1
|
Padawer-Curry JA, Krentzman OJ, Kuo CC, Wang X, Bice AR, Nicol GE, Snyder AZ, Siegel JS, McCall JG, Bauer AQ. Psychedelic 5-HT2A receptor agonism: neuronal signatures and altered neurovascular coupling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.23.559145. [PMID: 39605498 PMCID: PMC11601243 DOI: 10.1101/2023.09.23.559145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Psychedelics hold therapeutic promise for mood disorders due to rapid, sustained results. Human neuroimaging studies have reported dramatic serotonin-2A receptor-(5-HT2AR)-dependent changes in functional brain reorganization that presumably reflect neuromodulation. However, the potent vasoactive effects of serotonin have been overlooked. We found psilocybin-mediated alterations to fMRI-HRFs in humans, suggesting potentially altered NVC. To assess the neuronal, hemodynamic, and neurovascular coupling (NVC) effects of the psychedelic 5-HT2AR agonist, 2,5-Dimethoxy-4-iodoamphetamine (DOI), wide-field optical imaging (WFOI) was used in awake Thy1-jRGECO1a mice during stimulus-evoked and resting-state conditions. While DOI partially altered tasked-based NVC, more pronounced NVC alterations occurred under resting-state conditions and were strongest in association regions. Further, calcium and hemodynamic activity reported different accounts of RSFC changes under DOI. Co-administration of DOI and the 5-HT2AR antagonist, MDL100907, reversed many of these effects. Dissociation between neuronal and hemodynamic signals emphasizes a need to consider neurovascular effects of psychedelics when interpreting blood-oxygenation-dependent neuroimaging measures.
Collapse
|
2
|
Sanchez-Rodriguez LM, Khan AF, Adewale Q, Bezgin G, Therriault J, Fernandez-Arias J, Servaes S, Rahmouni N, Tissot C, Stevenson J, Jiang H, Chai X, Carbonell F, Rosa-Neto P, Iturria-Medina Y. In-vivo neuronal dysfunction by Aβ and tau overlaps with brain-wide inflammatory mechanisms in Alzheimer's disease. Front Aging Neurosci 2024; 16:1383163. [PMID: 38966801 PMCID: PMC11223503 DOI: 10.3389/fnagi.2024.1383163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/09/2024] [Indexed: 07/06/2024] Open
Abstract
The molecular mechanisms underlying neuronal dysfunction in Alzheimer's disease (AD) remain uncharacterized. Here, we identify genes, molecular pathways and cellular components associated with whole-brain dysregulation caused by amyloid-beta (Aβ) and tau deposits in the living human brain. We obtained in-vivo resting-state functional MRI (rs-fMRI), Aβ- and tau-PET for 47 cognitively unimpaired and 16 AD participants from the Translational Biomarkers in Aging and Dementia cohort. Adverse neuronal activity impacts by Aβ and tau were quantified with personalized dynamical models by fitting pathology-mediated computational signals to the participant's real rs-fMRIs. Then, we detected robust brain-wide associations between the spatial profiles of Aβ-tau impacts and gene expression in the neurotypical transcriptome (Allen Human Brain Atlas). Within the obtained distinctive signature of in-vivo neuronal dysfunction, several genes have prominent roles in microglial activation and in interactions with Aβ and tau. Moreover, cellular vulnerability estimations revealed strong association of microglial expression patterns with Aβ and tau's synergistic impact on neuronal activity (q < 0.001). These results further support the central role of the immune system and neuroinflammatory pathways in AD pathogenesis. Neuronal dysregulation by AD pathologies also associated with neurotypical synaptic and developmental processes. In addition, we identified drug candidates from the vast LINCS library to halt or reduce the observed Aβ-tau effects on neuronal activity. Top-ranked pharmacological interventions target inflammatory, cancer and cardiovascular pathways, including specific medications undergoing clinical evaluation in AD. Our findings, based on the examination of molecular-pathological-functional interactions in humans, may accelerate the process of bringing effective therapies into clinical practice.
Collapse
Affiliation(s)
- Lazaro M. Sanchez-Rodriguez
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
| | - Ahmed F. Khan
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
| | - Quadri Adewale
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
| | - Gleb Bezgin
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Joseph Therriault
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Jaime Fernandez-Arias
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Stijn Servaes
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Nesrine Rahmouni
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Cécile Tissot
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jenna Stevenson
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Hongxiu Jiang
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
| | - Xiaoqian Chai
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
| | | | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
| |
Collapse
|
3
|
Sanchez-Rodriguez LM, Bezgin G, Carbonell F, Therriault J, Fernandez-Arias J, Servaes S, Rahmouni N, Tissot C, Stevenson J, Karikari TK, Ashton NJ, Benedet AL, Zetterberg H, Blennow K, Triana-Baltzer G, Kolb HC, Rosa-Neto P, Iturria-Medina Y. Personalized whole-brain neural mass models reveal combined Aβ and tau hyperexcitable influences in Alzheimer's disease. Commun Biol 2024; 7:528. [PMID: 38704445 PMCID: PMC11069569 DOI: 10.1038/s42003-024-06217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
Neuronal dysfunction and cognitive deterioration in Alzheimer's disease (AD) are likely caused by multiple pathophysiological factors. However, mechanistic evidence in humans remains scarce, requiring improved non-invasive techniques and integrative models. We introduce personalized AD computational models built on whole-brain Wilson-Cowan oscillators and incorporating resting-state functional MRI, amyloid-β (Aβ) and tau-PET from 132 individuals in the AD spectrum to evaluate the direct impact of toxic protein deposition on neuronal activity. This subject-specific approach uncovers key patho-mechanistic interactions, including synergistic Aβ and tau effects on cognitive impairment and neuronal excitability increases with disease progression. The data-derived neuronal excitability values strongly predict clinically relevant AD plasma biomarker concentrations (p-tau217, p-tau231, p-tau181, GFAP) and grey matter atrophy obtained through voxel-based morphometry. Furthermore, reconstructed EEG proxy quantities show the hallmark AD electrophysiological alterations (theta band activity enhancement and alpha reductions) which occur with Aβ-positivity and after limbic tau involvement. Microglial activation influences on neuronal activity are less definitive, potentially due to neuroimaging limitations in mapping neuroprotective vs detrimental activation phenotypes. Mechanistic brain activity models can further clarify intricate neurodegenerative processes and accelerate preventive/treatment interventions.
Collapse
Affiliation(s)
- Lazaro M Sanchez-Rodriguez
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Gleb Bezgin
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | | | - Joseph Therriault
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Jaime Fernandez-Arias
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Stijn Servaes
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Nesrine Rahmouni
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Cécile Tissot
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
- Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Jenna Stevenson
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- King's College London, Institute of Psychiatry, Psychology and Neuroscience Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Andréa L Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | - Hartmuth C Kolb
- Neuroscience Biomarkers, Janssen Research & Development, La Jolla, CA, USA
| | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada.
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada.
| |
Collapse
|
4
|
Sanchez-Rodriguez LM, Bezgin G, Carbonell F, Therriault J, Fernandez-Arias J, Servaes S, Rahmouni N, Tissot C, Stevenson J, Karikari TK, Ashton NJ, Benedet AL, Zetterberg H, Blennow K, Triana-Baltzer G, Kolb HC, Rosa-Neto P, Iturria-Medina Y. Revealing the combined roles of Aβ and tau in Alzheimer's disease via a pathophysiological activity decoder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529377. [PMID: 37502947 PMCID: PMC10370127 DOI: 10.1101/2023.02.21.529377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Neuronal dysfunction and cognitive deterioration in Alzheimer's disease (AD) are likely caused by multiple pathophysiological factors. However, evidence in humans remains scarce, necessitating improved non-invasive techniques and integrative mechanistic models. Here, we introduce personalized brain activity models incorporating functional MRI, amyloid-β (Aβ) and tau-PET from AD-related participants ( N = 132 ) . Within the model assumptions, electrophysiological activity is mediated by toxic protein deposition. Our integrative subject-specific approach uncovers key patho-mechanistic interactions, including synergistic Aβ and tau effects on cognitive impairment and neuronal excitability increases with disease progression. The data-derived neuronal excitability values strongly predict clinically relevant AD plasma biomarker concentrations (p-tau217, p-tau231, p-tau181, GFAP). Furthermore, our results reproduce hallmark AD electrophysiological alterations (theta band activity enhancement and alpha reductions) which occur with Aβ-positivity and after limbic tau involvement. Microglial activation influences on neuronal activity are less definitive, potentially due to neuroimaging limitations in mapping neuroprotective vs detrimental phenotypes. Mechanistic brain activity models can further clarify intricate neurodegenerative processes and accelerate preventive/treatment interventions.
