University of Michigan, 1500 East Medical Center Drive, UH B2A209, Ann Arbor, MI 48109-5030, USA
| |
Collapse
|
7
|
Shen Z, Zhang S, Yu W, Yue M, Hong C. Optical Coherence Tomography Angiography: Revolutionizing Clinical Diagnostics and Treatment in Central Nervous System Disease. Aging Dis 2024; 16:AD.2024.0112. [PMID: 38300645 PMCID: PMC11745452 DOI: 10.14336/ad.2024.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/03/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
Optical coherence tomography angiography (OCTA), as a new generation of non-invasive and efficient fundus imaging technology, can provide non-invasive assessment of vascular lesions in the retina and choroid. In terms of anatomy and development, the retina is referred to as an extension of the central nervous system (CNS). CNS diseases are closely related to changes in fundus structure and blood vessels, and direct visualization of fundus structure and blood vessels provides an effective "window" for CNS research. This has important practical significance for identifying the characteristic changes of various CNS diseases on OCTA in the future, and plays a key role in promoting early screening, diagnosis, and monitoring of disease progression in CNS diseases. This article reviews relevant fundus studies by comparing and summarizing the unique advantages and existing limitations of OCTA in various CNS disease patients, in order to demonstrate the clinical significance of OCTA in the diagnosis and treatment of CNS diseases.
Collapse
Affiliation(s)
- Zeqi Shen
- Postgraduate training base Alliance of Wenzhou Medical University (Affiliated People’s Hospital), Hangzhou, Zhejiang, China.
| | - Sheng Zhang
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Weitao Yu
- The Second School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.
| | - Mengmeng Yue
- Postgraduate training base Alliance of Wenzhou Medical University (Affiliated People’s Hospital), Hangzhou, Zhejiang, China.
| | - Chaoyang Hong
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Codron P, Masmoudi I, Tran THC. Retinal Vascular Density Using Optical Coherence Tomography-Angiography in Optic Neuritis. J Clin Med 2023; 12:5403. [PMID: 37629445 PMCID: PMC10455229 DOI: 10.3390/jcm12165403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/10/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
The aim of this study is to access the perifoveolar and peripapillary vascular density (VD) using optical coherence tomography-angiography (OCT-A) in eyes with optic neuritis (ON) and in fellow eyes, then compare that to healthy controls. METHOD This is a cross-sectional study including 22 patients with unilateral ON and 20 control eyes of healthy subjects. A complete clinical examination and OCT-A were performed at least 6 months after the acute episode of optic neuritis. Vascular plexuses of the peripapillary and perifoveolar images obtained from OCT-A were used to calculate the VD in each plexus: superficial, deep, and peripapillary capillaries for each group (ON eyes, fellow eyes, healthy eyes). RESULTS Compared to healthy control eyes, in the peripapillary area, we found a significant decrease in VD not only in ON eyes but also in fellow eyes in average (p ≤ 0.05) and in the temporal sector (p < 0.001). In the perifoveolar area, the VD of the superficial capillary plexus is decreased in all sectors (p < 0.001) in ON eyes and only in the upper sector (p = 0.037) of fellow eyes compared to control eyes. VD correlates with ganglion cell layer (GCL) thickness in ON and in fellow eyes. CONCLUSION Peripapillary vascular density is decreased in both affected eyes and fellow eyes after a unilateral episode of optic neuritis, suggesting a subclinical involvement of the disease. Further studies are needed to clarify the mechanism and clinical implications of these data.
Collapse
Affiliation(s)
- Paul Codron
- Department of Ophthalmology, Amiens University Hospital, 80000 Amiens, France;
| | - Ines Masmoudi
- Department of Neurology, Amiens University Hospital, 80000 Amiens, France;
| | - Thi Ha Chau Tran
- Department of Ophthalmology, Amiens University Hospital, 80000 Amiens, France;
- Laboratory of Lille Neurosciences & Cognition, INSERM U1172, 59000 Lille, France
| |
Collapse
|
9
|
Koudriavtseva T, Lorenzano S, Cellerino M, Truglio M, Fiorelli M, Lapucci C, D’Agosto G, Conti L, Stefanile A, Zannino S, Filippi MM, Cortese A, Piantadosi C, Maschio M, Maialetti A, Galiè E, Salvetti M, Inglese M. Tissue factor as a potential coagulative/vascular marker in relapsing-remitting multiple sclerosis. Front Immunol 2023; 14:1226616. [PMID: 37583699 PMCID: PMC10424925 DOI: 10.3389/fimmu.2023.1226616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/21/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Objectives Recent studies supported coagulation involvement in multiple sclerosis, an inflammatory-demyelinating and degenerative disease of the central nervous system. The main objectives of this observational study were to identify the most specific pro-coagulative/vascular factors for multiple sclerosis pathogenesis and to correlate them with brain hemodynamic abnormalities. Methods We compared i) serum/plasma levels of complement(C)/coagulation/vascular factors, viral/microbiological assays, fat-soluble vitamins and lymphocyte count among people with multiple sclerosis sampled in a clinical remission (n=30; 23F/7M, 40 ± 8.14 years) or a relapse (n=30; 24F/6M, age 41 ± 10.74 years) and age/sex-matched controls (n=30; 23F/7M, 40 ± 8.38 years); ii) brain hemodynamic metrics at dynamic susceptibility contrast-enhanced 3T-MRI during relapse and remission, and iii) laboratory data with MRI perfusion metrics and clinical features of people with multiple sclerosis. Two models by Partial Least Squares Discriminant Analysis were performed using two groups as input: (1) multiple sclerosis vs. controls, and (2) relapsing vs. remitting multiple sclerosis. Results Compared to controls, multiple sclerosis patients had a higher Body-Mass-Index, Protein-C and activated-C9; and a lower activated-C4. Levels of Tissue-Factor, Tie-2 and P-Selectin/CD62P were lower in relapse compared to remission and HC, whereas Angiopoietin-I was higher in relapsing vs. remitting multiple sclerosis. A lower number of total lymphocytes was found in relapsing multiple sclerosis vs. remitting multiple sclerosis and controls. Cerebral-Blood-Volume was lower in normal-appearing white matter and left caudatum while Cerebral-Blood-Flow was inferior in bilateral putamen in relapsing versus remitting multiple sclerosis. The mean-transit-time of gadolinium-enhancing lesions negatively correlated with Tissue-Factor. The top-5 discriminating variables for model (1) were: EBV-EBNA-1 IgG, Body-Mass-Index, Protein-C, activated-C4 and Tissue-Factor whereas for model (2) were: Tissue-Factor, Angiopoietin-I, MCHC, Vitamin A and T-CD3. Conclusion Tissue-factor was one of the top-5 variables in the models discriminating either multiple sclerosis from controls or multiple sclerosis relapse from remission and correlated with mean-transit-time of gadolinium-enhancing lesions. Tissue-factor appears a promising pro-coagulative/vascular biomarker and a possible therapeutic target in relapsing-remitting multiple sclerosis. Clinical trial registration ClinicalTrials.gov, identifier NCT04380220.
Collapse
Affiliation(s)
- Tatiana Koudriavtseva
- Medical Direction, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
- Department of Clinical Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Svetlana Lorenzano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Maria Cellerino
- Department of Clinical Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Mauro Truglio
- Clinical Pathology and Cancer Biobank, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Marco Fiorelli
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Caterina Lapucci
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Giovanna D’Agosto
- Clinical Pathology and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gallicano Dermatological Institute, Rome, Italy
| | - Laura Conti
- Clinical Pathology and Cancer Biobank, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Annunziata Stefanile
- Clinical Pathology and Cancer Biobank, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Silvana Zannino
- Department of Clinical Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | | | - Antonio Cortese
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Carlo Piantadosi
- Unità Operativa Complessa (UOC) Neurology, San Giovanni-Addolorata Hospital, Rome, Italy
| | - Marta Maschio
- Department of Clinical Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Andrea Maialetti
- Department of Clinical Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Edvina Galiè
- Department of Clinical Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Marco Salvetti
- Department of Neuroscience Mental Health and Sensory Organs (NEMOS), Sapienza University, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Department of Neurology, Mount Sinai Hospital, New York, NY, United States
| |
Collapse
|
10
|
Cashion JM, Young KM, Sutherland BA. How does neurovascular unit dysfunction contribute to multiple sclerosis? Neurobiol Dis 2023; 178:106028. [PMID: 36736923 DOI: 10.1016/j.nbd.2023.106028] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/06/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system (CNS) and the most common non-traumatic cause of neurological disability in young adults. Multiple sclerosis clinical care has improved considerably due to the development of disease-modifying therapies that effectively modulate the peripheral immune response and reduce relapse frequency. However, current treatments do not prevent neurodegeneration and disease progression, and efforts to prevent multiple sclerosis will be hampered so long as the cause of this disease remains unknown. Risk factors for multiple sclerosis development or severity include vitamin D deficiency, cigarette smoking and youth obesity, which also impact vascular health. People with multiple sclerosis frequently experience blood-brain barrier breakdown, microbleeds, reduced cerebral blood flow and diminished neurovascular reactivity, and it is possible that these vascular pathologies are tied to multiple sclerosis development. The neurovascular unit is a cellular network that controls neuroinflammation, maintains blood-brain barrier integrity, and tightly regulates cerebral blood flow, matching energy supply to neuronal demand. The neurovascular unit is composed of vessel-associated cells such as endothelial cells, pericytes and astrocytes, however neuronal and other glial cell types also comprise the neurovascular niche. Recent single-cell transcriptomics data, indicate that neurovascular cells, particular cells of the microvasculature, are compromised within multiple sclerosis lesions. Large-scale genetic and small-scale cell biology studies also suggest that neurovascular dysfunction could be a primary pathology contributing to multiple sclerosis development. Herein we revisit multiple sclerosis risk factors and multiple sclerosis pathophysiology and highlight the known and potential roles of neurovascular unit dysfunction in multiple sclerosis development and disease progression. We also evaluate the suitability of the neurovascular unit as a potential target for future disease modifying therapies for multiple sclerosis.
Collapse
Affiliation(s)
- Jake M Cashion
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia.
| |
Collapse
|
11
|
Amatruda M, Harris K, Matis A, Davies AL, McElroy D, Clark M, Linington C, Desai R, Smith KJ. Oxygen treatment reduces neurological deficits and demyelination in two animal models of multiple sclerosis. Neuropathol Appl Neurobiol 2023; 49:e12868. [PMID: 36520661 PMCID: PMC10107096 DOI: 10.1111/nan.12868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/22/2022] [Revised: 11/07/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
AIMS The objective of the study is to explore the importance of tissue hypoxia in causing neurological deficits and demyelination in the inflamed CNS, and the value of inspiratory oxygen treatment, using both active and passive experimental autoimmune encephalomyelitis (EAE). METHODS Normobaric oxygen treatment was administered to Dark Agouti rats with either active or passive EAE, compared with room air-treated, and naïve, controls. RESULTS Severe neurological deficits in active EAE were significantly improved after just 1 h of breathing approximately 95% oxygen. The improvement was greater and more persistent when oxygen was applied either prophylactically (from immunisation for 23 days), or therapeutically from the onset of neurological deficits for 24, 48, or 72 h. Therapeutic oxygen for 72 h significantly reduced demyelination and the integrated stress response in oligodendrocytes at the peak of disease, and protected from oligodendrocyte loss, without evidence of increased oxidative damage. T-cell infiltration and cytokine expression in the spinal cord remained similar to that in untreated animals. The severe neurological deficit of animals with passive EAE occurred in conjunction with spinal hypoxia and was significantly reduced by oxygen treatment initiated before their onset. CONCLUSIONS Severe neurological deficits in both active and passive EAE can be caused by hypoxia and reduced by oxygen treatment. Oxygen treatment also reduces demyelination in active EAE, despite the autoimmune origin of the disease.
Collapse
Affiliation(s)
- Mario Amatruda
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kate Harris
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Alina Matis
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Andrew L Davies
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Daniel McElroy
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, Glasgow Biomedical Research Centre, Glasgow, UK
| | - Michael Clark
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Christopher Linington
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, Glasgow Biomedical Research Centre, Glasgow, UK
| | - Roshni Desai
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Kenneth J Smith
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
12
|
Zhou Q, Zhang T, Meng H, Shen D, Li Y, He L, Gao Y, Zhang Y, Huang X, Meng H, Li B, Zhang M, Chen S. Characteristics of cerebral blood flow in an Eastern sample of multiple sclerosis patients: A potential quantitative imaging marker associated with disease severity. Front Immunol 2022; 13:1025908. [PMID: 36325320 PMCID: PMC9618793 DOI: 10.3389/fimmu.2022.1025908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/23/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system that is rare in China. At present, there are no widespread quantitative imaging markers associated with disease severity in MS. Despite several previous studies reporting cerebral blood flow (CBF) changes in MS, no consensus has been reached. In this study, we enrolled 30 Eastern MS patients to investigate CBF changes in different brain regions using the arterial spin labeling technique and their relationship with disease severity. The average CBF in MS patients were higher than those in health controls in various brain regions except cerebellum. The results indicated that MS patients with strongly increased CBF showed worse disease severity, including higher Expanded Disability Status Scale (EDSS) scores and serum neurofilament light chain (sNfL) values than those with mildly increased CBF in the parietal lobes, temporal lobes, basal ganglia, and damaged white matter (DWM). From another perspective, MS patients with worse disease severity (higher EDSS score and sNfL values, longer disease duration) showed increased CBF in parietal lobes, temporal lobes, basal ganglia, normal-appearing white matter (NAWM), and DWM. Correlation analysis showed that there was a strong association among CBF, EDSS score and sNfL. MS patients with strongly increased CBF in various brain regions had more ratio in relapsing phase than patients with mildly increased CBF. And relapsing patients showed significantly higher CBF in some regions (temporal lobes, left basal ganglia, right NAWM) compared to remitting patients. In addition, MS patients with cognitive impairment had higher CBF than those without cognitive impairment in the right parietal lobe and NAWM. However, there were no significant differences in CBF between MS patients with and without other neurologic dysfunctions (e.g., motor impairment, visual disturbance, sensory dysfunction). These findings expand our understanding of CBF in MS and imply that CBF could be a potential quantitative imaging marker associated with disease severity.