Collapse
Affiliation(s)
- Lazaro M. Sanchez-Rodriguez
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada
| | - Gleb Bezgin
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | | | - Joseph Therriault
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | - Jaime Fernandez-Arias
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | - Stijn Servaes
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | - Nesrine Rahmouni
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | - Cecile Tissot
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | - Jenna Stevenson
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | - Thomas K. Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicholas J. Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience Maurice Wohl Institute Clinical Neuroscience Institute London UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation London UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Andréa L. Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal
| | | | - Hartmuth C. Kolb
- Neuroscience Biomarkers, Janssen Research & Development, La Jolla, California, USA
| | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada
| |
Collapse
|
5
|
Islam MR, Islam SMR. Develop blood oxygen level dependent signal by metabolic/hemodynamic model using numerical methods. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
|
6
|
Arora Y, Dutta A. Perspective: Disentangling the effects of tES on neurovascular unit. Front Neurol 2023; 13:1038700. [PMID: 36698881 PMCID: PMC9868757 DOI: 10.3389/fneur.2022.1038700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/28/2022] [Indexed: 01/11/2023] Open
Abstract
Transcranial electrical stimulation (tES) can modulate the neurovascular unit, including the perivascular space morphology, but the mechanisms are unclear. In this perspective article, we used an open-source "rsHRF toolbox" and an open-source functional magnetic resonance imaging (fMRI) transcranial direct current stimulation (tDCS) data set to show the effects of tDCS on the temporal profile of the haemodynamic response function (HRF). We investigated the effects of tDCS in the gray matter and at three regions of interest in the gray matter, namely, the anodal electrode (FC5), cathodal electrode (FP2), and an independent site remote from the electrodes (PZ). A "canonical HRF" with time and dispersion derivatives and a finite impulse response (FIR) model with three parameters captured the effects of anodal tDCS on the temporal profile of the HRF. The FIR model showed tDCS onset effects on the temporal profile of HRF for verum and sham tDCS conditions that were different from the no tDCS condition, which questions the validity of the sham tDCS (placebo). Here, we postulated that the effects of tDCS onset on the temporal profile of HRF are subserved by the effects on neurovascular coupling. We provide our perspective based on previous work on tES effects on the neurovascular unit, including mechanistic grey-box modeling of the effects of tES on the vasculature that can facilitate model predictive control (MPC). Future studies need to investigate grey-box modeling of online effects of tES on the neurovascular unit, including perivascular space, neurometabolic coupling, and neurovascular coupling, that can facilitate MPC of the tES dose-response to address the momentary ("state") and phenotypic ("trait") factors.
Collapse
Affiliation(s)
- Yashika Arora
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurugram, India
| | - Anirban Dutta
- School of Engineering, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
7
|
Sten S, Podéus H, Sundqvist N, Elinder F, Engström M, Cedersund G. A quantitative model for human neurovascular coupling with translated mechanisms from animals. PLoS Comput Biol 2023; 19:e1010818. [PMID: 36607908 PMCID: PMC9821752 DOI: 10.1371/journal.pcbi.1010818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
Neurons regulate the activity of blood vessels through the neurovascular coupling (NVC). A detailed understanding of the NVC is critical for understanding data from functional imaging techniques of the brain. Many aspects of the NVC have been studied both experimentally and using mathematical models; various combinations of blood volume and flow, local field potential (LFP), hemoglobin level, blood oxygenation level-dependent response (BOLD), and optogenetics have been measured and modeled in rodents, primates, or humans. However, these data have not been brought together into a unified quantitative model. We now present a mathematical model that describes all such data types and that preserves mechanistic behaviors between experiments. For instance, from modeling of optogenetics and microscopy data in mice, we learn cell-specific contributions; the first rapid dilation in the vascular response is caused by NO-interneurons, the main part of the dilation during longer stimuli is caused by pyramidal neurons, and the post-peak undershoot is caused by NPY-interneurons. These insights are translated and preserved in all subsequent analyses, together with other insights regarding hemoglobin dynamics and the LFP/BOLD-interplay, obtained from other experiments on rodents and primates. The model can predict independent validation-data not used for training. By bringing together data with complementary information from different species, we both understand each dataset better, and have a basis for a new type of integrative analysis of human data.
Collapse
Affiliation(s)
- Sebastian Sten
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Henrik Podéus
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Nicolas Sundqvist
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Fredrik Elinder
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maria Engström
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Gunnar Cedersund
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
8
|
Cai Z, Pellegrino G, Lina J, Benali H, Grova C. Hierarchical Bayesian modeling of the relationship between task-related hemodynamic responses and cortical excitability. Hum Brain Mapp 2022; 44:876-900. [PMID: 36250709 PMCID: PMC9875942 DOI: 10.1002/hbm.26107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/10/2022] [Accepted: 09/18/2022] [Indexed: 01/28/2023] Open
Abstract
Investigating the relationship between task-related hemodynamic responses and cortical excitability is challenging because it requires simultaneous measurement of hemodynamic responses while applying noninvasive brain stimulation. Moreover, cortical excitability and task-related hemodynamic responses are both associated with inter-/intra-subject variability. To reliably assess such a relationship, we applied hierarchical Bayesian modeling. This study involved 16 healthy subjects who underwent simultaneous Paired Associative Stimulation (PAS10, PAS25, Sham) while monitoring brain activity using functional Near-Infrared Spectroscopy (fNIRS), targeting the primary motor cortex (M1). Cortical excitability was measured by Motor Evoked Potentials (MEPs), and the motor task-related hemodynamic responses were measured using fNIRS 3D reconstructions. We constructed three models to investigate: (1) PAS effects on the M1 excitability, (2) PAS effects on fNIRS hemodynamic responses to a finger tapping task, and (3) the correlation between PAS effects on M1 excitability and PAS effects on task-related hemodynamic responses. Significant increase in cortical excitability was found following PAS25, whereas a small reduction of the cortical excitability was shown after PAS10 and a subtle increase occurred after sham. Both HbO and HbR absolute amplitudes increased after PAS25 and decreased after PAS10. The probability of the positive correlation between modulation of cortical excitability and hemodynamic activity was 0.77 for HbO and 0.79 for HbR. We demonstrated that PAS stimulation modulates task-related cortical hemodynamic responses in addition to M1 excitability. Moreover, the positive correlation between PAS modulations of excitability and hemodynamics brought insight into understanding the fundamental properties of cortical function and cortical excitability.
Collapse
Affiliation(s)
- Zhengchen Cai
- Multimodal Functional Imaging Lab, Department of PhysicsConcordia UniversityMontréalQuébecCanada,PERFORM CentreConcordia UniversityMontréalQuébecCanada
| | - Giovanni Pellegrino
- Epilepsy Program, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada,Multimodal Functional Imaging Lab, Biomedical Engineering DepartmentMcGill UniversityMontréalQuébecCanada
| | - Jean‐Marc Lina
- Département de Génie ElectriqueÉcole de Technologie SupérieureMontréalQuébecCanada,Centre De Recherches En MathématiquesMontréalQuébecCanada
| | - Habib Benali
- PERFORM CentreConcordia UniversityMontréalQuébecCanada,Centre De Recherches En MathématiquesMontréalQuébecCanada,Electrical and Computer Engineering Department, Concordia UniversityMontréalCanada
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Department of PhysicsConcordia UniversityMontréalQuébecCanada,PERFORM CentreConcordia UniversityMontréalQuébecCanada,Multimodal Functional Imaging Lab, Biomedical Engineering DepartmentMcGill UniversityMontréalQuébecCanada,Centre De Recherches En MathématiquesMontréalQuébecCanada
| |
Collapse
|
9
|
Fortel I, Butler M, Korthauer LE, Zhan L, Ajilore O, Sidiropoulos A, Wu Y, Driscoll I, Schonfeld D, Leow A. Inferring excitation-inhibition dynamics using a maximum entropy model unifying brain structure and function. Netw Neurosci 2022; 6:420-444. [PMID: 35733430 PMCID: PMC9205431 DOI: 10.1162/netn_a_00220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/07/2021] [Indexed: 11/04/2022] Open
Abstract
Neural activity coordinated across different scales from neuronal circuits to large-scale brain networks gives rise to complex cognitive functions. Bridging the gap between micro- and macroscale processes, we present a novel framework based on the maximum entropy model to infer a hybrid resting-state structural connectome, representing functional interactions constrained by structural connectivity. We demonstrate that the structurally informed network outperforms the unconstrained model in simulating brain dynamics, wherein by constraining the inference model with the network structure we may improve the estimation of pairwise BOLD signal interactions. Further, we simulate brain network dynamics using Monte Carlo simulations with the new hybrid connectome to probe connectome-level differences in excitation-inhibition balance between apolipoprotein E (APOE)-ε4 carriers and noncarriers. Our results reveal sex differences among APOE-ε4 carriers in functional dynamics at criticality; specifically, female carriers appear to exhibit a lower tolerance to network disruptions resulting from increased excitatory interactions. In sum, the new multimodal network explored here enables analysis of brain dynamics through the integration of structure and function, providing insight into the complex interactions underlying neural activity such as the balance of excitation and inhibition.
Collapse
Affiliation(s)
- Igor Fortel
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Mitchell Butler
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Laura E. Korthauer
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Yichao Wu
- Department of Math, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Ira Driscoll
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
| | - Dan Schonfeld
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Alex Leow
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
10
|
Sasi S, Bhattacharya BS. Phase entrainment by periodic stimuli in silico: A quantitative study. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2021.10.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Andrushko JW, Gould L, Renshaw DW, Forrester S, Kelly ME, Linassi G, Mickleborough M, Oates A, Hunter G, Borowsky R, Farthing JP. Ipsilesional Motor Cortex Activation with High-force Unimanual Handgrip Contractions of the Less-affected Limb in Participants with Stroke. Neuroscience 2021; 483:82-94. [PMID: 34920023 DOI: 10.1016/j.neuroscience.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/27/2022]
Abstract
Stroke is a leading cause of severe disability that often presents with unilateral motor impairment. Conventional rehabilitation approaches focus on motor practice of the affected limb and aim to suppress brain activity in the contralesional hemisphere. Conversely, exercise of the less-affected limb promotes contralesional brain activity which is typically viewed as contraindicated in stroke recovery due to the interhemispheric inhibitory influence onto the ipsilesional hemisphere. Yet, high-force unimanual handgrip contractions are known to increase ipsilateral brain activation in control participants, and it remains to be determined if high-force contractions with the less-affected limb would promote ipsilateral brain activation in participants with stroke (i.e., the ipsilesional hemisphere). Therefore, this study aimed to determine how parametric increases in handgrip force during repeated contractions with the less-affected limb impacts brain activity bilaterally in participants with stroke and in a cohort of neurologically intact controls. Participants performed repeated submaximal contractions at 25%, 50%, and 75% of their maximum voluntary contraction during separate functional magnetic resonance imaging brain scans. Brain activation during the tasks was quantified as the present change from resting levels. In this study, higher force contractions were found to increase brain activation in the ipsilesional (stroke)/ipsilateral (controls) hemisphere in both groups (p = .002), but no between group differences were observed. These data suggest that high-force exercise with the less-affected limb may promote ipsilesional cortical plasticity to promote motor recovery of the affected-limb in participants with stroke.
Collapse
Affiliation(s)
- Justin W Andrushko
- College of Kinesiology, University of Saskatchewan, Saskatchewan, Canada
| | - Layla Gould
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| | - Doug W Renshaw
- College of Kinesiology, University of Saskatchewan, Saskatchewan, Canada
| | - Shannon Forrester
- College of Kinesiology, University of Saskatchewan, Saskatchewan, Canada
| | - Michael E Kelly
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| | - Gary Linassi
- Department of Physical Medicine and Rehabilitation, College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| | - Marla Mickleborough
- Department of Psychology, College of Arts and Science, University of Saskatchewan, Saskatchewan, Canada
| | - Alison Oates
- College of Kinesiology, University of Saskatchewan, Saskatchewan, Canada
| | - Gary Hunter
- Department of Medicine, Division of Neurology, College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| | - Ron Borowsky
- Department of Psychology, College of Arts and Science, University of Saskatchewan, Saskatchewan, Canada
| | | |
Collapse
|
12
|
Predicting neuronal response properties from hemodynamic responses in the auditory cortex. Neuroimage 2021; 244:118575. [PMID: 34517127 DOI: 10.1016/j.neuroimage.2021.118575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022] Open
Abstract
Recent functional MRI (fMRI) studies have highlighted differences in responses to natural sounds along the rostral-caudal axis of the human superior temporal gyrus. However, due to the indirect nature of the fMRI signal, it has been challenging to relate these fMRI observations to actual neuronal response properties. To bridge this gap, we present a forward model of the fMRI responses to natural sounds combining a neuronal model of the auditory cortex with physiological modeling of the hemodynamic BOLD response. Neuronal responses are modeled with a dynamic recurrent firing rate model, reflecting the tonotopic, hierarchical processing in the auditory cortex along with the spectro-temporal tradeoff in the rostral-caudal axis of its belt areas. To link modeled neuronal response properties with human fMRI data in the auditory belt regions, we generated a space of neuronal models, which differed parametrically in spectral and temporal specificity of neuronal responses. Then, we obtained predictions of fMRI responses through a biophysical model of the hemodynamic BOLD response (P-DCM). Using Bayesian model comparison, our results showed that the hemodynamic BOLD responses of the caudal belt regions in the human auditory cortex were best explained by modeling faster temporal dynamics and broader spectral tuning of neuronal populations, while rostral belt regions were best explained through fine spectral tuning combined with slower temporal dynamics. These results support the hypotheses of complementary neural information processing along the rostral-caudal axis of the human superior temporal gyrus.
Collapse
|
13
|
Geerts H, Roberts P, Spiros A. Exploring the relation between BOLD fMRI and cognitive performance using a computer-based quantitative systems pharmacology model: Applications to the COMTVAL158MET genotype and ketamine. Eur Neuropsychopharmacol 2021; 50:12-22. [PMID: 33951587 DOI: 10.1016/j.euroneuro.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/14/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
BOLD fMRI is increasingly used mostly in an observational way to probe the effect of genotypes or therapeutic intervention in normal and diseased subjects. We use a mechanism-based quantitative systems pharmacology computer model of a human cortical microcircuit, previously calibrated for the 2-back working memory paradigm, adding established biophysical principles, of glucose metabolism, oxygen consumption, neurovascular effects and the paramagnetic impact on blood oxygen levels to calculate a readout for the voxel-based BOLD fMRI signal. The objective was to study the effect of the Catechol-O-methyl Transferase Val158Met (COMT) genotype on performance and BOLD fMRI. While the simulation suggests that on average virtual COMTVV genotype subjects perform worse, subjects with lower GABA, lower 5-HT3 and higher 5-HT1A activation can improve cognitive performance to the level of COMTMM subjects but at the expense of higher BOLD fMRI signal. In a schizophrenia condition, increased NMDA, GABA tone and noise levels, and lower D1R activity can improve cognitive outcome with greater BOLD fMRI signal in COMT Val-carriers. We further generate hypotheses about why ketamine in healthy controls increases the BOLD fMRI signal but reduces cognitive performance. These simulations suggest a strong non-linear relationship between BOLD fMRI signal and cognitive performance. When validated, this mechanistic approach can be useful for moving beyond the descriptive nature of BOLD fMRI imaging and supporting the proper interpretation of imaging biomarkers in CNS disorders.
Collapse
Affiliation(s)
- Hugo Geerts
- In Silico Biosciences, Hugo Geerts, 686 Westwind Dr, Berwyn, PA 19312, United States.
| | - Patrick Roberts
- In Silico Biosciences, Hugo Geerts, 686 Westwind Dr, Berwyn, PA 19312, United States
| | - Athan Spiros
- In Silico Biosciences, Hugo Geerts, 686 Westwind Dr, Berwyn, PA 19312, United States
| |
Collapse
|
14
|
Michels L, Riese F, Meyer R, Kälin AM, Leh SE, Unschuld PG, Luechinger R, Hock C, O'Gorman R, Kollias S, Gietl A. EEG-fMRI Signal Coupling Is Modulated in Subjects With Mild Cognitive Impairment and Amyloid Deposition. Front Aging Neurosci 2021; 13:631172. [PMID: 33967737 PMCID: PMC8104007 DOI: 10.3389/fnagi.2021.631172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Cognitive impairment indicates disturbed brain physiology which can be due to various mechanisms including Alzheimer's pathology. Combined functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) recordings (EEG-fMRI) can assess the interplay between complementary measures of brain activity and EEG changes to be localized to specific brain regions. We used a two-step approach, where we first examined changes related to a syndrome of mild cognitive impairment irrespective of pathology and then studied the specific impact of amyloid pathology. After detailed clinical and neuropsychological characterization as well as a positron emission tomography (PET) scans with the tracer 11-[C]-Pittsburgh Compound B to estimate cerebral amyloid deposition, 14 subjects with mild cognitive impairment (MCI) (mean age 75.6 SD: 8.9) according to standard criteria and 21 cognitively healthy controls (HCS) (mean age 71.8 SD: 4.2) were assessed with EEG-fMRI. Thalamo-cortical alpha-fMRI signal coupling was only observed in HCS. Additional EEG-fMRI signal coupling differences between HCS and MCI were observed in parts of the default mode network, salience network, fronto-parietal network, and thalamus. Individuals with significant cerebral amyloid deposition (amyloid-positive MCI and HCS combined compared to amyloid-negative HCS) displayed abnormal EEG-fMRI signal coupling in visual, fronto-parietal regions but also in the parahippocampus, brain stem, and cerebellum. This finding was paralleled by stronger absolute fMRI signal in the parahippocampus and weaker absolute fMRI signal in the inferior frontal gyrus in amyloid-positive subjects. We conclude that the thalamocortical coupling in the alpha band in HCS more closely reflects previous findings observed in younger adults, while in MCI there is a clearly aberrant coupling in several networks dominated by an anticorrelation in the posterior cingulate cortex. While these findings may broadly indicate physiological changes in MCI, amyloid pathology was specifically associated with abnormal fMRI signal responses and disrupted coupling between brain oscillations and fMRI signal responses, which especially involve core regions of memory: the hippocampus, para-hippocampus, and lateral prefrontal cortex.