Collapse
Affiliation(s)
- Qinming Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianxiao Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Huanyu Meng
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dingding Shen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lu He
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yining Gao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yizongheng Zhang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyun Huang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongping Meng
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Sheng Chen, ; Min Zhang,
| | - Sheng Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Neurology, Xinrui Hospital, Wuxi, China
- *Correspondence: Sheng Chen, ; Min Zhang,
| |
Collapse
|
13
|
Microvascular changes in the macular and parafoveal areas of multiple sclerosis patients without optic neuritis. Sci Rep 2022; 12:13366. [PMID: 35922463 PMCID: PMC9349324 DOI: 10.1038/s41598-022-17344-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/20/2022] [Accepted: 07/25/2022] [Indexed: 02/08/2023] Open
Abstract
Retinal imaging has been proposed as a biomarker for neurological diseases such as multiple sclerosis (MS). Recently, a technique for non-invasive assessment of the retinal microvasculature called optical coherence tomography angiography (OCTA) was introduced. We investigated retinal microvasculature alterations in participants with relapsing–remitting MS (RRMS) without history of optic neuritis (ON) and compared them to a healthy control group. The study was performed in a prospective, case–control design, including 58 participants (n = 100 eyes) with RRMS without ON and 78 age- and sex-matched control participants (n = 136 eyes). OCTA images of the superficial capillary plexus (SCP), deep capillary plexus (DCP) and choriocapillaris (CC) were obtained using a commercial OCTA system (Zeiss Cirrus HD-5000 Spectral-Domain OCT with AngioPlex OCTA, Carl Zeiss Meditec, Dublin, CA). The outcome variables were perfusion density (PD) and foveal avascular zone (FAZ) features (area and circularity) in both the SCP and DCP, and flow deficit in the CC. MS group had on average higher intraocular pressure (IOP) than controls (P < 0.001). After adjusting for confounders, MS participants showed significantly increased PD in SCP (P = 0.003) and decreased PD in DCP (P < 0.001) as compared to controls. A significant difference was still noted when large vessels (LV) in the SCP were removed from the PD calculation (P = 0.004). Deep FAZ was significantly larger (P = 0.005) and less circular (P < 0.001) in the eyes of MS participants compared to the control ones. Neither LV, PD or FAZ features in the SCP, nor flow deficits in the CC showed any statistically significant differences between the MS group and control group (P > 0.186). Our study indicates that there are microvascular changes in the macular parafoveal retina of RRMS patients without ON, showing increased PD in SCP and decreased PD in DCP. Further studies with a larger cohort of MS patients and MRI correlations are necessary to validate retinal microvascular changes as imaging biomarkers for diagnosis and screening of MS.
Collapse
|
14
|
Lincoln JA, Hasan KM, Gabr RE, Wolinsky JS. Characterizing the time course of cerebrovascular reactivity in multiple sclerosis. J Neuroimaging 2022; 32:430-435. [PMID: 35165962 PMCID: PMC9090952 DOI: 10.1111/jon.12979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/25/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Changes in cerebral perfusion occur early in relapsing and progressive multiple sclerosis (MS) patients, though whether cerebral blood flow (CBF) can be altered by therapy is unknown. We sought to characterize the time course of change in CBF (cerebral vascular reactivity [CVR]), following intravenous (IV) acetazolamide (ACZ) in whole brain and within various gray and white matter brain regions in MS patients. METHODS We enrolled five relapsing MS patients on injectable therapies. Participants received a 1000 mg IV bolus of ACZ and CBF was measured using pseudocontinuous arterial spin labeling MRI. To quantify differences in time course between patients, we calculated the numerical integration of CVR over time using the trapezoidal rule to estimate area under the curve (AUC(CVR) ). RESULTS A change in whole brain CBF of 30%-65% was seen in all participants at 15 minutes after ACZ challenge. CBF increases >20% above baseline were sustained for 90 minutes within whole-brain, normal-appearing white matter and total T2-hyperintense lesioned tissue. AUC(CVR) values for both gray (cortical and deep gray matter) and white (normal-appearing and T2-lesioned) matter regions were similar between patients. CONCLUSION Our findings show a prolonged time course in vascular reactivity after ACZ stimulus in MS patients with a similar time course for both gray and white matter brain regions, including in previously injured tissue. Our preliminary results suggest that blood flow can be augmented in the established MS lesion suggesting that even previously injured tissue might be responsive to treatment.
Collapse
Affiliation(s)
- John A Lincoln
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - Khader M Hasan
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - Refaat E Gabr
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - Jerry S Wolinsky
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| |
Collapse
|
15
|
Testud B, Delacour C, El Ahmadi AA, Brun G, Girard N, Duhamel G, Heesen C, Häußler V, Thaler C, Has Silemek AC, Stellmann JP. Brain grey matter perfusion in primary progressive multiple sclerosis: Mild decrease over years and regional associations with cognition and hand function. Eur J Neurol 2022; 29:1741-1752. [PMID: 35167161 DOI: 10.1111/ene.15289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/19/2021] [Accepted: 02/11/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Extend and dynamic of neurodegeneration in progressive Multiple Sclerosis (MS) might be reflected by global and regional brain perfusion, an outcome at the intercept between structure and function. Here, we provide a first insight in the evolution of brain perfusion and its association with disability in primary progressive MS (PPMS) over several years. METHODS 77 persons with PPMS were followed over up to 5 years. Visits included a 3T MRI with pulsed Arterial spin labelling (ASL) perfusion, the Timed-25-Foot-Walk, 9-Hole-Peg-Test (NHPT), Symbol-Digit-Modalities-Test (SDMT) and Expanded Disability Status Scale (EDSS). We extracted regional cerebral blood flow surrogates and compared them to 11 controls. Analyses focused in cortical and deep gray matter, the change over time and associations with disability on regional and global level. RESULTS Baseline brain perfusion of patients and controls was comparable for the cortex (p=0.716) and deep grey matter (p=0.095). EDSS disability increased mildly (p=0.023) while brain perfusion decreased during follow up (p<0.001) and with disease duration (p=0.009). Lower global perfusion correlated with higher disability as indicated by EDSS, NHPT and Timed-25-Foot-Walk (p<0.001). The motor task NHPT showed associations with twenty gray matter regions. In contrast, better SDMT performance correlated with lower perfusion (p<0.001) in seven predominantly frontal regions indicating a functional maladaptation. CONCLUSION Decreasing perfusion indicates a putative association with MS disease mechanisms such as neurodegeneration, reduced metabolism, and loss of resilience. A low alteration rate limits its use in clinical practice, but regional association patterns might provide a snapshot of adaptive and maladaptive functional reorganization.
Collapse
Affiliation(s)
- Benoit Testud
- APHM La Timone, CEMEREM, Marseille, France.,Aix-Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France.,APHM La Timone, Department of Neuroradiology, Marseille, France
| | - Clara Delacour
- APHM La Timone, Department of Neuroradiology, Marseille, France
| | | | - Gilles Brun
- APHM La Timone, Department of Neuroradiology, Marseille, France
| | - Nadine Girard
- Aix-Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France.,APHM La Timone, Department of Neuroradiology, Marseille, France
| | - Guillaume Duhamel
- APHM La Timone, CEMEREM, Marseille, France.,Aix-Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France
| | - Christoph Heesen
- Institute of Neuroimmunology and MS (INIMS), University Medical Centre Hamburg-Eppendorf, Germany.,Department of Neurology, University Medical Centre Hamburg-Eppendorf, Germany
| | - Vivien Häußler
- Institute of Neuroimmunology and MS (INIMS), University Medical Centre Hamburg-Eppendorf, Germany.,Department of Neurology, University Medical Centre Hamburg-Eppendorf, Germany
| | - Christian Thaler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arzu Ceylan Has Silemek
- Institute of Neuroimmunology and MS (INIMS), University Medical Centre Hamburg-Eppendorf, Germany
| | - Jan-Patrick Stellmann
- APHM La Timone, CEMEREM, Marseille, France.,Aix-Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France.,Institute of Neuroimmunology and MS (INIMS), University Medical Centre Hamburg-Eppendorf, Germany.,Department of Neurology, University Medical Centre Hamburg-Eppendorf, Germany
| |
Collapse
|
16
|
Ouellette J, Lacoste B. From Neurodevelopmental to Neurodegenerative Disorders: The Vascular Continuum. Front Aging Neurosci 2021; 13:749026. [PMID: 34744690 PMCID: PMC8570842 DOI: 10.3389/fnagi.2021.749026] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/28/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Structural and functional integrity of the cerebral vasculature ensures proper brain development and function, as well as healthy aging. The inability of the brain to store energy makes it exceptionally dependent on an adequate supply of oxygen and nutrients from the blood stream for matching colossal demands of neural and glial cells. Key vascular features including a dense vasculature, a tightly controlled environment, and the regulation of cerebral blood flow (CBF) all take part in brain health throughout life. As such, healthy brain development and aging are both ensured by the anatomical and functional interaction between the vascular and nervous systems that are established during brain development and maintained throughout the lifespan. During critical periods of brain development, vascular networks remodel until they can actively respond to increases in neural activity through neurovascular coupling, which makes the brain particularly vulnerable to neurovascular alterations. The brain vasculature has been strongly associated with the onset and/or progression of conditions associated with aging, and more recently with neurodevelopmental disorders. Our understanding of cerebrovascular contributions to neurological disorders is rapidly evolving, and increasing evidence shows that deficits in angiogenesis, CBF and the blood-brain barrier (BBB) are causally linked to cognitive impairment. Moreover, it is of utmost curiosity that although neurodevelopmental and neurodegenerative disorders express different clinical features at different stages of life, they share similar vascular abnormalities. In this review, we present an overview of vascular dysfunctions associated with neurodevelopmental (autism spectrum disorders, schizophrenia, Down Syndrome) and neurodegenerative (multiple sclerosis, Huntington's, Parkinson's, and Alzheimer's diseases) disorders, with a focus on impairments in angiogenesis, CBF and the BBB. Finally, we discuss the impact of early vascular impairments on the expression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Julie Ouellette
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
17
|
Balıkçı A, Parmak Yener N, Seferoğlu M. Optical Coherence Tomography and Optical Coherence Tomography Angiography Findings in Multiple Sclerosis Patients. Neuroophthalmology 2021; 46:19-33. [DOI: 10.1080/01658107.2021.1963787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Ayşe Balıkçı
- Department of Ophthalmology, Bursa Yüksek Ihtisas Education and Research Hospital, Bursa, Turkey
| | - Neslihan Parmak Yener
- Department of Ophthalmology, Bursa Yüksek Ihtisas Education and Research Hospital, Bursa, Turkey
| | - Meral Seferoğlu
- Department of Neurology, Bursa Yüksek Ihtisas Education and Research Hospital, Bursa, Turkey
| |
Collapse
|
18
|
Granziera C, Wuerfel J, Barkhof F, Calabrese M, De Stefano N, Enzinger C, Evangelou N, Filippi M, Geurts JJG, Reich DS, Rocca MA, Ropele S, Rovira À, Sati P, Toosy AT, Vrenken H, Gandini Wheeler-Kingshott CAM, Kappos L. Quantitative magnetic resonance imaging towards clinical application in multiple sclerosis. Brain 2021; 144:1296-1311. [PMID: 33970206 PMCID: PMC8219362 DOI: 10.1093/brain/awab029] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/09/2020] [Revised: 10/25/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Quantitative MRI provides biophysical measures of the microstructural integrity of the CNS, which can be compared across CNS regions, patients, and centres. In patients with multiple sclerosis, quantitative MRI techniques such as relaxometry, myelin imaging, magnetization transfer, diffusion MRI, quantitative susceptibility mapping, and perfusion MRI, complement conventional MRI techniques by providing insight into disease mechanisms. These include: (i) presence and extent of diffuse damage in CNS tissue outside lesions (normal-appearing tissue); (ii) heterogeneity of damage and repair in focal lesions; and (iii) specific damage to CNS tissue components. This review summarizes recent technical advances in quantitative MRI, existing pathological validation of quantitative MRI techniques, and emerging applications of quantitative MRI to patients with multiple sclerosis in both research and clinical settings. The current level of clinical maturity of each quantitative MRI technique, especially regarding its integration into clinical routine, is discussed. We aim to provide a better understanding of how quantitative MRI may help clinical practice by improving stratification of patients with multiple sclerosis, and assessment of disease progression, and evaluation of treatment response.