Collapse
Affiliation(s)
- Lars Michels
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
| | - Florian Riese
- Department of Geriatric Psychiatry, Psychiatric University Hospital Zurich (PUK), Zurich, Switzerland.,University Research Priority Programs (URPP) ≪Dynamics of Healthy Aging≫, University of Zurich, Zurich, Switzerland
| | - Rafael Meyer
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Andrea M Kälin
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Sandra E Leh
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Paul G Unschuld
- Department of Geriatric Psychiatry, Psychiatric University Hospital Zurich (PUK), Zurich, Switzerland.,Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland.,Geriatric Psychiatry, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Roger Luechinger
- Institute of Biomedical Engineering, University and Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Christoph Hock
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland.,Neurimmune AG, Schlieren, Switzerland
| | - Ruth O'Gorman
- Center for Magnetic Resonance Research, University Children's Hospital Zurich, Zurich, Switzerland
| | - Spyros Kollias
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
| | - Anton Gietl
- Department of Geriatric Psychiatry, Psychiatric University Hospital Zurich (PUK), Zurich, Switzerland.,Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Arnal-Real C, Mahmoudzadeh M, Manoochehri M, Nourhashemi M, Wallois F. What Triggers the Interictal Epileptic Spike? A Multimodal Multiscale Analysis of the Dynamic of Synaptic and Non-synaptic Neuronal and Vascular Compartments Using Electrical and Optical Measurements. Front Neurol 2021; 12:596926. [PMID: 33643187 PMCID: PMC7907164 DOI: 10.3389/fneur.2021.596926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/21/2021] [Indexed: 11/20/2022] Open
Abstract
Interictal spikes (IISs) may result from a disturbance of the intimate functional balance between various neuronal (synaptic and non-synaptic), vascular, and metabolic compartments. To better characterize the complex interactions within these compartments at different scales we developed a simultaneous multimodal-multiscale approach and measure their activity around the time of the IIS. We performed such measurements in an epileptic rat model (n = 43). We thus evaluated (1) synaptic dynamics by combining electrocorticography and multiunit activity recording in the time and time-frequency domain, (2) non-synaptic dynamics by recording modifications in light scattering induced by changes in the membrane configuration related to cell activity using the fast optical signal, and (3) vascular dynamics using functional near-infrared spectroscopy and, independently but simultaneously to the electrocorticography, the changes in cerebral blood flow using diffuse correlation spectroscopy. The first observed alterations in the measured signals occurred in the hemodynamic compartments a few seconds before the peak of the IIS. These hemodynamic changes were followed by changes in coherence and then synchronization between the deep and superficial neural networks in the 1 s preceding the IIS peaks. Finally, changes in light scattering before the epileptic spikes suggest a change in membrane configuration before the IIS. Our multimodal, multiscale approach highlights the complexity of (1) interactions between the various neuronal, vascular, and extracellular compartments, (2) neural interactions between various layers, (3) the synaptic mechanisms (coherence and synchronization), and (4) non-synaptic mechanisms that take place in the neuronal network around the time of the IISs in a very specific cerebral hemodynamic environment.
Collapse
Affiliation(s)
- Cristian Arnal-Real
- Inserm U1105, GRAMFC, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Mahdi Mahmoudzadeh
- Inserm U1105, GRAMFC, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Mana Manoochehri
- Inserm U1105, GRAMFC, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Mina Nourhashemi
- Inserm U1105, GRAMFC, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Fabrice Wallois
- Inserm U1105, GRAMFC, CURS, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
16
|
Kazeminejad A, Sotero RC. The Importance of Anti-correlations in Graph Theory Based Classification of Autism Spectrum Disorder. Front Neurosci 2020; 14:676. [PMID: 32848533 PMCID: PMC7426475 DOI: 10.3389/fnins.2020.00676] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
With the release of the multi-site Autism Brain Imaging Data Exchange, many researchers have applied machine learning methods to distinguish between healthy subjects and autistic individuals by using features extracted from resting state functional MRI data. An important part of applying machine learning to this problem is extracting these features. Specifically, whether to include negative correlations between brain region activities as relevant features and how best to define these features. For the second question, the graph theoretical properties of the brain network may provide a reasonable answer. In this study, we investigated the first issue by comparing three different approaches. These included using the positive correlation matrix (comprising only the positive values of the original correlation matrix), the absolute value of the correlation matrix, or the anticorrelation matrix (comprising only the negative correlation values) as the starting point for extracting relevant features using graph theory. We then trained a multi-layer perceptron in a leave-one-site out manner in which the data from a single site was left out as testing data and the model was trained on the data from the other sites. Our results show that on average, using graph features extracted from the anti-correlation matrix led to the highest accuracy and AUC scores. This suggests that anti-correlations should not simply be discarded as they may include useful information that would aid the classification task. We also show that adding the PCA transformation of the original correlation matrix to the feature space leads to an increase in accuracy.
Collapse
Affiliation(s)
- Amirali Kazeminejad
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Roberto C. Sotero
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
17
|
Jafarian A, Litvak V, Cagnan H, Friston KJ, Zeidman P. Comparing dynamic causal models of neurovascular coupling with fMRI and EEG/MEG. Neuroimage 2020; 216:116734. [PMID: 32179105 PMCID: PMC7322559 DOI: 10.1016/j.neuroimage.2020.116734] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 01/09/2023] Open
Abstract
This technical note presents a dynamic causal modelling (DCM) procedure for evaluating different models of neurovascular coupling in the human brain - using combined electromagnetic (M/EEG) and functional magnetic resonance imaging (fMRI) data. This procedure compares the evidence for biologically informed models of neurovascular coupling using Bayesian model comparison. First, fMRI data are used to localise regionally specific neuronal responses. The coordinates of these responses are then used as the location priors in a DCM of electrophysiological responses elicited by the same paradigm. The ensuing estimates of model parameters are then used to generate neuronal drive functions, which model pre- or post-synaptic activity for each experimental condition. These functions form the input to a model of neurovascular coupling, whose parameters are estimated from the fMRI data. Crucially, this enables one to evaluate different models of neurovascular coupling, using Bayesian model comparison - asking, for example, whether instantaneous or delayed, pre- or post-synaptic signals mediate haemodynamic responses. We provide an illustrative application of the procedure using a single-subject auditory fMRI and MEG dataset. The code and exemplar data accompanying this technical note are available through the statistical parametric mapping (SPM) software.
Collapse
Affiliation(s)
| | - Vladimir Litvak
- The Wellcome Centre for Human Neuroimaging, University College London, UK
| | - Hayriye Cagnan
- MRC Brain Network Dynamics Unit (BNDU) at the University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Karl J Friston
- The Wellcome Centre for Human Neuroimaging, University College London, UK
| | - Peter Zeidman
- The Wellcome Centre for Human Neuroimaging, University College London, UK
| |
Collapse
|
18
|
Heugel N, Liebenthal E, Beardsley SA. Method for spatial overlap estimation of electroencephalography and functional magnetic resonance imaging responses. J Neurosci Methods 2019; 328:108401. [PMID: 31445115 DOI: 10.1016/j.jneumeth.2019.108401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/19/2019] [Accepted: 08/20/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Simultaneous functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) measurements may represent activity from partially divergent neural sources, but this factor is seldom modeled in fMRI-EEG data integration. NEW METHOD This paper proposes an approach to estimate the spatial overlap between sources of activity measured simultaneously with fMRI and EEG. Following the extraction of task-related activity, the key steps include, 1) distributed source reconstruction of the task-related ERP activity (ERP source model), 2) transformation of fMRI activity to the ERP spatial scale by forward modelling of the scalp potential field distribution and backward source reconstruction (fMRI source simulation), and 3) optimization of fMRI and ERP thresholds to maximize spatial overlap without a priori constraints of coupling (overlap calculation). RESULTS FMRI and ERP responses were recorded simultaneously in 15 subjects performing an auditory oddball task. A high degree of spatial overlap between sources of fMRI and ERP responses (in 9 or more of 15 subjects) was found specifically within temporoparietal areas associated with the task. Areas of non-overlap in fMRI and ERP sources were relatively small and inconsistent across subjects. COMPARISON WITH EXISTING METHOD The ERP and fMRI sources estimated with solely jICA overlapped in just 4 of 15 subjects, and strictly in the parietal cortex. CONCLUSION The study demonstrates that the new fMRI-ERP spatial overlap estimation method provides greater spatiotemporal detail of the cortical dynamics than solely jICA. As such, we propose that it is a superior method for the integration of fMRI and EEG to study brain function.
Collapse
Affiliation(s)
- N Heugel
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
| | - E Liebenthal
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA; Department of Psychiatry, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - S A Beardsley
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA; Clinical Translational Science Institute, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
19
|
Geerts H, Barrett JE. Neuronal Circuit-Based Computer Modeling as a Phenotypic Strategy for CNS R&D. Front Neurosci 2019; 13:723. [PMID: 31379482 PMCID: PMC6646593 DOI: 10.3389/fnins.2019.00723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
With the success rate of drugs for CNS indications at an all-time low, new approaches are needed to turn the tide of failed clinical trials. This paper reviews the history of CNS drug Discovery over the last 60 years and proposes a new paradigm based on the lessons learned. The initial wave of successful therapeutics discovered using careful clinical observations was followed by an emphasis on a phenotypic target-agnostic approach, often leading to successful drugs with a rich pharmacology. The subsequent introduction of molecular biology and the focus on a target-driven strategy has largely dominated drug discovery efforts over the last 30 years, but has not increased the probability of success, because these highly selective molecules are unlikely to address the complex pathological phenotypes of most CNS disorders. In many cases, reliance on preclinical animal models has lacked robust translational power. We argue that Quantitative Systems Pharmacology (QSP), a mechanism-based computer model of biological processes informed by preclinical knowledge and enhanced by neuroimaging and clinical data could be a new powerful knowledge generator engine and paradigm for rational polypharmacy. Progress in the academic discipline of computational neurosciences, allows one to model the effect of pathology and therapeutic interventions on neuronal circuit firing activity that can relate to clinical phenotypes, driven by complex properties of specific brain region activation states. The model is validated by optimizing the correlation between relevant emergent properties of these neuronal circuits and historical clinical and imaging datasets. A rationally designed polypharmacy target profile will be discovered using reverse engineering and sensitivity analysis. Small molecules will be identified using a combination of Artificial Intelligence methods and computational modeling, tested subsequently in heterologous cellular systems with human targets. Animal models will be used to establish target engagement and for ADME-Tox, with the QSP approach complemented by in vivo preclinical models that can be further refined to increase predictive validity. The QSP platform can also mitigate the variability in clinical trials with the concept of virtual patients. Because the QSP platform integrates knowledge from a wide variety of sources in an actionable simulation, it offers the possibility of substantially improving the success rate of CNS R&D programs while, at the same time, reducing both cost and the number of animals.