Collapse
Affiliation(s)
- Cristina Granziera
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jens Wuerfel
- Medical Image Analysis Center, Basel, Switzerland
- Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, multiple sclerosis Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
- UCL Institutes of Healthcare Engineering and Neurology, London, UK
| | - Massimiliano Calabrese
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Nicola De Stefano
- Neurology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Christian Enzinger
- Department of Neurology and Division of Neuroradiology, Medical University of Graz, Graz, Austria
| | - Nikos Evangelou
- Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, multiple sclerosis Center Amsterdam, Neuroscience Amsterdam, Amsterdam University Medical Centers, location VUmc, Amsterdam, The Netherlands
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefan Ropele
- Neuroimaging Research Unit, Department of Neurology, Medical University of Graz, Graz, Austria
| | - Àlex Rovira
- Section of Neuroradiology (Department of Radiology), Vall d'Hebron University Hospital and Research Institute, Barcelona, Spain
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ahmed T Toosy
- Queen Square multiple sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, University College London, London, UK
| | - Hugo Vrenken
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, multiple sclerosis Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Claudia A M Gandini Wheeler-Kingshott
- Queen Square multiple sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, University College London, London, UK
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Brain MRI 3T Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
19
|
Lee G, Park K, Oh SY, Min J, Kim BJ. Peripapillary and parafoveal microvascular changes in eyes with optic neuritis and their fellow eyes measured by optical coherence tomography angiography: an Exploratory Study. Acta Ophthalmol 2021; 99:288-298. [PMID: 32833336 DOI: 10.1111/aos.14577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/19/2019] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE This study aimed to evaluate parafoveal and peripapillary microvascular alterations in eyes with optic neuritis (ON) along with their fellow eyes compared to healthy control eyes using optical coherence tomography angiography (OCT-A). METHODS We included 31 ON-affected eyes and 31 fellow eyes of 31 patients who had experienced unilateral ON and 33 eyes of 33 healthy controls in this exploratory retrospective cross-sectional study. Optical coherence tomography angiography (OCT-A) was used to generate microvascular structural images and quantify the vessel density of the superficial retinal capillary plexus (SRCP), the deep retinal capillary plexus (DRCP) and radial peripapillary capillary (RPC) segments. We used the Kruskal-Wallis test for the comparison of OCT-A results between the three groups and generalized estimating equation models for the pairwise comparisons. RESULTS There were significant differences of SRCP (p = 0.0003) and RPC segment (p < 0.0001) vessel densities between the three groups. Specifically, there was a reduction in parafoveal and peripapillary vessel density in the ON-affected eyes compared to fellow eyes (SRCP, estimates, -1.97, 95% confidence interval [CI], -3.07, -0.87; RPC, -6.95, 95% CI, -8.70, -5.19) and controls (SRCP, -3.15, 95% CI, -4.61, -1.69; RPC, -8.66, 95% CI, -10.55, -6.76). The superior sector of the RPC segments vessel density in the fellow eyes was decreased compared to the controls (-4.93, 95% CI, -8.07, -1.80). CONCLUSIONS The results of this study suggest that microvascular changes occur in both the affected eye and unaffected fellow eye after a unilateral ON episode. Future studies are needed to clarify the clinical implications of these findings.
Collapse
Affiliation(s)
- Ga‐In Lee
- Department of Ophthalmology Samsung Medical Center Sungkyunkwan University School of Medicine Seoul Korea
| | - Kyung‐Ah Park
- Department of Ophthalmology Samsung Medical Center Sungkyunkwan University School of Medicine Seoul Korea
| | - Sei Yeul Oh
- Department of Ophthalmology Samsung Medical Center Sungkyunkwan University School of Medicine Seoul Korea
| | - Ju‐Hong Min
- Department of Neurology Samsung Medical Center Sungkyunkwan University School of Medicine Seoul Korea
| | - Byoung Joon Kim
- Department of Neurology Samsung Medical Center Sungkyunkwan University School of Medicine Seoul Korea
| |
Collapse
|
20
|
Haacke EM, Ge Y, Sethi SK, Buch S, Zamboni P. An Overview of Venous Abnormalities Related to the Development of Lesions in Multiple Sclerosis. Front Neurol 2021; 12:561458. [PMID: 33981281 PMCID: PMC8107266 DOI: 10.3389/fneur.2021.561458] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/12/2020] [Accepted: 03/26/2021] [Indexed: 12/21/2022] Open
Abstract
The etiology of multiple sclerosis (MS) is currently understood to be autoimmune. However, there is a long history and growing evidence for disrupted vasculature and flow within the disease pathology. A broad review of the literature related to vascular effects in MS revealed a suggestive role for abnormal flow in the medullary vein system. Evidence for venous involvement in multiple sclerosis dates back to the early pathological work by Charcot and Bourneville, in the mid-nineteenth century. Pioneering work by Adams in the 1980s demonstrated vasculitis within the walls of veins and venules proximal to active MS lesions. And more recently, magnetic resonance imaging (MRI) has been used to show manifestations of the central vein as a precursor to the development of new MS lesions, and high-resolution MRI using Ferumoxytol has been used to reveal the microvasculature that has previously only been demonstrated in cadaver brains. Both approaches may shed new light into the structural changes occurring in MS lesions. The material covered in this review shows that multiple pathophysiological events may occur sequentially, in parallel, or in a vicious circle which include: endothelial damage, venous collagenosis and fibrin deposition, loss of vessel compliance, venous hypertension, perfusion reduction followed by ischemia, medullary vein dilation and local vascular remodeling. We come to the conclusion that a potential source of MS lesions is due to locally disrupted flow which in turn leads to remodeling of the medullary veins followed by endothelial damage with the subsequent escape of glial cells, cytokines, etc. These ultimately lead to the cascade of inflammatory and demyelinating events which ensue in the course of the disease.
Collapse
Affiliation(s)
- E. Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, United States
| | - Yulin Ge
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, United States
| | - Sean K. Sethi
- Department of Radiology, Wayne State University, Detroit, MI, United States
| | - Sagar Buch
- Department of Radiology, Wayne State University, Detroit, MI, United States
| | - Paolo Zamboni
- Vascular Diseases Center, University of Ferrara, Ferrara, Italy
| |
Collapse
|
21
|
Pelizzari L, Laganà MM, Baglio F, Bergsland N, Cecconi P, Viotti S, Pugnetti L, Nemni R, Baselli G, Clerici M, Mendozzi L. Cerebrovascular reactivity and its correlation with age in patients with multiple sclerosis. Brain Imaging Behav 2021; 14:1889-1898. [PMID: 31175576 DOI: 10.1007/s11682-019-00132-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
Abstract
We assessed cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) within gray matter (GM), normal appearing white matter (NAWM) and white matter (WM) lesions in a group of multiple sclerosis (MS) patients. Furthermore, correlations between CBF, CVR and age were investigated. 31 MS patients and 25 healthy controls (HC) were examined on a 1.5 T MRI scanner, using pseudo-continuous arterial spin labeling MRI. MS vs HC CBF and CVR differences were assessed in GM regions of interest (i.e. resting state networks and vascular territories), and within WM. Correlations between CBF/CVR and age were then computed for MS and HC groups. Whereas no significant CBF and CVR differences were observed between MS and HC in any of the considered brain areas, significantly lower CBF was found in WM lesions with respect to NAWM (p < 0.001) in MS patients. Furthermore, CVR was significantly correlated with age in HC, but not in MS patients. The relatively low-grade of inflammation of our MS cohort may be associated with the observed lack of significant CVR differences between MS patients and HC. The loss of correlation between CVR and age in the MS group suggests that CVR may be influenced by MS-related factors.
Collapse
Affiliation(s)
- Laura Pelizzari
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, MRI Laboratory, Via Alfonso Capecelatro, 66, Milan, Italy
| | - Maria M Laganà
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, MRI Laboratory, Via Alfonso Capecelatro, 66, Milan, Italy.
| | - Francesca Baglio
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, MRI Laboratory, Via Alfonso Capecelatro, 66, Milan, Italy
| | - Niels Bergsland
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, MRI Laboratory, Via Alfonso Capecelatro, 66, Milan, Italy.,Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Pietro Cecconi
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, MRI Laboratory, Via Alfonso Capecelatro, 66, Milan, Italy
| | - Stefano Viotti
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, MRI Laboratory, Via Alfonso Capecelatro, 66, Milan, Italy
| | - Luigi Pugnetti
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, MRI Laboratory, Via Alfonso Capecelatro, 66, Milan, Italy
| | - Raffaello Nemni
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, MRI Laboratory, Via Alfonso Capecelatro, 66, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Baselli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Mario Clerici
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, MRI Laboratory, Via Alfonso Capecelatro, 66, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Laura Mendozzi
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, MRI Laboratory, Via Alfonso Capecelatro, 66, Milan, Italy
| |
Collapse
|
22
|
Balci S, Ozcelik Kose A, Yenerel NM. The effect of optic neuritis attacks on choroidal vascularity index in patients with multiple sclerosis. Graefes Arch Clin Exp Ophthalmol 2021; 259:2413-2424. [DOI: 10.1007/s00417-021-05143-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2020] [Revised: 02/06/2021] [Accepted: 03/02/2021] [Indexed: 10/21/2022] Open
|
23
|
Halder SK, Milner R. Hypoxia in multiple sclerosis; is it the chicken or the egg? Brain 2021; 144:402-410. [PMID: 33351069 PMCID: PMC8453297 DOI: 10.1093/brain/awaa427] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2020] [Revised: 09/03/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
Over the past 50 years, intense research effort has taught us a great deal about multiple sclerosis. We know that it is the most common neurological disease affecting the young-middle aged, that it affects two to three times more females than males, and that it is characterized as an autoimmune disease, in which autoreactive T lymphocytes cross the blood-brain barrier, resulting in demyelinating lesions. But despite all the knowledge gained, a key question still remains; what is the initial event that triggers the inflammatory demyelinating process? While most research effort to date has focused on the immune system, more recently, another potential candidate has emerged: hypoxia. Specifically, a growing number of studies have described the presence of hypoxia (both 'virtual' and real) at an early stage of demyelinating lesions, and several groups, including our own, have begun to investigate how manipulation of inspired oxygen levels impacts disease progression. In this review we summarize the findings of these hypoxia studies, and in particular, address three main questions: (i) is the hypoxia found in demyelinating lesions 'virtual' or real; (ii) what causes this hypoxia; and (iii) how does manipulation of inspired oxygen impact disease progression?
Collapse
Affiliation(s)
- Sebok K Halder
- San Diego Biomedical Research Institute, 10865 Road to the Cure, Suite 100, San Diego, CA 92121, USA
| | - Richard Milner
- San Diego Biomedical Research Institute, 10865 Road to the Cure, Suite 100, San Diego, CA 92121, USA
| |
Collapse
|
24
|
Cordon B, Vilades E, Orduna E, Satue M, Perez-Velilla J, Sebastian B, Polo V, Larrosa JM, Pablo LE, Garcia-Martin E. Angiography with optical coherence tomography as a biomarker in multiple sclerosis. PLoS One 2020; 15:e0243236. [PMID: 33290417 PMCID: PMC7723290 DOI: 10.1371/journal.pone.0243236] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/12/2020] [Accepted: 11/18/2020] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To investigate superficial retinal microvascular plexuses detected by optical coherence tomography angiography (OCT-A) in multiple sclerosis (MS) subjects and compare them with healthy controls. METHODS A total of 92 eyes from 92 patients with relapsing-remitting MS and 149 control eyes were included in this prospective observational study. OCT-A imaging was performed using Triton Swept-Source OCT (Topcon Corporation, Japan). The vessel density (VD) percentage in the superficial retinal plexus and optic disc area (6 x 6 mm grid) was measured and compared between groups. RESULTS MS patients showed a significant decrease VD in the superior (p = 0.005), nasal (p = 0.029) and inferior (p = 0.040) parafoveal retina compared with healthy subjects. Patients with disease durations of more than 5 years presented lower VD in the superior (p = 0.002), nasal (p = 0.017) and inferior (p = 0.022) parafoveal areas compared with healthy subjects. Patients with past optic neuritis episodes did not show retinal microvasculature alterations, but patients with an EDSS score of less than 3 showed a significant decrease in nasal (p = 0.024) and superior (p = 0.006) perifoveal VD when compared with healthy subjects. CONCLUSIONS MS produces a decrease in retinal vascularization density in the superficial plexus of the parafoveal retina. Alterations in retinal vascularization observed in MS patients are independent of the presence of optic nerve inflammation. OCT-A has the ability to detect subclinical vascular changes and is a potential biomarker for diagnosing the presence and progression of MS.