Collapse
Affiliation(s)
- Hugo Geerts
- In Silico Biosciences, Inc., Berwyn, IL, United States
| | - James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
20
|
Cinciute S. Translating the hemodynamic response: why focused interdisciplinary integration should matter for the future of functional neuroimaging. PeerJ 2019; 7:e6621. [PMID: 30941269 PMCID: PMC6438158 DOI: 10.7717/peerj.6621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/14/2019] [Indexed: 01/28/2023] Open
Abstract
The amount of information acquired with functional neuroimaging techniques, particularly fNIRS and fMRI, is rapidly growing and has enormous potential for studying human brain functioning. Therefore, many scientists focus on solving computational neuroimaging and Big Data issues to advance the discipline. However, the main obstacle—the accurate translation of the hemodynamic response (HR) by the investigation of a physiological phenomenon called neurovascular coupling—is still not fully overcome and, more importantly, often overlooked in this context. This article provides a brief and critical overview of significant findings from cellular biology and in vivo brain physiology with a focus on advancing existing HR modelling paradigms. A brief historical timeline of these disciplines of neuroscience is presented for readers to grasp the concept better, and some possible solutions for further scientific discussion are provided.
Collapse
Affiliation(s)
- Sigita Cinciute
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
21
|
van Oers CAMM, Goldberg N, Fiorin G, van den Heuvel MP, Kappelle LJ, Wijnen FNK. No evidence for cerebellar abnormality in adults with developmental dyslexia. Exp Brain Res 2018; 236:2991-3001. [PMID: 30116863 PMCID: PMC6223834 DOI: 10.1007/s00221-018-5351-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 08/02/2018] [Indexed: 01/18/2023]
Abstract
Developmental dyslexia is commonly believed to result from a deficiency in the recognition and processing of speech sounds. According to the cerebellar deficit hypothesis, this phonological deficit is caused by deficient cerebellar function. In the current study, 26 adults with developmental dyslexia and 25 non-dyslexic participants underwent testing of reading-related skills, cerebellar functions, and MRI scanning of the brain. Anatomical assessment of the cerebellum was conducted with voxel-based morphometry. Behavioural evidence, that was indicative of impaired cerebellar function, was found to co-occur with reading impairments in the dyslexic subjects, but a causal relation between the two was not observed. No differences in local grey matter volume, nor in structure-function relationships within the cerebellum were found between the two groups. Possibly, the observed behavioural pattern is due to aberrant white matter connectivity. In conclusion, no support for the cerebellar deficit hypothesis or the presence of anatomical differences of the cerebellum in adults with developmental dyslexia was found.
Collapse
Affiliation(s)
- Casper A M M van Oers
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
- Department of Neurology, Amphia Hospital, Breda, The Netherlands.
| | - Nadya Goldberg
- Utrecht institute of Linguistics OTS, Utrecht, The Netherlands
| | - Gaetano Fiorin
- Utrecht institute of Linguistics OTS, Utrecht, The Netherlands
| | - Martijn P van den Heuvel
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - L Jaap Kappelle
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
22
|
Boureghda M, Bouden T. A deconvolution scheme for the stochastic metabolic/hemodynamic model (sMHM) based on the square root cubature Kalman filter and maximum likelihood estimation. Biomed Signal Process Control 2018. [DOI: 10.1016/j.bspc.2018.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Bennett MR, Farnell L, Gibson WG. Quantitative relations between BOLD responses, cortical energetics, and impulse firing. J Neurophysiol 2018; 119:979-989. [PMID: 29187550 DOI: 10.1152/jn.00352.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The blood oxygen level-dependent (BOLD) functional magnetic resonance imaging signal arises as a consequence of changes in blood flow and oxygen usage that in turn are modulated by changes in neural activity. Much attention has been given to both theoretical and experimental aspects of the energetics but not to the neural activity. Here we identify the best energetic theory for the steady-state BOLD signal on the basis of correct predictions of experimental observations. This theory is then used, together with the recently determined relationship between energetics and neural activity, to predict how the BOLD signal changes with activity. Unlike existing treatments, this new theory incorporates a nonzero baseline activity in a completely consistent way and is thus able to account for both sustained positive and negative BOLD signals. We also show that the increase in BOLD signal for a given increase in activity is significantly smaller the larger the baseline activity, as is experimentally observed. Furthermore, the decline of the positive BOLD signal arising from deeper cortical laminae in response to an increase in neural firing is shown to arise as a consequence of the larger baseline activity in deeper laminae. Finally, we provide quantitative relations integrating BOLD responses, energetics, and impulse firing, which among other predictions give the same results as existing theories when the baseline activity is zero. NEW & NOTEWORTHY We use a recently established relation between energetics and neural activity to give a quantitative account of BOLD dependence on neural activity. The incorporation of a nonzero baseline neural activity accounts for positive and negative BOLD signals, shows that changes in neural activity give BOLD changes that are smaller the larger the baseline, and provides a basis for the observed inverse relation between BOLD responses and the depth of cortical laminae giving rise to them.
Collapse
Affiliation(s)
- M R Bennett
- Brain and Mind Research Institute, University of Sydney, Camperdown, New South Wales , Australia.,Center for Mathematical Biology, University of Sydney , Sydney, New South Wales , Australia
| | - L Farnell
- Center for Mathematical Biology, University of Sydney , Sydney, New South Wales , Australia.,The School of Mathematics and Statistics, University of Sydney, Camperdown, New South Wales , Australia
| | - W G Gibson
- Center for Mathematical Biology, University of Sydney , Sydney, New South Wales , Australia.,The School of Mathematics and Statistics, University of Sydney, Camperdown, New South Wales , Australia
| |
Collapse
|
24
|
Zambri B, Djellouli R, Laleg-Kirati TM. An efficient multistage algorithm for full calibration of the hemodynamic model from BOLD signal responses. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33:e2875. [PMID: 28226417 DOI: 10.1002/cnm.2875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/10/2016] [Accepted: 02/19/2017] [Indexed: 06/06/2023]
Abstract
We propose a computational strategy that falls into the category of prediction/correction iterative-type approaches, for calibrating the hemodynamic model. The proposed method is used to estimate consecutively the values of the two sets of model parameters. Numerical results corresponding to both synthetic and real functional magnetic resonance imaging measurements for a single stimulus as well as for multiple stimuli are reported to highlight the capability of this computational methodology to fully calibrate the considered hemodynamic model.
Collapse
Affiliation(s)
- Brian Zambri
- Department of Mathematics & Interdisciplinary Research Institute for the Sciences, California State University, Northridge, CA 91330, USA
| | - Rabia Djellouli
- Department of Mathematics & Interdisciplinary Research Institute for the Sciences, California State University, Northridge, CA 91330, USA
| | - Taous-Meriem Laleg-Kirati
- Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, KSA
| |
Collapse
|
25
|
Sten S, Lundengård K, Witt S, Cedersund G, Elinder F, Engström M. Neural inhibition can explain negative BOLD responses: A mechanistic modelling and fMRI study. Neuroimage 2017; 158:219-231. [DOI: 10.1016/j.neuroimage.2017.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/03/2017] [Accepted: 07/02/2017] [Indexed: 12/13/2022] Open
|
26
|
Murta T, Hu L, Tierney TM, Chaudhary UJ, Walker MC, Carmichael DW, Figueiredo P, Lemieux L. A study of the electro-haemodynamic coupling using simultaneously acquired intracranial EEG and fMRI data in humans. Neuroimage 2016; 142:371-380. [PMID: 27498370 PMCID: PMC5102699 DOI: 10.1016/j.neuroimage.2016.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/15/2016] [Accepted: 08/01/2016] [Indexed: 11/07/2022] Open
Abstract
In current fMRI studies designed to map BOLD changes related to interictal epileptiform discharges (IED), which are recorded on simultaneous EEG, the information contained in the morphology and field extent of the EEG events is exclusively used for their classification. Usually, a BOLD predictor based on IED onset times alone is constructed, effectively treating all events as identical. We used intracranial EEG (icEEG)-fMRI data simultaneously recorded in humans to investigate the effect of including any of the features: amplitude, width (duration), slope of the rising phase, energy (area under the curve), or spatial field extent (number of contacts over which the sharp wave was observed) of the fast wave of the IED (the sharp wave), into the BOLD model, to better understand the neurophysiological origin of sharp wave-related BOLD changes, in the immediate vicinity of the recording contacts. Among the features considered, the width was the only one found to explain a significant amount of additional variance, suggesting that the amplitude of the BOLD signal depends more on the duration of the underlying field potential (reflected in the sharp wave width) than on the degree of neuronal activity synchrony (reflected in the sharp wave amplitude), and, consequently, that including inter-event variations of the sharp wave width in the BOLD signal model may increase the sensitivity of forthcoming EEG-fMRI studies of epileptic activity.
Collapse
Affiliation(s)
- T Murta
- Dept. of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, United Kingdom; Institute for Systems and Robotics and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| | - L Hu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - T M Tierney
- UCL Institute of Child Heath, London, United Kingdom
| | - U J Chaudhary
- Dept. of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, United Kingdom
| | - M C Walker
- Dept. of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, United Kingdom
| | | | - P Figueiredo
- Institute for Systems and Robotics and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - L Lemieux
- Dept. of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, United Kingdom
| |
Collapse
|
27
|
Bayram A, Karahan E, Bilgiç B, Ademoglu A, Demiralp T. Achromatic temporal-frequency responses of human lateral geniculate nucleus and primary visual cortex. Vision Res 2016; 127:177-185. [DOI: 10.1016/j.visres.2016.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 02/04/2023]
|
28
|
Lundengård K, Cedersund G, Sten S, Leong F, Smedberg A, Elinder F, Engström M. Mechanistic Mathematical Modeling Tests Hypotheses of the Neurovascular Coupling in fMRI. PLoS Comput Biol 2016; 12:e1004971. [PMID: 27310017 PMCID: PMC4911100 DOI: 10.1371/journal.pcbi.1004971] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 05/04/2016] [Indexed: 11/22/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) measures brain activity by detecting the blood-oxygen-level dependent (BOLD) response to neural activity. The BOLD response depends on the neurovascular coupling, which connects cerebral blood flow, cerebral blood volume, and deoxyhemoglobin level to neuronal activity. The exact mechanisms behind this neurovascular coupling are not yet fully investigated. There are at least three different ways in which these mechanisms are being discussed. Firstly, mathematical models involving the so-called Balloon model describes the relation between oxygen metabolism, cerebral blood volume, and cerebral blood flow. However, the Balloon model does not describe cellular and biochemical mechanisms. Secondly, the metabolic feedback hypothesis, which is based on experimental findings on metabolism associated with brain activation, and thirdly, the neurotransmitter feed-forward hypothesis which describes intracellular pathways leading to vasoactive substance release. Both the metabolic feedback and the neurotransmitter feed-forward hypotheses have been extensively studied, but only experimentally. These two hypotheses have never been implemented as mathematical models. Here we investigate these two hypotheses by mechanistic mathematical modeling using a systems biology approach; these methods have been used in biological research for many years but never been applied to the BOLD response in fMRI. In the current work, model structures describing the metabolic feedback and the neurotransmitter feed-forward hypotheses were applied to measured BOLD responses in the visual cortex of 12 healthy volunteers. Evaluating each hypothesis separately shows that neither hypothesis alone can describe the data in a biologically plausible way. However, by adding metabolism to the neurotransmitter feed-forward model structure, we obtained a new model structure which is able to fit the estimation data and successfully predict new, independent validation data. These results open the door to a new type of fMRI analysis that more accurately reflects the true neuronal activity. Functional magnetic resonance imaging (fMRI) is a widely used technique for measuring brain activity. However, the signal registered by fMRI is not a direct measurement of the neuronal activity in the brain, but it is influenced by the interplay between the metabolism, blood flow and blood volume in the active area. This signal is called the blood-oxygen-level dependent (BOLD) response and occurs when the blood supply to the active area increases in response to neuronal activity. The mechanisms that the cells use to influence the blood supply are not fully known, and therefore it is difficult to know the true neuronal signalling only from inspection of the fMRI signal. In this article, we present a new mathematical model built on the physiological mechanisms thought to underlie the BOLD response. We could successfully fit the model to data and predict the activity caused by new stimuli. By using the validated model we investigated physiological mechanisms that cause different parts of the BOLD response.
Collapse
Affiliation(s)
- Karin Lundengård
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Gunnar Cedersund
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Sebastian Sten
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Felix Leong
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Alexander Smedberg
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Fredrik Elinder
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Maria Engström
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
29
|
Khoram N, Zayane C, Djellouli R, Laleg-Kirati TM. A novel approach to calibrate the hemodynamic model using functional Magnetic Resonance Imaging (fMRI) measurements. J Neurosci Methods 2016; 262:93-109. [PMID: 26802187 DOI: 10.1016/j.jneumeth.2016.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND The calibration of the hemodynamic model that describes changes in blood flow and blood oxygenation during brain activation is a crucial step for successfully monitoring and possibly predicting brain activity. This in turn has the potential to provide diagnosis and treatment of brain diseases in early stages. NEW METHOD We propose an efficient numerical procedure for calibrating the hemodynamic model using some fMRI measurements. The proposed solution methodology is a regularized iterative method equipped with a Kalman filtering-type procedure. The Newton component of the proposed method addresses the nonlinear aspect of the problem. The regularization feature is used to ensure the stability of the algorithm. The Kalman filter procedure is incorporated here to address the noise in the data. RESULTS Numerical results obtained with synthetic data as well as with real fMRI measurements are presented to illustrate the accuracy, robustness to the noise, and the cost-effectiveness of the proposed method. COMPARISON WITH EXISTING METHOD(S) We present numerical results that clearly demonstrate that the proposed method outperforms the Cubature Kalman Filter (CKF), one of the most prominent existing numerical methods. CONCLUSION We have designed an iterative numerical technique, called the TNM-CKF algorithm, for calibrating the mathematical model that describes the single-event related brain response when fMRI measurements are given. The method appears to be highly accurate and effective in reconstructing the BOLD signal even when the measurements are tainted with high noise level (as high as 30%).
Collapse
Affiliation(s)
- Nafiseh Khoram
- Department of Mathematics & Interdisciplinary Research Institute for the Sciences, IRIS, California State University Northridge (CSUN), Northridge, USA..
| | - Chadia Zayane
- Department of Applied Mathematics and Computational Science, King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
| | - Rabia Djellouli
- Department of Mathematics & Interdisciplinary Research Institute for the Sciences, IRIS, California State University Northridge (CSUN), Northridge, USA..
| | - Taous-Meriem Laleg-Kirati
- Department of Applied Mathematics and Computational Science, King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
| |
Collapse
|
30
|
A New Computational Model for Neuro-Glio-Vascular Coupling: Astrocyte Activation Can Explain Cerebral Blood Flow Nonlinear Response to Interictal Events. PLoS One 2016; 11:e0147292. [PMID: 26849643 PMCID: PMC4743967 DOI: 10.1371/journal.pone.0147292] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/01/2016] [Indexed: 12/31/2022] Open
Abstract
Developing a clear understanding of the relationship between cerebral blood flow (CBF) response and neuronal activity is of significant importance because CBF increase is essential to the health of neurons, for instance through oxygen supply. This relationship can be investigated by analyzing multimodal (fMRI, PET, laser Doppler…) recordings. However, the important number of intermediate (non-observable) variables involved in the underlying neurovascular coupling makes the discovery of mechanisms all the more difficult from the sole multimodal data. We present a new computational model developed at the population scale (voxel) with physiologically relevant but simple equations to facilitate the interpretation of regional multimodal recordings. This model links neuronal activity to regional CBF dynamics through neuro-glio-vascular coupling. This coupling involves a population of glial cells called astrocytes via their role in neurotransmitter (glutamate and GABA) recycling and their impact on neighboring vessels. In epilepsy, neuronal networks generate epileptiform discharges, leading to variations in astrocytic and CBF dynamics. In this study, we took advantage of these large variations in neuronal activity magnitude to test the capacity of our model to reproduce experimental data. We compared simulations from our model with isolated epileptiform events, which were obtained in vivo by simultaneous local field potential and laser Doppler recordings in rats after local bicuculline injection. We showed a predominant neuronal contribution for low level discharges and a significant astrocytic contribution for higher level discharges. Besides, neuronal contribution to CBF was linear while astrocytic contribution was nonlinear. Results thus indicate that the relationship between neuronal activity and CBF magnitudes can be nonlinear for isolated events and that this nonlinearity is due to astrocytic activity, highlighting the importance of astrocytes in the interpretation of regional recordings.
Collapse
|
31
|
Saillet S, Quilichini PP, Ghestem A, Giusiano B, Ivanov AI, Hitziger S, Vanzetta I, Bernard C, Bénar CG. Interneurons contribute to the hemodynamic/metabolic response to epileptiform discharges. J Neurophysiol 2015; 115:1157-69. [PMID: 26745250 DOI: 10.1152/jn.00994.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/21/2015] [Indexed: 01/28/2023] Open
Abstract
Interpretation of hemodynamic responses in epilepsy is hampered by an incomplete understanding of the underlying neurovascular coupling, especially the contributions of excitation and inhibition. We made simultaneous multimodal recordings of local field potentials (LFPs), firing of individual neurons, blood flow, and oxygen level in the somatosensory cortex of anesthetized rats. Epileptiform discharges induced by bicuculline injections were used to trigger large local events. LFP and blood flow were robustly coupled, as were LFP and tissue oxygen. In a parametric linear model, LFP and the baseline activities of cerebral blood flow and tissue partial oxygen tension contributed significantly to blood flow and oxygen responses. In an analysis of recordings from 402 neurons, blood flow/tissue oxygen correlated with the discharge of putative interneurons but not of principal cells. Our results show that interneuron activity is important in the vascular and metabolic responses during epileptiform discharges.