Collapse
Affiliation(s)
- Beatriz Cordon
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), Aragon Institute for Health Research (IIS Aragon), University of Zaragoza, Zaragoza, Spain
- * E-mail:
| | - Elisa Vilades
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), Aragon Institute for Health Research (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Elvira Orduna
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), Aragon Institute for Health Research (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - María Satue
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), Aragon Institute for Health Research (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Javier Perez-Velilla
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), Aragon Institute for Health Research (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Berta Sebastian
- National Ocular Pathology Network (OFTARED) at the Carlos III Institute of Health, Madrid, Spain
| | - Vicente Polo
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), Aragon Institute for Health Research (IIS Aragon), University of Zaragoza, Zaragoza, Spain
- Neurology Department, Miguel Servet University Hospital, Zaragoza, Spain
| | - Jose Manuel Larrosa
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), Aragon Institute for Health Research (IIS Aragon), University of Zaragoza, Zaragoza, Spain
- Neurology Department, Miguel Servet University Hospital, Zaragoza, Spain
| | - Luis Emilio Pablo
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), Aragon Institute for Health Research (IIS Aragon), University of Zaragoza, Zaragoza, Spain
- Neurology Department, Miguel Servet University Hospital, Zaragoza, Spain
| | - Elena Garcia-Martin
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), Aragon Institute for Health Research (IIS Aragon), University of Zaragoza, Zaragoza, Spain
- Neurology Department, Miguel Servet University Hospital, Zaragoza, Spain
| |
Collapse
|
25
|
Buch S, Subramanian K, Jella PK, Chen Y, Wu Z, Shah K, Bernitsas E, Ge Y, Haacke EM. Revealing vascular abnormalities and measuring small vessel density in multiple sclerosis lesions using USPIO. Neuroimage Clin 2020; 29:102525. [PMID: 33338965 PMCID: PMC7750444 DOI: 10.1016/j.nicl.2020.102525] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/24/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Multiple Sclerosis (MS) is a progressive, inflammatory, neuro-degenerative disease of the central nervous system (CNS) characterized by a wide range of histopathological features including vascular abnormalities. In this study, an ultra-small superparamagnetic iron oxide (USPIO) contrast agent, Ferumoxytol, was administered to induce an increase in susceptibility for both arteries and veins to help better reveal the cerebral microvasculature. The purpose of this work was to examine the presence of vascular abnormalities and vascular density in MS lesions using high-resolution susceptibility weighted imaging (SWI). METHODS Six subjects with relapsing remitting MS (RRMS, age = 47.3 ± 11.8 years with 3 females and 3 males) and fourteen age-matched healthy controls were scanned at 3 T with SWI acquired before and after the infusion of Ferumoxytol. Composite data was generated by registering the FLAIR data to the high resolution SWI data in order to highlight the vascular information in MS lesions. Both the central vein sign (CVS) and, a new measure, the multiple vessel sign (MVS) were identified, along with any vascular abnormalities, in the lesions on pre- and post-contrast SWI-FLAIR fusion data. The small vessel density within the periventricular normal-appearing white matter (NAWM) and the periventricular lesions were compared for all subjects. RESULTS Averaged across two independent raters, a total of 530 lesions were identified across all patients. The total number of lesions with vascularity on pre- and post-contrast data were 287 and 488, respectively. The lesions with abnormal vascular behavior were broken up into following categories: small lesions appearing only at the vessel boundary; dilated vessels within the lesions; and developmental venous angiomas. These vessel abnormalities observed within lesions increased from 55 on pre-contrast data to 153 on post-contrast data. Finally, across all the patients, the periventricular lesional vessel density was significantly higher (p < 0.05) than that of the periventricular NAWM. CONCLUSIONS By inducing a super-paramagnetic susceptibility in the blood using Ferumoxytol, the vascular abnormalities in the RRMS patients were revealed and small vessel densities were obtained. This approach has the potential to monitor the venous vasculature present in MS lesions, catalogue their characteristics and compare the vascular structures spatially to the presence of lesions. These enhanced vascular features may provide new insight into the pathophysiology of MS.
Collapse
Affiliation(s)
- Sagar Buch
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | | | - Pavan K Jella
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Yongsheng Chen
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Zhen Wu
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Kamran Shah
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | | | - Yulin Ge
- Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - E Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, USA; Department of Neurology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
26
|
Koudriavtseva T, Stefanile A, Fiorelli M, Lapucci C, Lorenzano S, Zannino S, Conti L, D'Agosto G, Pimpinelli F, Di Domenico EG, Mandoj C, Giannarelli D, Donzelli S, Blandino G, Salvetti M, Inglese M. Coagulation/Complement Activation and Cerebral Hypoperfusion in Relapsing-Remitting Multiple Sclerosis. Front Immunol 2020; 11:548604. [PMID: 33193314 PMCID: PMC7655134 DOI: 10.3389/fimmu.2020.548604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/03/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023] Open
Abstract
Introduction Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with an underlying immune-mediated and inflammatory pathogenesis. Innate immunity, in addition to the adaptive immune system, plays a relevant role in MS pathogenesis. It represents the immediate non-specific defense against infections through the intrinsic effector mechanism “immunothrombosis” linking inflammation and coagulation. Moreover, decreased cerebral blood volume (CBV), cerebral blood flow (CBF), and prolonged mean transit time (MTT) have been widely demonstrated by MRI in MS patients. We hypothesized that coagulation/complement and platelet activation during MS relapse, likely during viral infections, could be related to CBF decrease. Our specific aims are to evaluate whether there are differences in serum/plasma levels of coagulation/complement factors between relapsing-remitting (RR) MS patients (RRMS) in relapse and those in remission and healthy controls as well as to assess whether brain hemodynamic changes detected by MRI occur in relapse compared with remission. This will allow us to correlate coagulation status with perfusion and demographic/clinical features in MS patients. Materials and Methods This is a multi-center, prospective, controlled study. RRMS patients (1° group: 30 patients in relapse; 2° group: 30 patients in remission) and age/sex-matched controls (3° group: 30 subjects) will be enrolled in the study. Patients and controls will be tested for either coagulation/complement (C3, C4, C4a, C9, PT, aPTT, fibrinogen, factor II, VIII, and X, D-dimer, antithrombin, protein C, protein S, von-Willebrand factor), soluble markers of endothelial damage (thrombomodulin, Endothelial Protein C Receptor), antiphospholipid antibodies, lupus anticoagulant, complete blood count, viral serological assays, or microRNA microarray. Patients will undergo dynamic susceptibility contrast-enhanced MRI using a 3.0-T scanner to evaluate CBF, CBV, MTT, lesion number, and volume. Statistical Analysis ANOVA and unpaired t-tests will be used. The level of significance was set at p ≤ 0.05. Discussion Identifying a link between activation of coagulation/complement system and cerebral hypoperfusion could improve the identification of novel molecular and/or imaging biomarkers and targets, leading to the development of new effective therapeutic strategies in MS. Clinical Trial Registration Clinicaltrials.gov, identifier NCT04380220.
Collapse
Affiliation(s)
- Tatiana Koudriavtseva
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Annunziata Stefanile
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marco Fiorelli
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Caterina Lapucci
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Svetlana Lorenzano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Silvana Zannino
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Conti
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanna D'Agosto
- Clinical Pathology and Microbiology Unit, IRCC San Gallicano Institute, Rome, Italy
| | - Fulvia Pimpinelli
- Clinical Pathology and Microbiology Unit, IRCC San Gallicano Institute, Rome, Italy
| | | | - Chiara Mandoj
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Diana Giannarelli
- Biostatistics, Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sara Donzelli
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marco Salvetti
- Department of Neuroscience Mental Health and Sensory Organs (NEMOS), Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,Department of Neurology, Radiology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
27
|
Lattanzi S, Acciarri MC, Danni M, Taffi R, Cerqua R, Rocchi C, Silvestrini M. Cerebral hemodynamics in patients with multiple sclerosis. Mult Scler Relat Disord 2020; 44:102309. [DOI: 10.1016/j.msard.2020.102309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
|
28
|
Hostenbach S, Raeymaekers H, Van Schuerbeek P, Vanbinst AM, Cools W, De Keyser J, D'Haeseleer M. The Role of Cerebral Hypoperfusion in Multiple Sclerosis (ROCHIMS) Trial in Multiple Sclerosis: Insights From Negative Results. Front Neurol 2020; 11:674. [PMID: 32765401 PMCID: PMC7381129 DOI: 10.3389/fneur.2020.00674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/15/2020] [Accepted: 06/05/2020] [Indexed: 01/23/2023] Open
Abstract
Background: Accumulating evidence indicates that mitochondrial energy failure is involved in the progressive axonal degeneration in multiple sclerosis (MS). In patients with MS, it has been shown that both levels of N-acetylaspartate (NAA), which is a marker of axonal mitochondrial energy, and cerebral blood flow (CBF) are reduced in cerebral normal appearing white matter (NAWM). The latter is likely due to the vasoconstrictive action of endothelin-1 (ET-1) produced by reactive astrocytes, which is triggered by local proinflammatory cytokines. A preliminary study in patients with MS showed that CBF could be restored to normal values after a single dose of 62.5 mg of the ET-1 antagonist bosentan. Objective: To investigate whether restoring CBF in patients with relapsing remitting MS (RRMS) increases levels of NAA in cerebral NAWM and improves clinical symptoms. Methods: 27 RRMS patients were included in a 4 weeks proof-of-concept, randomized, double-blind placebo-controlled trial (ROCHIMS) to investigate whether bosentan 62.5 mg twice daily could increase the NAA/creatine (NAA/Cr) ratio in NAWM of the centrum semiovale. Magnetic resonance imaging (MRI) assessing CBF and NAA/Cr, and clinical evaluations were performed at baseline and at end of study. Separately from the clinical trial, 10 healthy controls underwent the same baseline multimodal brain MRI protocol as the MS patients. Results: Eleven patients in the bosentan arm and thirteen patients in the placebo arm completed the study. Bosentan did not increase CBF. However, we found that CBF in the patients was not different from that of the healthy controls. There were no effects on NAA levels and clinical symptoms. Conclusions: Our study showed that CBF in RRMS patients is not always decreased and that bosentan has no effect when CBF values are within the normal range. We hypothesize that in our patients there was no significant astrocytic production of ET-1 because they had a mild disease course, with minimal local inflammatory activity. Future studies with bosentan in MS should focus on patients with elevated ET-1 levels in cerebrospinal fluid or blood.
Collapse
Affiliation(s)
- Stéphanie Hostenbach
- Department of Neurology, Universitair Ziekenhuis Brussel, Brussels, Belgium.,Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hubert Raeymaekers
- Department of Radiology and Medical Physics, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Peter Van Schuerbeek
- Department of Radiology and Medical Physics, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Anne-Marie Vanbinst
- Department of Radiology and Medical Physics, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Wilfried Cools
- Interfaculty Center Data Processing and Statistics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jacques De Keyser
- Department of Neurology, Universitair Ziekenhuis Brussel, Brussels, Belgium.,Department of Neurology, Universitair Medisch Centrum Groningen, Groningen, Netherlands
| | - Miguel D'Haeseleer
- Department of Neurology, Universitair Ziekenhuis Brussel, Brussels, Belgium.,National Multiple Sclerosis Centrum, Melsbroek, Belgium
| |
Collapse
|
29
|
Pellegrini M, Vagge A, Ferro Desideri L, Bernabei F, Triolo G, Mastropasqua R, Del Noce C, Borrelli E, Sacconi R, Iovino C, Di Zazzo A, Forlini M, Giannaccare G. Optical Coherence Tomography Angiography in Neurodegenerative Disorders. J Clin Med 2020; 9:E1706. [PMID: 32498362 PMCID: PMC7356677 DOI: 10.3390/jcm9061706] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/27/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
Retinal microcirculation shares similar features with cerebral small blood vessels. Thus, the retina may be considered an accessible 'window' to detect the microvascular damage occurring in the setting of neurodegenerative disorders. Optical coherence tomography angiography (OCT-A) is a non-invasive imaging modality providing depth resolved images of blood flow in the retina, choroid, and optic nerve. In this review, we summarize the current literature on the application of OCT-A in glaucoma and central nervous system conditions such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Future directions aiming at evaluating whether OCT-A can be an additional biomarker for the early diagnosis and monitoring of neurodegenerative disorders are also discussed.
Collapse
Affiliation(s)
- Marco Pellegrini
- Ophthalmology Unit, S. Orsola-Malpighi University Hospital, University of Bologna, 40138 Bologna, Italy; (M.P.); (F.B.)
| | - Aldo Vagge
- University Eye Clinic, DINOGMI, Polyclinic Hospital San Martino IRCCS, 16132 Genoa, Italy; (L.F.D.); (C.D.N.)
| | - Lorenzo Ferro Desideri
- University Eye Clinic, DINOGMI, Polyclinic Hospital San Martino IRCCS, 16132 Genoa, Italy; (L.F.D.); (C.D.N.)
| | - Federico Bernabei
- Ophthalmology Unit, S. Orsola-Malpighi University Hospital, University of Bologna, 40138 Bologna, Italy; (M.P.); (F.B.)
| | - Giacinto Triolo
- Ophthalmology Department, Fatebenefratelli and Ophthalmic Hospital, ASST-Fatebenefratelli-Sacco, 63631 Milan, Italy;
| | - Rodolfo Mastropasqua
- Institute of Ophthalmology, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Chiara Del Noce
- University Eye Clinic, DINOGMI, Polyclinic Hospital San Martino IRCCS, 16132 Genoa, Italy; (L.F.D.); (C.D.N.)
| | - Enrico Borrelli
- Department of Ophthalmology, Hospital San Raffaele, University Vita Salute San Raffaele, 20132 Milan, Italy; (E.B.); (R.S.)
| | - Riccardo Sacconi
- Department of Ophthalmology, Hospital San Raffaele, University Vita Salute San Raffaele, 20132 Milan, Italy; (E.B.); (R.S.)
| | - Claudio Iovino
- Department of Surgical Sciences, Eye Clinic, University of Cagliari, 09124 Cagliari, Italy;
| | - Antonio Di Zazzo
- Department of Ophthalmology, University Campus Bio-Medico of Rome, 00128 Rome, Italy;
| | - Matteo Forlini
- Domus Nova Hospital, 48121 Ravenna, Italy;
- Department of Ophthalmology, Ospedale dello Stato della Repubblica di San Marino, 47893 Città di San Marino, San Marino
| | - Giuseppe Giannaccare
- Department of Ophthalmology, University “Magna Graecia”, 88100 Catanzaro, Italy;
| |
Collapse
|
30
|
Murphy OC, Kwakyi O, Iftikhar M, Zafar S, Lambe J, Pellegrini N, Sotirchos ES, Gonzalez-Caldito N, Ogbuokiri E, Filippatou A, Risher H, Cowley N, Feldman S, Fioravante N, Frohman EM, Frohman TC, Balcer LJ, Prince JL, Channa R, Calabresi PA, Saidha S. Alterations in the retinal vasculature occur in multiple sclerosis and exhibit novel correlations with disability and visual function measures. Mult Scler 2020; 26:815-828. [PMID: 31094280 PMCID: PMC6858526 DOI: 10.1177/1352458519845116] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND The retinal vasculature may be altered in multiple sclerosis (MS), potentially acting as a biomarker of disease processes. OBJECTIVE To compare retinal vascular plexus densities in people with MS (PwMS) and healthy controls (HCs), and examine correlations with visual function and global disability. METHODS In this cross-sectional study, 111 PwMS (201 eyes) and 50 HCs (97 eyes) underwent optical coherence tomography angiography (OCTA). Macular superficial vascular plexus (SVP) and deep vascular plexus (DVP) densities were quantified, and poor quality images were excluded according to an artifact-rating protocol. RESULTS Mean SVP density was 24.1% (SD = 5.5) in MS eyes (26.0% (SD = 4.7) in non-optic neuritis (ON) eyes vs. 21.7% (SD = 5.5) in ON eyes, p < 0.001), as compared to 29.2% (SD = 3.3) in HC eyes (p < 0.001 for all MS eyes and multiple sclerosis optic neuritis (MSON) eyes vs. HC eyes, p = 0.03 for MS non-ON eyes vs. HC eyes). DVP density did not differ between groups. In PwMS, lower SVP density was associated with higher levels of disability (expanded disability status scale (EDSS): R2 = 0.26, p = 0.004; multiple sclerosis functional composite (MSFC): R2 = 0.27, p = 0.03) and lower letter acuity scores (100% contrast: R2 = 0.29; 2.5% contrast: R2 = 0.40; 1.25% contrast: R2 = 0.31; p < 0.001 for all). CONCLUSIONS Retinal SVP density measured by OCTA is reduced across MS eyes, and correlates with visual function, EDSS, and MSFC scores.
Collapse
Affiliation(s)
- Olwen C. Murphy
- Division of Neuroimmunology and Neurological Infections,
Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Ohemaa Kwakyi
- Division of Neuroimmunology and Neurological Infections,
Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Mustafa Iftikhar
- Wilmer Eye Institute, Johns Hopkins University School of
Medicine, Baltimore, MD, United States
| | - Sidra Zafar
- Wilmer Eye Institute, Johns Hopkins University School of
Medicine, Baltimore, MD, United States
| | - Jeffrey Lambe
- Division of Neuroimmunology and Neurological Infections,
Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Nicole Pellegrini
- Division of Neuroimmunology and Neurological Infections,
Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Elias S. Sotirchos
- Division of Neuroimmunology and Neurological Infections,
Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Natalia Gonzalez-Caldito
- Division of Neuroimmunology and Neurological Infections,
Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Esther Ogbuokiri
- Division of Neuroimmunology and Neurological Infections,
Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Angeliki Filippatou
- Division of Neuroimmunology and Neurological Infections,
Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Hunter Risher
- Division of Neuroimmunology and Neurological Infections,
Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Norah Cowley
- Division of Neuroimmunology and Neurological Infections,
Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Sydney Feldman
- Division of Neuroimmunology and Neurological Infections,
Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Nicholas Fioravante
- Division of Neuroimmunology and Neurological Infections,
Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Elliot M. Frohman
- Department of Neurology and Ophthalmology, University of
Texas Austin Dell Medical School, Austin, TX, United States
| | - Teresa C. Frohman
- Department of Neurology and Ophthalmology, University of
Texas Austin Dell Medical School, Austin, TX, United States
| | - Laura J. Balcer
- Department of Neurology, New York University Langone
Medical Center, New York, NY, United States
| | - Jerry L. Prince
- Department of Electrical and Computer Engineering, Johns
Hopkins University, Baltimore, MD, United States
| | - Roomasa Channa
- Wilmer Eye Institute, Johns Hopkins University School of
Medicine, Baltimore, MD, United States
- Department of Ophthalmology, Baylor College of Medicine,
Houston, TX, United States
| | - Peter A. Calabresi
- Division of Neuroimmunology and Neurological Infections,
Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Shiv Saidha
- Division of Neuroimmunology and Neurological Infections,
Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| |
Collapse
|
31
|
Lagana MM, Pelizzari L, Baglio F. Relationship between MRI perfusion and clinical severity in multiple sclerosis. Neural Regen Res 2020; 15:646-652. [PMID: 31638086 PMCID: PMC6975150 DOI: 10.4103/1673-5374.266906] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022] Open
Abstract
Perfusion alterations within several brain regions have been shown in multiple sclerosis patients using different magnetic resonance imaging (MRI) techniques. Furthermore, MRI-derived brain perfusion metrics have been investigated in association with multiple sclerosis phenotypes, physical disability, and cognitive impairment. However, a review focused on these aspects is still missing. Our aim was to review all the studies investigating the relationship between perfusion MRI and clinical severity during the last fifteen years to understand the clinical relevance of these findings. Perfusion differences among phenotypes were observed both with 1.5T and 3T scanners, with progressive multiple sclerosis presenting with lower perfusion values than relapsing-remitting multiple sclerosis patients. However, only 3T scanners showed a statistically significant distinction. Controversial results about the association between MRI-derived perfusion metrics and physical disability scores were found. However, the majority of the studies showed that lower brain perfusion and longer transit time are associated with more severe physical disability and worse cognitive performances.
Collapse
|
32
|
de la Peña MJ, Peña IC, García PGP, Gavilán ML, Malpica N, Rubio M, González RA, de Vega VM. Early perfusion changes in multiple sclerosis patients as assessed by MRI using arterial spin labeling. Acta Radiol Open 2019; 8:2058460119894214. [PMID: 32002192 PMCID: PMC6964247 DOI: 10.1177/2058460119894214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/27/2019] [Accepted: 11/19/2019] [Indexed: 01/01/2023] Open
Abstract
Background Gadolinium-perfusion magnetic resonance (MR) identifies gray matter abnormalities in early multiple sclerosis (MS), even in the absence of structural differences. These perfusion changes could be related to the cognitive disability of these patients, especially in the working memory. Arterial spin labeling (ASL) is a relatively recent perfusion technique that does not require intravenous contrast, making the technique especially attractive for clinical research. Purpose To verify the perfusion alterations in early MS, even in the absence of cerebral volume changes. To introduce the ASL sequence as a suitable non-invasive method in the monitoring of these patients. Material and Methods Nineteen healthy controls and 28 patients were included. The neuropsychological test EDSS and SDMT were evaluated. Cerebral blood flow and bolus arrival time were collected from the ASL study. Cerebral volume and cortical thickness were obtained from the volumetric T1 sequence. Spearman's correlation analyzed the correlation between EDSS and SDMT tests and perfusion data. Differences were considered significant at a level of P < 0.05. Results Reduction of the cerebral blood flow and an increase in the bolus arrival time were found in patients compared to controls. A negative correlation between EDSS and thalamus transit time, and between EDSS and cerebral blood flow in the frontal cortex, was found. Conclusion ASL perfusion might detect changes in MS patients even in absent structural volumetric changes. More longitudinal studies are needed, but perfusion parameters could be biomarkers for monitoring these patients.
Collapse
Affiliation(s)
| | | | | | | | - Norberto Malpica
- Faculty of Biomedical Imaging, Universidad Rey Juan Carlos, Madrid, Spain
| | - Margarita Rubio
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | | |
Collapse
|
33
|
Van Schependom J, Guldolf K, D'hooghe MB, Nagels G, D'haeseleer M. Detecting neurodegenerative pathology in multiple sclerosis before irreversible brain tissue loss sets in. Transl Neurodegener 2019; 8:37. [PMID: 31827784 PMCID: PMC6900860 DOI: 10.1186/s40035-019-0178-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/16/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022] Open
Abstract
Background Multiple sclerosis (MS) is a complex chronic inflammatory and degenerative disorder of the central nervous system. Accelerated brain volume loss, or also termed atrophy, is currently emerging as a popular imaging marker of neurodegeneration in affected patients, but, unfortunately, can only be reliably interpreted at the time when irreversible tissue damage likely has already occurred. Timing of treatment decisions based on brain atrophy may therefore be viewed as suboptimal. Main body This Narrative Review focuses on alternative techniques with the potential of detecting neurodegenerative events in the brain of subjects with MS prior to the atrophic stage. First, metabolic and molecular imaging provide the opportunity to identify early subcellular changes associated with energy dysfunction, which is an assumed core mechanism of axonal degeneration in MS. Second, cerebral hypoperfusion has been observed throughout the entire clinical spectrum of the disorder but it remains an open question whether this serves as an alternative marker of reduced metabolic activity, or exists as an independent contributing process, mediated by endothelin-1 hyperexpression. Third, both metabolic and perfusion alterations may lead to repercussions at the level of network performance and structural connectivity, respectively assessable by functional and diffusion tensor imaging. Fourth and finally, elevated body fluid levels of neurofilaments are gaining interest as a biochemical mirror of axonal damage in a wide range of neurological conditions, with early rises in patients with MS appearing to be predictive of future brain atrophy. Conclusions Recent findings from the fields of advanced neuroradiology and neurochemistry provide the promising prospect of demonstrating degenerative brain pathology in patients with MS before atrophy has installed. Although the overall level of evidence on the presented topic is still preliminary, this Review may pave the way for further longitudinal and multimodal studies exploring the relationships between the abovementioned measures, possibly leading to novel insights in early disease mechanisms and therapeutic intervention strategies.
Collapse
Affiliation(s)
- Jeroen Van Schependom
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,2Radiology Department Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Kaat Guldolf
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium
| | - Marie Béatrice D'hooghe
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,Nationaal Multiple Sclerose Centrum, Melsbroek, Belgium
| | - Guy Nagels
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,Nationaal Multiple Sclerose Centrum, Melsbroek, Belgium
| | - Miguel D'haeseleer
- 1Neurology Department, Universitair Ziekenhuis Brussel; Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel, Belgium.,Nationaal Multiple Sclerose Centrum, Melsbroek, Belgium
| |
Collapse
|
34
|
Increased Levels of Endothelin-1 in Cerebrospinal Fluid Are a Marker of Poor Visual Recovery after Optic Neuritis in Multiple Sclerosis Patients. DISEASE MARKERS 2019; 2019:9320791. [PMID: 31583031 PMCID: PMC6754925 DOI: 10.1155/2019/9320791] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Academic Contribution Register] [Received: 04/16/2019] [Revised: 08/08/2019] [Accepted: 08/30/2019] [Indexed: 01/28/2023]
Abstract
Background Multiple sclerosis (MS), a chronic inflammatory and degenerative disease of the central nervous system, typically features immune-mediated focal demyelination and secondary axonal degeneration. Cerebral hypoperfusion of the normal-appearing white matter (NAWM) has been reported in MS patients and may be mediated by elevated levels of endothelin-1 (ET-1), a most potent vasoconstrictive peptide released from reactive astrocytes in MS focal lesions. Optic neuritis (ON) is one of the most frequent manifestations of MS and also shows peripapillary vascular hypoperfusion in combination with disc swelling. Aims We aimed to compare serum and cerebrospinal fluid (CSF) levels of ET-1 as a potential prognostic marker of MS-ON in two groups of patients differing for severity of MS-ON clinical presentation. Materials and Methods A cross-sectional study to compare serum and CSF levels of ET-1 between patients with clinically aggressive MS-ON (A-MS-ON) and nonaggressive MS-ON (NA-MS-ON) according to conventional ophthalmological criteria, including optical coherence tomography. CSF and serum concentrations of ET-1 were measured using a commercially available ELISA method. Results Sixteen patients consecutively referred to the Units of Neurology for visual disturbances attributable to MS were recruited, 11 (69%) patients with A-MS-ON and 5 (31%) with NA-MS-ON. Median CSF ET-1 levels and CSF/serum ET-1 quotient were significantly higher in patients with A-MS-ON (0.30 vs. 0.56 ng/ml) as compared to NA-MS-ON (0.16 vs. 0.16). Conclusions Severity and failure in the recovery from ON in MS patients may depend from vascular hypoperfusion of the optic nerve induced by high intrathecally produced ET-1, a potential prognostic marker of ON recovery in MS. The detection of CSF ET-1 levels may allow identifying groups of ON patients potentially benefitting from treatment with ET-1 antagonists (e.g., bosentan).