Collapse
Affiliation(s)
- Sandrine Saillet
- INSERM, UMR 1106, Marseille, France; Aix-Marseille Université, Institut de Neurosciences des Systèmes, Marseille, France
| | - Pascale P Quilichini
- INSERM, UMR 1106, Marseille, France; Aix-Marseille Université, Institut de Neurosciences des Systèmes, Marseille, France
| | - Antoine Ghestem
- INSERM, UMR 1106, Marseille, France; Aix-Marseille Université, Institut de Neurosciences des Systèmes, Marseille, France
| | - Bernard Giusiano
- INSERM, UMR 1106, Marseille, France; Aix-Marseille Université, Institut de Neurosciences des Systèmes, Marseille, France; APHM, Timone Hospital, Division of Public Health, Marseille, France
| | - Anton I Ivanov
- INSERM, UMR 1106, Marseille, France; Aix-Marseille Université, Institut de Neurosciences des Systèmes, Marseille, France
| | | | - Ivo Vanzetta
- Aix-Marseille Université, CNRS, INT UMR 7289, Marseille, France
| | - Christophe Bernard
- INSERM, UMR 1106, Marseille, France; Aix-Marseille Université, Institut de Neurosciences des Systèmes, Marseille, France
| | - Christian-G Bénar
- INSERM, UMR 1106, Marseille, France; Aix-Marseille Université, Institut de Neurosciences des Systèmes, Marseille, France;
| |
Collapse
|
32
|
Huneau C, Benali H, Chabriat H. Investigating Human Neurovascular Coupling Using Functional Neuroimaging: A Critical Review of Dynamic Models. Front Neurosci 2015; 9:467. [PMID: 26733782 PMCID: PMC4683196 DOI: 10.3389/fnins.2015.00467] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 11/23/2015] [Indexed: 01/26/2023] Open
Abstract
The mechanisms that link a transient neural activity to the corresponding increase of cerebral blood flow (CBF) are termed neurovascular coupling (NVC). They are possibly impaired at early stages of small vessel or neurodegenerative diseases. Investigation of NVC in humans has been made possible with the development of various neuroimaging techniques based on variations of local hemodynamics during neural activity. Specific dynamic models are currently used for interpreting these data that can include biophysical parameters related to NVC. After a brief review of the current knowledge about possible mechanisms acting in NVC we selected seven models with explicit integration of NVC found in the literature. All these models were described using the same procedure. We compared their physiological assumptions, mathematical formalism, and validation. In particular, we pointed out their strong differences in terms of complexity. Finally, we discussed their validity and their potential applications. These models may provide key information to investigate various aspects of NVC in human pathology.
Collapse
Affiliation(s)
- Clément Huneau
- Laboratoire d'Imagerie Biomédicale, UPMC Paris 06, Centre National de la Recherche Scientifique U7371, Institut National de la Santé et de la Recherche Médicale U1146, Sorbonne UniversitésParis, France; Institut National de la Santé et de la Recherche Médicale U1161, Université Paris Diderot, Sorbonne Paris CitéParis, France
| | - Habib Benali
- Laboratoire d'Imagerie Biomédicale, UPMC Paris 06, Centre National de la Recherche Scientifique U7371, Institut National de la Santé et de la Recherche Médicale U1146, Sorbonne Universités Paris, France
| | - Hugues Chabriat
- Institut National de la Santé et de la Recherche Médicale U1161, Université Paris Diderot, Sorbonne Paris CitéParis, France; AP-HP, Hôpital Lariboisière, Service de Neurologie and DHU NeuroVascParis, France
| |
Collapse
|
33
|
Tyler CW, Likova LT, Nicholas SC. Analysis of Neural-BOLD Coupling Through Four Models of the Neural Metabolic Demand. Front Neurosci 2015; 9:419. [PMID: 26696806 PMCID: PMC4678231 DOI: 10.3389/fnins.2015.00419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 10/16/2015] [Indexed: 01/13/2023] Open
Abstract
The coupling of the neuronal energetics to the blood-oxygen-level-dependent (BOLD) response is still incompletely understood. To address this issue, we compared the fits of four plausible models of neurometabolic coupling dynamics to available data for simultaneous recordings of the local field potential and the local BOLD response recorded from monkey primary visual cortex over a wide range of stimulus durations. The four models of the metabolic demand driving the BOLD response were: direct coupling with the overall LFP; rectified coupling to the LFP; coupling with a slow adaptive component of the implied neural population response; and coupling with the non-adaptive intracellular input signal defined by the stimulus time course. Taking all stimulus durations into account, the results imply that the BOLD response is most closely coupled with metabolic demand derived from the intracellular input waveform, without significant influence from the adaptive transients and nonlinearities exhibited by the LFP waveform.
Collapse
|
34
|
Zippo AG, Rinaldi S, Pellegata G, Caramenti GC, Valente M, Fontani V, Biella GEM. Electrophysiological effects of non-invasive Radio Electric Asymmetric Conveyor (REAC) on thalamocortical neural activities and perturbed experimental conditions. Sci Rep 2015; 5:18200. [PMID: 26658170 PMCID: PMC4676007 DOI: 10.1038/srep18200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 11/13/2015] [Indexed: 01/20/2023] Open
Abstract
The microwave emitting Radio Electric Asymmetric Conveyor (REAC) is a technology able to interact with biological tissues at low emission intensity (2 mW at the emitter and 2.4 or 5.8 GHz) by inducing radiofrequency generated microcurrents. It shows remarkable biological effects at many scales from gene modulations up to functional global remodeling even in human subjects. Previous REAC experiments by functional Magnetic Resonance Imaging (fMRI) on healthy human subjects have shown deep modulations of cortical BOLD signals. In this paper we studied the effects of REAC application on spontaneous and evoked neuronal activities simultaneously recorded by microelectrode matrices from the somatosensory thalamo-cortical axis in control and chronic pain experimental animal models. We analyzed the spontaneous spiking activity and the Local Field Potentials (LFPs) before and after REAC applied with a different protocol. The single neuron spiking activities, the neuronal responses to peripheral light mechanical stimuli, the population discharge synchronies as well as the correlations and the network dynamic connectivity characteristics have been analyzed. Modulations of the neuronal frequency associated with changes of functional correlations and significant LFP temporal realignments have been diffusely observed. Analyses by topological methods have shown changes in functional connectivity with significant modifications of the network features.
Collapse
Affiliation(s)
- Antonio G Zippo
- Institute of Molecular Bioimaging and Physiology, Dept. of Bio-Medicine, National Research Council (CNR), LITA Bldg., Via Fratelli Cervi, 93, 20090 Segrate (Milan), Italy
| | - Salvatore Rinaldi
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy.,Department of Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy.,Research Department, Rinaldi Fontani Foundation - NPO, Viale Belfiore 43, 50144 Florence, Italy
| | - Giulio Pellegata
- Institute of Molecular Bioimaging and Physiology, Dept. of Bio-Medicine, National Research Council (CNR), LITA Bldg., Via Fratelli Cervi, 93, 20090 Segrate (Milan), Italy
| | - Gian Carlo Caramenti
- Institute of Biomedical Technology, National Research Council, (CNR), LITA Bldg., Via Fratelli Cervi, 93, 20090 Segrate (Milan), Italy
| | - Maurizio Valente
- Institute of Molecular Bioimaging and Physiology, Dept. of Bio-Medicine, National Research Council (CNR), LITA Bldg., Via Fratelli Cervi, 93, 20090 Segrate (Milan), Italy
| | - Vania Fontani
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy.,Department of Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy.,Research Department, Rinaldi Fontani Foundation - NPO, Viale Belfiore 43, 50144 Florence, Italy
| | - Gabriele E M Biella
- Institute of Molecular Bioimaging and Physiology, Dept. of Bio-Medicine, National Research Council (CNR), LITA Bldg., Via Fratelli Cervi, 93, 20090 Segrate (Milan), Italy
| |
Collapse
|
35
|
Liu J, Lee HJ, Weitz AJ, Fang Z, Lin P, Choy M, Fisher R, Pinskiy V, Tolpygo A, Mitra P, Schiff N, Lee JH. Frequency-selective control of cortical and subcortical networks by central thalamus. eLife 2015; 4:e09215. [PMID: 26652162 PMCID: PMC4721962 DOI: 10.7554/elife.09215] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 11/06/2015] [Indexed: 12/29/2022] Open
Abstract
Central thalamus plays a critical role in forebrain arousal and organized behavior. However, network-level mechanisms that link its activity to brain state remain enigmatic. Here, we combined optogenetics, fMRI, electrophysiology, and video-EEG monitoring to characterize the central thalamus-driven global brain networks responsible for switching brain state. 40 and 100 Hz stimulations of central thalamus caused widespread activation of forebrain, including frontal cortex, sensorimotor cortex, and striatum, and transitioned the brain to a state of arousal in asleep rats. In contrast, 10 Hz stimulation evoked significantly less activation of forebrain, inhibition of sensory cortex, and behavioral arrest. To investigate possible mechanisms underlying the frequency-dependent cortical inhibition, we performed recordings in zona incerta, where 10, but not 40, Hz stimulation evoked spindle-like oscillations. Importantly, suppressing incertal activity during 10 Hz central thalamus stimulation reduced the evoked cortical inhibition. These findings identify key brain-wide dynamics underlying central thalamus arousal regulation. DOI:http://dx.doi.org/10.7554/eLife.09215.001 The ability to wake up every morning and to fall asleep at night is something that most people take for granted. However, damage to a brain region called the central thalamus can cause a range of consciousness-related disorders, including memory problems, excessive sleeping, and even comas. For example, cell death within the central thalamus has been associated with severely disabled patients following traumatic brain injury. Previous studies have found that electrically stimulating the neurons in the central thalamus can change whether an animal is drowsy or awake and alert. However, it was not clear whether a single group of neurons in the central thalamus was responsible for switching the brain’s state between sleep and wakefulness, or how this would work. Liu, Lee, Weitz, Fang et al. have now used a technique called optogenetics to stimulate specific neurons in the central thalamus of rats, by using flashes of light. Stimulation was combined with several techniques to monitor the response of other brain regions, including fMRI imaging that shows the activity of the entire brain. The results showed that rapidly stimulating the neurons in the central thalamus – 40 or 100 times a second – led to widespread brain activity and caused sleeping rats to wake up. In contrast, stimulating the neurons of the central thalamus more slowly – around 10 times a second – suppressed the activity of part of the brain called the sensory cortex and caused rats to enter a seizure-like state of unconsciousness. Further investigation identified a group of inhibitory neurons that the central thalamus interacts with to carry out this suppression. The results suggest that the central thalamus can either power the brain to an “awake” state or promote a state of unconsciousness, depending on how rapidly its neurons are stimulated. Future work will seek to translate these results to the clinic and investigate how stimulation of the central thalamus can be optimized to reduce cognitive deficits in animal models of traumatic brain injury. DOI:http://dx.doi.org/10.7554/eLife.09215.002