Collapse
|
35
|
Jakimovski D, Guan Y, Ramanathan M, Weinstock-Guttman B, Zivadinov R. Lifestyle-based modifiable risk factors in multiple sclerosis: review of experimental and clinical findings. Neurodegener Dis Manag 2019; 9:149-172. [PMID: 31116081 DOI: 10.2217/nmt-2018-0046] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is a lifelong inflammatory and neurodegenerative disease influenced by multiple lifestyle-based factors. We provide a narrative review of the effects of modifiable risk factors that are identified as being associated with risk to develop MS and/or influencing the future clinical disease outcomes. The emerging data regarding the beneficial effects of diet modifications and exercise are further reviewed. In contrast, obesity and comorbid cardiovascular diseases are associated with increased MS susceptibility and worse disease progression. In addition, the potential influence of smoking, coffee and alcohol consumption on MS onset and disability development are discussed. Successful management of the modifiable risk factors may lead to better long-term outcomes and improve patients' quality of life. MS specialists should participate in educating and facilitating lifestyle-based modifications as part of their neurological consults.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Yi Guan
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Murali Ramanathan
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Bianca Weinstock-Guttman
- Jacobs MS Center, Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.,Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| |
Collapse
|
36
|
Liu Y, Delgado S, Jiang H, Lin Y, Hernandez J, Deng Y, Gameiro GR, Wang J. Retinal Tissue Perfusion in Patients with Multiple Sclerosis. Curr Eye Res 2019; 44:1091-1097. [PMID: 31046490 DOI: 10.1080/02713683.2019.1612444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
Abstract
Purpose: The goal of this work was to determine whether the retinal tissue perfusion (RTP) is impaired in patients with multiple sclerosis (MS). Methods: Seventy-four patients [66 relapsing-remitting MS (RRMS) and 8 clinically isolated syndrome (CIS)] and 74 age- and gender-matched healthy controls were recruited. RTP was calculated as the retinal blood flow (measured using retinal function imager) supplying the macular area divided by the corresponding tissue volume of the inner retina from the inner limiting membrane to the outer plexiform layer, as measured by ultrahigh-resolution optical coherence tomography. Results: The RTP in the MS group was 2.37 ± 0.59 nl/s/mm3 (mean ± standard deviation), which was significantly lower than the control group (4.06 ± 0.89 nl/s/mm3, P < .001), reflecting a decrease of 42%. The blood flow volume was 2.50 ± 0.50 nl/s in MS, which was 45% lower than in the control group (4.56 ± 0.91 nl/s, P < .001). In addition, the tissue volume of the inner retina was significantly lower than in the control group (P < .05). The RTP in patients with MS was significantly correlated with the retinal blood flow volume (r = 0.84, P < .001) and retinal tissue volume (r = -0.56, P < .001). However, the retinal blood flow in patients with MS was not related to the tissue volume (r = -0.06, P = .59). Conclusions: Impaired retinal tissue perfusion occurred in patients with MS, which could be developed as a possible biomarker in monitoring disease progression in MS.
Collapse
Affiliation(s)
- Yi Liu
- Department of Ophthalmology, Third Affiliated Hospital of Nanjing University of Chinese Medicine , Nanjing , China.,Bascom Palmer Eye Institute, University of Miami Miller School of Medicine , Miami , FL , USA
| | - Silvia Delgado
- MS Center of Excellence, Department of Neurology, University of Miami Miller School of Medicine , Miami , FL , USA
| | - Hong Jiang
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine , Miami , FL , USA.,MS Center of Excellence, Department of Neurology, University of Miami Miller School of Medicine , Miami , FL , USA
| | - Ying Lin
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine , Miami , FL , USA.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou , Guangdong , China
| | - Jeffrey Hernandez
- MS Center of Excellence, Department of Neurology, University of Miami Miller School of Medicine , Miami , FL , USA
| | - Yuqing Deng
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine , Miami , FL , USA.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou , Guangdong , China
| | - Giovana Rosa Gameiro
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine , Miami , FL , USA
| | - Jianhua Wang
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine , Miami , FL , USA
| |
Collapse
|
37
|
Jakimovski D, Topolski M, Genovese AV, Weinstock-Guttman B, Zivadinov R. Vascular aspects of multiple sclerosis: emphasis on perfusion and cardiovascular comorbidities. Expert Rev Neurother 2019; 19:445-458. [PMID: 31003583 DOI: 10.1080/14737175.2019.1610394] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic inflammatory, demyelinating, and neurodegenerative disease of the central nervous system. Over the last two decades, more favorable MS long-term outcomes have contributed toward increase in prevalence of the aged MS population. Emergence of age-associated pathology, such as cardiovascular diseases, may interact with the MS pathophysiology and further contribute to disease progression. Areas covered: This review summarizes the cardiovascular involvement in MS pathology, its disease activity, and progression. The cardiovascular health, the presence of various cardiovascular diseases, and their effect on MS cognitive performance are further explored. In similar fashion, the emerging evidence of a higher incidence of extracranial arterial pathology and its association with brain MS pathology are discussed. Finally, the authors outline the methodologies behind specific perfusion magnetic resonance imaging (MRI) and ultrasound Doppler techniques, which allow measurement of disease-specific and age-specific vascular changes in the aging population and MS patients. Expert opinion: Cardiovascular pathology significantly contributes to worse clinical and MRI-derived disease outcomes in MS. Global and regional cerebral hypoperfusion may be associated with poorer physical and cognitive performance. Prevention, improved detection, and treatment of the cardiovascular-based pathology may improve the overall long-term health of MS patients.
Collapse
Affiliation(s)
- Dejan Jakimovski
- a Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA.,b Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, The State University of New York , Buffalo , NY , USA
| | - Matthew Topolski
- a Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA
| | - Antonia Valentina Genovese
- a Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA.,c Institute of Radiology, Department of Clinical Surgical Diagnostic and Pediatric Sciences , University of Pavia , Pavia , Italy
| | - Bianca Weinstock-Guttman
- b Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, The State University of New York , Buffalo , NY , USA
| | - Robert Zivadinov
- a Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA.,b Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, The State University of New York , Buffalo , NY , USA.,d Center for Biomedical Imaging at Clinical Translational Science Institute , University at Buffalo, State University of New York , Buffalo , NY , USA
| |
Collapse
|
38
|
Turner MP, Hubbard NA, Sivakolundu DK, Himes LM, Hutchison JL, Hart J, Spence JS, Frohman EM, Frohman TC, Okuda DT, Rypma B. Preserved canonicality of the BOLD hemodynamic response reflects healthy cognition: Insights into the healthy brain through the window of Multiple Sclerosis. Neuroimage 2019; 190:46-55. [PMID: 29454932 DOI: 10.1016/j.neuroimage.2017.12.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/02/2017] [Revised: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022] Open
Abstract
The hemodynamic response function (HRF), a model of brain blood-flow changes in response to neural activity, reflects communication between neurons and the vasculature that supplies these neurons in part by means of glial cell intermediaries (e.g., astrocytes). Intact neural-vascular communication might play a central role in optimal cognitive performance. This hypothesis can be tested by comparing healthy individuals to those with known white-matter damage and impaired performance, as seen in Multiple Sclerosis (MS). Glial cell intermediaries facilitate the ability of neurons to adequately convey metabolic needs to cerebral vasculature for sufficient oxygen and nutrient perfusion. In this study, we isolated measurements of the HRF that could quantify the extent to which white-matter affects neural-vascular coupling and cognitive performance. HRFs were modeled from multiple brain regions during multiple cognitive tasks using piecewise cubic spline functions, an approach that minimized assumptions regarding HRF shape that may not be valid for diseased populations, and were characterized using two shape metrics (peak amplitude and time-to-peak). Peak amplitude was reduced, and time-to-peak was longer, in MS patients relative to healthy controls. Faster time-to-peak was predicted by faster reaction time, suggesting an important role for vasodilatory speed in the physiology underlying processing speed. These results support the hypothesis that intact neural-glial-vascular communication underlies optimal neural and cognitive functioning.
Collapse
Affiliation(s)
- Monroe P Turner
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Nicholas A Hubbard
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dinesh K Sivakolundu
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Lyndahl M Himes
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Joanna L Hutchison
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - John Hart
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA; Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey S Spence
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Elliot M Frohman
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Teresa C Frohman
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Darin T Okuda
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bart Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
39
|
Hostenbach S, Pauwels A, Michiels V, Raeymaekers H, Van Binst AM, Van Merhaeghen-Wieleman A, Van Schuerbeek P, De Keyser J, D'Haeseleer M. Role of cerebral hypoperfusion in multiple sclerosis (ROCHIMS): study protocol for a proof-of-concept randomized controlled trial with bosentan. Trials 2019; 20:164. [PMID: 30871594 PMCID: PMC6416892 DOI: 10.1186/s13063-019-3252-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/16/2018] [Accepted: 02/25/2019] [Indexed: 11/12/2022] Open
Abstract
Background Axonal degeneration is related to long-term disability in patients with multiple sclerosis (MS). The underlying mechanism remains ill understood but appears to involve axonal energetic dysfunction. A globally impaired cerebral blood flow (CBF) has been observed in the normal-appearing white matter (NAWM) of patients with MS, which is probably related to astrocytic overexpression of endothelin-1 (ET-1). Cerebral hypoperfusion has been associated with reduced mitochondrial activity and disabling symptoms (e.g. fatigue and cognitive decline) of MS. Countering this process could therefore be beneficial in the disease course. Short-term CBF restoration with a single 62.5-mg dose of the ET-1 receptor antagonist bosentan has already been demonstrated in patients with MS. Methods The ROCHIMS study is a proof-of-concept double-blind randomized clinical trial in which patients with relapsing-remitting MS will receive either 62.5 mg bosentan or matching placebo twice daily during 28 ± 2 days. Clinical evaluation and brain magnetic resonance imaging (MRI) will be performed at baseline and treatment termination. Based on previous work, we expect a global increase of CBF in the individuals treated with bosentan. The primary outcome measure is the change of N-acetyl aspartate in centrum semiovale NAWM, which is a marker of regional axonal mitochondrial activity. Other parameters of interest include changes in fatigue, cognition, motor function, depression, and brain volume. Discussion We hypothesize that restoring cerebral hypoperfusion in MS patients improves axonal metabolism. Early positive effects on fatigue and cognitive dysfunction related to MS might additionally be detected. There is a medical need for drugs that can slow down the progressive axonal degeneration in MS, making this an important topic of interest. Trial registration Clinical Trials Register, EudraCT 2017-001253-13. Registered on 15 February 2018. Electronic supplementary material The online version of this article (10.1186/s13063-019-3252-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stéphanie Hostenbach
- Department of Neurology, Universitair Ziekenhuis (UZ) Brussel, Brussels, Belgium. .,Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Ayla Pauwels
- Department of Neurology, Universitair Ziekenhuis (UZ) Brussel, Brussels, Belgium
| | - Veronique Michiels
- Department of Neurology, Universitair Ziekenhuis (UZ) Brussel, Brussels, Belgium
| | - Hubert Raeymaekers
- Department of Radiology and Medical Physics, UZ Brussel, Brussels, Belgium
| | | | | | | | - Jacques De Keyser
- Department of Neurology, Universitair Ziekenhuis (UZ) Brussel, Brussels, Belgium.,Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Neurology, Universitair Medisch Centrum Groningen, Groningen, The Netherlands
| | - Miguel D'Haeseleer
- Department of Neurology, Universitair Ziekenhuis (UZ) Brussel, Brussels, Belgium.,Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.,National Multiple Sclerosis Centrum, Melsbroek, Belgium
| |
Collapse
|
40
|
Wang L, Kwakyi O, Nguyen J, Ogbuokiri E, Murphy O, Caldito NG, Balcer L, Frohman E, Frohman T, Calabresi PA, Saidha S. Microvascular blood flow velocities measured with a retinal function imager: inter-eye correlations in healthy controls and an exploration in multiple sclerosis. EYE AND VISION 2018; 5:29. [PMID: 30410945 PMCID: PMC6217760 DOI: 10.1186/s40662-018-0123-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 06/15/2018] [Accepted: 10/17/2018] [Indexed: 01/13/2023]
Abstract
Background The retinal microcirculation has been studied in various diseases including multiple sclerosis (MS). However, inter-eye correlations and potential differences of the retinal blood flow velocity (BFV) remain largely unstudied but may be important in guiding eye selection as well as the design and interpretation of studies assessing or utilizing retinal BFV. The primary aim of this study was to determine inter-eye correlations in BFVs in healthy controls (HCs). Since prior studies raise the possibility of reduced BFV in MS eyes, a secondary aim was to compare retinal BFVs between MS eyes, grouped based on optic neuritis (ON) history and HC eyes. Methods Macular arteriole and venule BFVs were determined using a retinal function imager (RFI) in both eyes of 20 HCs. One eye from a total of 38 MS patients comprising 13 eyes with ON (MSON) and 25 eyes without ON (MSNON) history were similarly imaged with RFI. Results OD (right) and OS (left) BFVs were not significantly different in arterioles (OD: 3.95 ± 0.59 mm/s; OS: 4.08 ± 0.60 mm/s, P = 0.10) or venules (OD: 3.11 ± 0.46 mm/s; OS: 3.23 ± 0.52 mm/s, P = 0.06) in HCs. Very strong inter-eye correlations were also found between arteriolar (r = 0.84, P < 0.001) and venular (r = 0.87, P < 0.001) BFVs in HCs. Arteriolar (3.48 ± 0.88 mm/s) and venular (2.75 ± 0.53 mm/s) BFVs in MSNON eyes were significantly lower than in HC eyes (P = 0.009 and P = 0.005, respectively). Similarly, arteriolar (3.59 ± 0.69 mm/s) and venular (2.80 ± 0.45 mm/s) BFVs in MSON eyes were also significantly lower than in HC eyes (P = 0.046 and P = 0.048, respectively). Arteriolar and venular BFVs in MSON and MSNON eyes did not differ from each other (P = 0.42 and P = 0.48, respectively). Conclusions Inter-eye arteriolar and venular BFVs do not differ significantly in HCs and are strongly correlated. Our findings support prior observations that arteriolar and venular BFVs may be reduced in MS eyes. Moreover, this seems to be the case in both MS eyes with and without a history of ON, raising the possibility of global blood flow alterations in MS. Future larger studies are needed to assess differences in BFVs between MSON and MSNON eyes.
Collapse
Affiliation(s)
- Liang Wang
- 1Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Ohemaa Kwakyi
- 1Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - James Nguyen
- 1Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Esther Ogbuokiri
- 1Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Olwen Murphy
- 1Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | | | - Laura Balcer
- 2Departments of Neurology, Population Health and Ophthalmology, New York University School of Medicine, New York, NY USA
| | - Elliot Frohman
- 3Departments of Neurology and Ophthalmology, University of Texas Austin Dell Medical School, Austin, TX USA
| | - Teresa Frohman
- 3Departments of Neurology and Ophthalmology, University of Texas Austin Dell Medical School, Austin, TX USA
| | - Peter A Calabresi
- 1Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Shiv Saidha
- 1Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
41
|
Gulati A, Hornick MG, Briyal S, Lavhale MS. A novel neuroregenerative approach using ET(B) receptor agonist, IRL-1620, to treat CNS disorders. Physiol Res 2018; 67:S95-S113. [PMID: 29947531 DOI: 10.33549/physiolres.933859] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022] Open
Abstract
Endothelin B (ET(B)) receptors present in abundance the central nervous system (CNS) have been shown to have significant implications in its development and neurogenesis. We have targeted ET(B) receptors stimulation using a highly specific agonist, IRL-1620, to treat CNS disorders. In a rat model of cerebral ischemia intravenous administration IRL-1620 significantly reduced infarct volume and improved neurological and motor functions compared to control. This improvement, in part, is due to an increase in neuroregeneration. We also investigated the role of IRL-1620 in animal models of Alzheimer's disease (AD). IRL-1620 improved learning and memory, reduced oxidative stress and increased VEGF and NGF in Abeta treated rats. IRL-1620 also improved learning and memory in an aged APP/PS1 transgenic mouse model of AD. These promising findings prompted us to initiate human studies. Successful chemistry, manufacturing and control along with mice, rat and dog toxicological studies led to completion of a human Phase I study in healthy volunteers. We found that a dose of 0.6 microg/kg of IRL-1620 can be safely administered, three times every four hours, without any adverse effect. A Phase II clinical study with IRL-1620 has been initiated in patients with cerebral ischemia and mild to moderate AD.
Collapse
Affiliation(s)
- A Gulati
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, USA.
| | | | | | | |
Collapse
|
42
|
Krotenkova IA, Bryukhov VV, Krotenkova MV, Zakharova MN, Askarova LS. [Brain atrophy and perfusion changes in patients with remitting and secondary progressive multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:47-54. [PMID: 30160668 DOI: 10.17116/jnevro201811808247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Abstract
AIM To study the relationship of brain atrophy and changes in perfusion with an increase in the level of disability in patients with multiple sclerosis (MS). MATERIAL AND METHODS Twenty patients with remitting MS, 20 patients with secondary progressive multiple sclerosis (SPMS) and 20 healthy people were studied. The level of neurological deficit was assessed with EDSS and cognitive status with PASAT. MRI of the brain (standard impulse sequences and 3D-T1-MPR for voxel MRI-morphometry) and perfusion computed tomography with the assessment of visually intact white matter (VIWM) and thalamus were performed. RESULTS Compared to the control group, patients with MS had a significant atrophy of subcortical gray matter. Patients with SPMS in addition had an atrophy of some cortical areas which was correlated with EDSS scores (p<0.05). The correlation between cognitive impairment and the volume of the left inferior parietal lobule (r=0.677; p=0.011) and worsening of perfusion of VIWM of frontal and parietal lobes, thalamus on both sides was observed in patients with SPMS compared to those with remitting MS. That was correlated with cognitive performance assessed by PASAT. CONCLUSION Patterns of atrophy distribution in different types of MS were determined. The level of disability is correlated with the severity of brain atrophy. Hypoperfusion of VIWM that was correlated with cognitive impairment was found in patients with SPMS.
Collapse
|
43
|
Pelizzari L, Jakimovski D, Laganà MM, Bergsland N, Hagemeier J, Baselli G, Weinstock-Guttman B, Zivadinov R. Five-Year Longitudinal Study of Neck Vessel Cross-Sectional Area in Multiple Sclerosis. AJNR Am J Neuroradiol 2018; 39:1703-1709. [PMID: 30049718 DOI: 10.3174/ajnr.a5738] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/19/2018] [Accepted: 06/06/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND PURPOSE Alterations of neck vessel cross-sectional area in multiple sclerosis have been reported. Our aim was to investigate the evolution of the neck vessel cross-sectional area in patients with MS and healthy controls during 5 years. MATERIALS AND METHODS Sixty-nine patients with MS (44 relapsing-remitting MS, 25 progressive MS) and 22 age- and sex-matched healthy controls were examined twice, 5 years apart, on a 3T MR imaging scanner using 2D neck MR angiography. Cross-sectional areas were computed for the common carotid/internal carotid arteries, vertebral arteries, and internal jugular veins for all slices between the C3 and C7 cervical levels. Longitudinal cross-sectional area differences at each cervical level and the whole-vessel course were tested within study groups and between patients with MS with and without cardiovascular disease using mixed-model analysis and the related-samples Wilcoxon singed rank test. The Benjamini-Hochberg procedure was performed to correct for multiple comparisons. RESULTS No significant cross-sectional area differences were seen between patients with MS and healthy controls at baseline or at follow-up. During the follow-up, significant cross-sectional area decrease was found in patients with MS for the common carotid artery-ICAs (C4: P = .048; C7: P = .005; whole vessel: P = .012), for vertebral arteries (C3: P = .028; C4: P = .028; C7: P = .028; whole vessel: P = .012), and for the internal jugular veins (C3: P = .014; C4: P = .008; C5: P = .010; C6: P = .010; C7: P = .008; whole vessel: P = .002). Patients with MS without cardiovascular disease had significantly greater change than patients with MS with cardiovascular disease for internal jugular veins at all levels. CONCLUSIONS For 5 years, patients with MS showed significant cross-sectional area decrease of all major neck vessels, regardless of the disease course and cardiovascular status.
Collapse
Affiliation(s)
- L Pelizzari
- From the Department of Electronics Information and Bioengineering (L.P., G.B.), Politecnico di Milano, Milan, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (L.P., M.M.L.), Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - D Jakimovski
- Buffalo Neuroimaging Analysis Center (D.J., N.B., J.H., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences
| | - M M Laganà
- Istituto di Ricovero e Cura a Carattere Scientifico (L.P., M.M.L.), Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - N Bergsland
- Buffalo Neuroimaging Analysis Center (D.J., N.B., J.H., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences
| | - J Hagemeier
- Buffalo Neuroimaging Analysis Center (D.J., N.B., J.H., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences
| | - G Baselli
- From the Department of Electronics Information and Bioengineering (L.P., G.B.), Politecnico di Milano, Milan, Italy
| | - B Weinstock-Guttman
- Jacobs Multiple Sclerosis Center (B.W.-G.), Department of Neurology, School of Medicine and Biomedical Sciences
| | - R Zivadinov
- Buffalo Neuroimaging Analysis Center (D.J., N.B., J.H., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences .,Center for Biomedical Imaging at Clinical Translational Science Institute (R.Z.), University at Buffalo, State University of New York, Buffalo, New York
| |
Collapse
|
44
|
Quarles CC, Bell LC, Stokes AM. Imaging vascular and hemodynamic features of the brain using dynamic susceptibility contrast and dynamic contrast enhanced MRI. Neuroimage 2018; 187:32-55. [PMID: 29729392 DOI: 10.1016/j.neuroimage.2018.04.069] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2017] [Revised: 04/27/2018] [Accepted: 04/29/2018] [Indexed: 12/22/2022] Open
Abstract
In the context of neurologic disorders, dynamic susceptibility contrast (DSC) and dynamic contrast enhanced (DCE) MRI provide valuable insights into cerebral vascular function, integrity, and architecture. Even after two decades of use, these modalities continue to evolve as their biophysical and kinetic basis is better understood, with improvements in pulse sequences and accelerated imaging techniques and through application of more robust and automated data analysis strategies. Here, we systematically review each of these elements, with a focus on how their integration improves kinetic parameter accuracy and the development of new hemodynamic biomarkers that provide sub-voxel sensitivity (e.g., capillary transit time and flow heterogeneity). Regarding contrast mechanisms, we discuss the dipole-dipole interactions and susceptibility effects that give rise to simultaneous T1, T2 and T2∗ relaxation effects, including their quantification, influence on pulse sequence parameter optimization, and use in methods such as vessel size and vessel architectural imaging. The application of technologic advancements, such as parallel imaging, simultaneous multi-slice, undersampled k-space acquisitions, and sliding window strategies, enables improved spatial and/or temporal resolution of DSC and DCE acquisitions. Such acceleration techniques have also enabled the implementation of, clinically feasible, simultaneous multi-echo spin- and gradient echo acquisitions, providing more comprehensive and quantitative interrogation of T1, T2 and T2∗ changes. Characterizing these relaxation rate changes through different post-processing options allows for the quantification of hemodynamics and vascular permeability. The application of different biophysical models provides insight into traditional hemodynamic parameters (e.g., cerebral blood volume) and more advanced parameters (e.g., capillary transit time heterogeneity). We provide insight into the appropriate selection of biophysical models and the necessary post-processing steps to ensure reliable measurements while minimizing potential sources of error. We show representative examples of advanced DSC- and DCE-MRI methods applied to pathologic conditions affecting the cerebral microcirculation, including brain tumors, stroke, aging, and multiple sclerosis. The maturation and standardization of conventional DSC- and DCE-MRI techniques has enabled their increased integration into clinical practice and use in clinical trials, which has, in turn, spurred renewed interest in their technological and biophysical development, paving the way towards a more comprehensive assessment of cerebral hemodynamics.
Collapse
Affiliation(s)
- C Chad Quarles
- Division of Neuro imaging Research, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, USA.
| | - Laura C Bell
- Division of Neuro imaging Research, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, USA
| | - Ashley M Stokes
- Division of Neuro imaging Research, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, USA
| |
Collapse
|
45
|
Stickland R, Allen M, Magazzini L, Singh KD, Wise RG, Tomassini V. Neurovascular Coupling During Visual Stimulation in Multiple Sclerosis: A MEG-fMRI Study. Neuroscience 2018; 403:54-69. [PMID: 29580963 PMCID: PMC6458991 DOI: 10.1016/j.neuroscience.2018.03.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2017] [Revised: 03/04/2018] [Accepted: 03/13/2018] [Indexed: 01/23/2023]
Abstract
A reduced electrophysiological response to a visual stimulus in MS, characterized by reduced gamma power (30–80 Hz), with MEG. A reduced hemodynamic response to a visual stimulus in MS, characterized by reduced BOLD and CBF responses, with fMRI. The coupling between gamma power and BOLD/CBF was not significantly impaired in the MS group.
The process of neurovascular coupling ensures that increases in neuronal activity are fed by increases in cerebral blood flow. Evidence suggests that neurovascular coupling may be impaired in Multiple Sclerosis (MS) due to a combination of brain hypoperfusion, altered cerebrovascular reactivity and oxygen metabolism, and altered levels of vasoactive compounds. Here, we tested the hypothesis that neurovascular coupling is impaired in MS. We characterized neurovascular coupling as the relationship between changes in neuronal oscillatory power within the gamma frequency band (30–80 Hz), as measured by magnetoencephalography (MEG), and associated hemodynamic changes (blood oxygenation level dependent, BOLD, and cerebral blood flow, CBF) as measured by functional MRI. We characterized these responses in the visual cortex in 13 MS patients and in 10 matched healthy controls using a reversing checkerboard stimulus at five visual contrasts. There were no significant group differences in visual acuity, P100 latencies, occipital gray matter (GM) volumes and baseline CBF. However, in the MS patients we found a significant reduction in peak gamma power, BOLD and CBF responses. There were no significant differences in neurovascular coupling between groups, in the visual cortex. Our results suggest that neuronal and vascular responses are altered in MS. Gamma power reduction could be an indicator of GM dysfunction, possibly mediated by GABAergic changes. Altered hemodynamic responses confirm previous reports of a vascular dysfunction in MS. Despite altered neuronal and vascular responses, neurovascular coupling appears to be preserved in MS, at least within the range of damage and disability studied here.
Collapse
Affiliation(s)
- Rachael Stickland
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University School of Psychology, Maindy Road, Cardiff CF24 4HQ, UK
| | - Marek Allen
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University School of Psychology, Maindy Road, Cardiff CF24 4HQ, UK
| | - Lorenzo Magazzini
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University School of Psychology, Maindy Road, Cardiff CF24 4HQ, UK
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University School of Psychology, Maindy Road, Cardiff CF24 4HQ, UK
| | - Richard G Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University School of Psychology, Maindy Road, Cardiff CF24 4HQ, UK
| | - Valentina Tomassini
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University School of Psychology, Maindy Road, Cardiff CF24 4HQ, UK; Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, University Hospital Wales, Heath Park, CF14 4XN, UK.
| |
Collapse
|
46
|
Beggs CB, Giaquinta A, Veroux M, De Marco E, Mociskyte D, Veroux P. Mid-term sustained relief from headaches after balloon angioplasty of the internal jugular veins in patients with multiple sclerosis. PLoS One 2018; 13:e0191534. [PMID: 29360844 PMCID: PMC5779669 DOI: 10.1371/journal.pone.0191534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/07/2017] [Accepted: 01/05/2018] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Multiple sclerosis (MS) patients frequently suffer from headaches and fatigue, and many reports have linked headaches with intracranial and/or extracranial venous obstruction. We therefore designed a study involving MS patients diagnosed with obstructive disease of internal jugular veins (IJVs), with the aim of evaluating the impact of percutaneous transluminal angioplasty (PTA) on headache and fatigue indicators. METHODS 286 MS patients (175 relapsing remitting (RR), 75 secondary progressive (SP), and 36 primary progressive (PP)), diagnosed with obstructive disease of IJVs, underwent PTA of IJVs during the period 2011-2015. This included 113 headache positive patients (82 RR, 22 SP, and 9 PP) and 277 fatigue positive patients (167 RR, 74 SP, and 36 PP). Migraine Disability Assessment (MIDAS), and the Fatigue Severity Scale (FSS) were evaluated: before PTA; 3-months after PTA; and at final follow-up in 2017. Patients were evaluated with Doppler sonography of the IJVs at 1, 6 and 12 months after PTA and yearly thereafter. Non-parametric statistical analysis was performed using a combination of the Friedman test and Spearman correlation analysis. RESULTS With the exception of the PP patients there were significant reductions (all p < 0.001) in the MIDAS and FSS scores in the 3-month following PTA. The improvement in MIDAS score following PTA was maintained throughout the follow-up period in both the RR (p < 0.001; mean of 3.55 years) and SP (p = 0.002; mean of 3.52 years) MS cohorts. With FSS, significant improvement was only observed at 2017 follow-up in the RR patients (p < 0.001; mean of 3.37 years). In the headache-positive patients, post-PTA MIDAS score was significantly negatively correlated with the change in the blood flow score in the left (r = -0.238, p = 0.031) and right (r = -0.250, p = 0.023) IJVs in the RR patients and left IJV (r = -0.727, p = 0.026) in the PP patients. In the fatigue-positive cohort, post-PTA FSS score was also significantly negatively correlated with the change in blood flow in the right IJV in the PP patients (r = -0.423, p = 0.010). In addition, the pre and post-PTA FSS scores were significantly positively correlated in the fatigue-positive RR (r = 0.249, p = 0.001) and SP patients (r = 0.272, p = 0.019). CONCLUSIONS The intervention of PTA was associated with a large and sustained (>3 years) reduction in MIDAS score in both RR and SP MS patients. While a similar initial post-PTA reduction in FSS score was also observed, this was not maintained in the SP and PP patients, although it remained significant at follow-up (>3 years) in the RR MS patients. This suggests that venoplasty might be a useful intervention for treating patients with persistent headaches and selected concomitant obstructive disease of the IJVs.
Collapse
Affiliation(s)
- Clive B. Beggs
- Institute for Sport, Physical Activity and Leisure, School of Sport, Leeds Beckett University, Leeds, United Kingdom
| | - Alessia Giaquinta
- Vascular Surgery and Organ Transplant Unit, Azienda Ospedaliero-Universitaria Policlinico, Catania, Italy
| | - Massimiliano Veroux
- Vascular Surgery and Organ Transplant Unit, Azienda Ospedaliero-Universitaria Policlinico, Catania, Italy
| | - Ester De Marco
- Vascular Surgery and Organ Transplant Unit, Azienda Ospedaliero-Universitaria Policlinico, Catania, Italy
| | - Dovile Mociskyte
- Vascular Surgery and Organ Transplant Unit, Azienda Ospedaliero-Universitaria Policlinico, Catania, Italy
| | - Pierfrancesco Veroux
- Vascular Surgery and Organ Transplant Unit, Azienda Ospedaliero-Universitaria Policlinico, Catania, Italy
| |
Collapse
|
47
|
Feucht N, Maier M, Lepennetier G, Pettenkofer M, Wetzlmair C, Daltrozzo T, Scherm P, Zimmer C, Hoshi MM, Hemmer B, Korn T, Knier B. Optical coherence tomography angiography indicates associations of the retinal vascular network and disease activity in multiple sclerosis. Mult Scler 2018; 25:224-234. [PMID: 29303033 DOI: 10.1177/1352458517750009] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Patients with multiple sclerosis (MS) and clinically isolated syndrome (CIS) may show alterations of retinal layer architecture as measured by optical coherence tomography. Little is known about changes in the retinal vascular network during MS. OBJECTIVE To characterize retinal vessel structures in patients with MS and CIS and to test for associations with MS disease activity. METHOD In all, 42 patients with MS or CIS and 50 healthy controls underwent retinal optical coherence tomography angiography (OCT-A) with analysis of the superficial and deep vascular plexuses and the choriocapillaries. We tested OCT-A parameters for associations with retinal layer volumes, history of optic neuritis (ON), and the retrospective disease activity. RESULTS Inner retinal layer volumes correlated positively with the density of both the superficial and deep vascular plexuses. Eyes of MS/CIS patients with a history of ON revealed reduced vessel densities of the superficial and deep vascular plexuses as compared to healthy controls. Higher choriocapillary vessel densities were associated with ongoing inflammatory disease activity during 24 months prior to OCT-A examination in MS and CIS patients. CONCLUSION Optic neuritis is associated with rarefaction of the superficial and deep retinal vessels. Alterations of the choriocapillaries might be linked to disease activity in MS.
Collapse
Affiliation(s)
- Nikolaus Feucht
- Department of Ophthalmology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Mathias Maier
- Department of Ophthalmology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Gildas Lepennetier
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany/ Department of Experimental Neuroimmunology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Moritz Pettenkofer
- Department of Ophthalmology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Carmen Wetzlmair
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Tanja Daltrozzo
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Pauline Scherm
- Department of Ophthalmology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Muna-Miriam Hoshi
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany/Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Thomas Korn
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany/ Department of Experimental Neuroimmunology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany/ Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Benjamin Knier
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany/ Department of Experimental Neuroimmunology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
48
|
Lapointe E, Li DKB, Traboulsee AL, Rauscher A. What Have We Learned from Perfusion MRI in Multiple Sclerosis? AJNR Am J Neuroradiol 2018; 39:994-1000. [PMID: 29301779 DOI: 10.3174/ajnr.a5504] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/21/2023]
Abstract
Using MR imaging, perfusion can be assessed either by dynamic susceptibility contrast MR imaging or arterial spin-labeling. Alterations of cerebral perfusion have repeatedly been described in multiple sclerosis compared with healthy controls. Acute lesions exhibit relative hyperperfusion in comparison with normal-appearing white matter, a finding mostly attributed to inflammation in this stage of lesion development. In contrast, normal-appearing white and gray matter of patients with MS has been mostly found to be hypoperfused compared with controls, and correlations with cognitive impairment as well as fatigue in multiple sclerosis have been described. Mitochondrial failure, axonal degeneration, and vascular dysfunction have been hypothesized to underlie the perfusion MR imaging findings. Clinically, perfusion MR imaging could allow earlier detection of the acute focal inflammatory changes underlying relapses and new lesions, and could constitute a marker for cognitive dysfunction in MS. Nevertheless, the clinical relevance and pathogenesis of the brain perfusion changes in MS remain to be clarified.
Collapse
Affiliation(s)
- E Lapointe
- From the Division of Neurology (E.L., A.L.T.) .,Department of Medicine (E.L., A.L.T.)
| | - D K B Li
- Radiology (D.K.B.L.), University of British Columbia, Djavad Mowafaghian Center for Brain Health, Vancouver, British Columbia, Canada
| | - A L Traboulsee
- From the Division of Neurology (E.L., A.L.T.).,Department of Medicine (E.L., A.L.T.)
| | - A Rauscher
- MRI Research Center (A.R.).,Departments of Pediatrics (A.R.)
| |
Collapse
|
49
|
Understanding a role for hypoxia in lesion formation and location in the deep and periventricular white matter in small vessel disease and multiple sclerosis. Clin Sci (Lond) 2017; 131:2503-2524. [PMID: 29026001 DOI: 10.1042/cs20170981] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/16/2017] [Revised: 08/01/2017] [Accepted: 08/15/2017] [Indexed: 12/28/2022]
Abstract
The deep and periventricular white matter is preferentially affected in several neurological disorders, including cerebral small vessel disease (SVD) and multiple sclerosis (MS), suggesting that common pathogenic mechanisms may be involved in this injury. Here we consider the potential pathogenic role of tissue hypoxia in lesion development, arising partly from the vascular anatomy of the affected white matter. Specifically, these regions are supplied by a sparse vasculature fed by long, narrow end arteries/arterioles that are vulnerable to oxygen desaturation if perfusion is reduced (as in SVD, MS and diabetes) or if the surrounding tissue is hypoxic (as in MS, at least). The oxygen crisis is exacerbated by a local preponderance of veins, as these can become highly desaturated 'sinks' for oxygen that deplete it from surrounding tissues. Additional haemodynamic deficiencies, including sluggish flow and impaired vasomotor reactivity and vessel compliance, further exacerbate oxygen insufficiency. The cells most vulnerable to hypoxic damage, including oligodendrocytes, die first, resulting in demyelination. Indeed, in preclinical models, demyelination is prevented if adequate oxygenation is maintained by raising inspired oxygen concentrations. In agreement with this interpretation, there is a predilection of lesions for the anterior and occipital horns of the lateral ventricles, namely regions located at arterial watersheds, or border zones, known to be especially susceptible to hypoperfusion and hypoxia. Finally, mitochondrial dysfunction due to genetic causes, as occurs in leucodystrophies or due to free radical damage, as occurs in MS, will compound any energy insufficiency resulting from hypoxia. Viewing lesion formation from the standpoint of tissue oxygenation not only reveals that lesion distribution is partly predictable, but may also inform new therapeutic strategies.
Collapse
|
50
|
Chen TC, Yeh CY, Lin CW, Yang CM, Yang CH, Lin IH, Chen PY, Cheng JY, Hu FR. Vascular hypoperfusion in acute optic neuritis is a potentially new neurovascular model for demyelinating diseases. PLoS One 2017; 12:e0184927. [PMID: 28926646 PMCID: PMC5605049 DOI: 10.1371/journal.pone.0184927] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/10/2017] [Accepted: 09/02/2017] [Indexed: 01/28/2023] Open
Abstract
PURPOSE Optic neuritis is highly correlated with multiple sclerosis and is a major cause of acute visual loss and long-term neuronal degeneration. Primary cerebral hypoperfusion has been reported in brain demyelinating diseases. This study investigated whether peripapillary perfusion is changed in patients with acute optic neuritis (AON). METHODS This three-year cohort study was conducted from September 1 2012, to August 31, 2015. Two hundred and forty-one patients with non-glaucomatous acute optic neuropathy were screened, and 42 non-highly myopic patients who had suffered their first episode of unilaterally idiopathic AON were studied. All cases received spectral-domain optical coherence tomography (OCT) examination, general survey, and standard corticosteroid therapy. OCT images were analyzed using a customized MATLAB program for measuring peripapillary choroidal thickness (PCT). Multivariate regression models were constructed to identify factors that are significantly related to peripapillary perfusion. RESULTS Decreased PCT was found in eyes experiencing AON combined with disc swelling (the ratio of lesion eye PCT/fellow eye PCT was 0.87 ± 0.08; range, from 0.75 to 1.00). In comparison to the healthy fellow eyes, approximately every 26% increase in the thickness of the retinal nerve fiber layer due to axonal swelling was associated with a 10% decreased thickness of PCT. Thinner PCT is also correlated with poorer trough vision, which may lead to poorer final vision. These findings were obvious in patients with optic papillitis but not in patients with retrobulbar neuritis. CONCLUSIONS Peripapillary vascular hypoperfusion was found in patients experiencing AON combined with disc swelling. These findings are unlike those for other ocular inflammatory diseases but are consistent with cerebral hypoperfusion, which is found in brain demyelinating diseases; thus, these findings may represent a new neurovascular model in this field.
Collapse
Affiliation(s)
- Ta-Ching Chen
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chao-Yuan Yeh
- Department of Pathology, University of Southern California, Los Angeles, California, United States of America
| | - Chao-Wen Lin
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-May Yang
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Hung Lin
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Jung-Yu Cheng
- Department of Healthcare Information and Management, Ming Chuan University, Taoyuan, Taiwan
| | - Fung-Rong Hu
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|