Collapse
Affiliation(s)
- Jia Liu
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States
| | - Hyun Joo Lee
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States
| | - Andrew J Weitz
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Bioengineering, Stanford University, Stanford, United States
| | - Zhongnan Fang
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Electrical Engineering, Stanford University, Stanford, United States
| | - Peter Lin
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States
| | - ManKin Choy
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States
| | - Robert Fisher
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States
| | - Vadim Pinskiy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | | | - Partha Mitra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Nicholas Schiff
- Department of Neurology, Weill Cornell Medical College, New York, United States
| | - Jin Hyung Lee
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Bioengineering, Stanford University, Stanford, United States.,Department of Electrical Engineering, Stanford University, Stanford, United States.,Department of Neurosurgery, Stanford University, Stanford, United States
| |
Collapse
|
36
|
Havlicek M, Roebroeck A, Friston K, Gardumi A, Ivanov D, Uludag K. Physiologically informed dynamic causal modeling of fMRI data. Neuroimage 2015; 122:355-72. [DOI: 10.1016/j.neuroimage.2015.07.078] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 12/15/2022] Open
|
37
|
Rosa PN, Figueiredo P, Silvestre CJ. On the distinguishability of HRF models in fMRI. Front Comput Neurosci 2015; 9:54. [PMID: 26106322 PMCID: PMC4460732 DOI: 10.3389/fncom.2015.00054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 04/24/2015] [Indexed: 11/13/2022] Open
Abstract
Modeling the Hemodynamic Response Function (HRF) is a critical step in fMRI studies of brain activity, and it is often desirable to estimate HRF parameters with physiological interpretability. A biophysically informed model of the HRF can be described by a non-linear time-invariant dynamic system. However, the identification of this dynamic system may leave much uncertainty on the exact values of the parameters. Moreover, the high noise levels in the data may hinder the model estimation task. In this context, the estimation of the HRF may be seen as a problem of model falsification or invalidation, where we are interested in distinguishing among a set of eligible models of dynamic systems. Here, we propose a systematic tool to determine the distinguishability among a set of physiologically plausible HRF models. The concept of absolutely input-distinguishable systems is introduced and applied to a biophysically informed HRF model, by exploiting the structure of the underlying non-linear dynamic system. A strategy to model uncertainty in the input time-delay and magnitude is developed and its impact on the distinguishability of two physiologically plausible HRF models is assessed, in terms of the maximum noise amplitude above which it is not possible to guarantee the falsification of one model in relation to another. Finally, a methodology is proposed for the choice of the input sequence, or experimental paradigm, that maximizes the distinguishability of the HRF models under investigation. The proposed approach may be used to evaluate the performance of HRF model estimation techniques from fMRI data.
Collapse
Affiliation(s)
- Paulo N Rosa
- Flight Systems Business Unit, Aerospace, Defense & Systems Department, Deimos Engenharia, Lda. Lisboa, Portugal
| | - Patricia Figueiredo
- Institute for Systems and Robotics and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa Portugal
| | - Carlos J Silvestre
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau Taipa, Macau, China
| |
Collapse
|
38
|
Neural substrates underlying the passive observation and active control of translational egomotion. J Neurosci 2015; 35:4258-67. [PMID: 25762672 DOI: 10.1523/jneurosci.2647-14.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Moving or static obstacles often get in the way while walking in daily life. Avoiding obstacles involves both perceptual processing of motion information and controlling appropriate defensive movements. Several higher-level motion areas, including the ventral intraparietal area (VIP), medial superior temporal area, parieto-insular vestibular cortex (PIVC), areas V6 and V6A, and cingulate sulcus visual area, have been identified in humans by passive viewing of optic flow patterns that simulate egomotion and object motion. However, the roles of these areas in the active control of egomotion in the real world remain unclear. Here, we used functional magnetic resonance imaging (fMRI) to map the neural substrates underlying the passive observation and active control of translational egomotion in humans. A wide-field virtual reality environment simulated a daily scenario where doors randomly swing outward while walking in a hallway. The stimuli of door-dodging events were essentially the same in two event-related fMRI experiments, which compared passive and active dodges in response to swinging doors. Passive dodges were controlled by a computer program, while active dodges were controlled by the subject. Passive dodges activated several higher-level areas distributed across three dorsal motion streams in the temporal, parietal, and cingulate cortex. Active dodges most strongly activated the temporal-vestibular stream, with peak activation located in the right PIVC. Other higher-level motion areas including VIP showed weaker to no activation in active dodges. These results suggest that PIVC plays an active role in sensing and guiding translational egomotion that moves an observer aside from impending obstacles.
Collapse
|
39
|
Belkhatir Z, Laleg-Kirati TM. Fractional dynamical model for neurovascular coupling. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:4916-9. [PMID: 25571094 DOI: 10.1109/embc.2014.6944726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The neurovascular coupling is a key mechanism linking the neural activity to the hemodynamic behavior. Modeling of this coupling is very important to understand the brain function but it is at the same time very complex due to the complexity of the involved phenomena. Many studies have reported a time delay between the neural activity and the cerebral blood flow, which has been described by adding a delay parameter in some of the existing models. An alternative approach is proposed in this paper, where a fractional system is used to model the neurovascular coupling. Thanks to its nonlocal property, a fractional derivative is suitable for modeling the phenomena with delay. The proposed model is coupled with the first version of the well-known balloon model, which relates the cerebral blood flow to the Blood Oxygen Level Dependent (BOLD) signal measured using functional Magnetic Resonance Imaging (fMRI). Through some numerical simulations, the properties of the fractional model are explained and some preliminary comparisons to a real BOLD data set are provided.
Collapse
|
40
|
Spiros A, Roberts P, Geerts H. A computer-based quantitative systems pharmacology model of negative symptoms in schizophrenia: exploring glycine modulation of excitation-inhibition balance. Front Pharmacol 2014; 5:229. [PMID: 25374541 PMCID: PMC4204440 DOI: 10.3389/fphar.2014.00229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/23/2014] [Indexed: 02/04/2023] Open
Abstract
Although many antipsychotics can reasonably control positive symptoms in schizophrenia, patients' return to society is often hindered by negative symptoms and cognitive deficits. As an alternative to animal rodent models that are often not very predictive for the clinical situation, we developed a new computer-based mechanistic modeling approach. This Quantitative Systems Pharmacology approach combines preclinical basic neurophysiology of a biophysically realistic neuronal ventromedial cortical-ventral striatal network identified from human imaging studies that are associated with negative symptoms. Calibration of a few biological coupling parameters using a retrospective clinical database of 34 drug-dose combinations resulted in correlation coefficients greater than 0.60, while a robust quantitative prediction of a number of independent trials was observed. We then simulated the effect of glycine modulation on the anticipated clinical outcomes. The quantitative biochemistry of glycine interaction with the different NMDA-NR2 subunits, neurodevelopmental trajectory of the NMDA-NR2B in the human schizophrenia pathology, their specific localization on excitatory vs. inhibitory interneurons and the electrogenic nature of the glycine transporter resulted in an inverse U-shape dose-response with an optimum in the low micromolar glycine concentration. Quantitative systems pharmacology based computer modeling of complex humanized brain circuits is a powerful alternative approach to explain the non-monotonic dose-response observed in past clinical trial outcomes with sarcosine, D-cycloserine, glycine, or D-serine or with glycine transporter inhibitors. In general it can be helpful to better understand the human neurophysiology of negative symptoms, especially with targets that show non-monotonic dose-responses.
Collapse
Affiliation(s)
- Athan Spiros
- Computational Neuropharmacology, In Silico Biosciences, Inc. Berwyn, PA, USA
| | - Patrick Roberts
- Computational Neuropharmacology, In Silico Biosciences, Inc. Berwyn, PA, USA ; Department of Biomedical Engineering, Oregon Health and Science University Portland, OR, USA
| | - Hugo Geerts
- Computational Neuropharmacology, In Silico Biosciences, Inc. Berwyn, PA, USA ; Department of Laboratory Pathology, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
41
|
The vascular steal phenomenon is an incomplete contributor to negative cerebrovascular reactivity in patients with symptomatic intracranial stenosis. J Cereb Blood Flow Metab 2014; 34:1453-62. [PMID: 24917040 PMCID: PMC4158662 DOI: 10.1038/jcbfm.2014.106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/01/2014] [Accepted: 05/22/2014] [Indexed: 11/08/2022]
Abstract
'Vascular steal' has been proposed as a compensatory mechanism in hemodynamically compromised ischemic parenchyma. Here, independent measures of cerebral blood flow (CBF) and blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) responses to a vascular stimulus in patients with ischemic cerebrovascular disease are recorded. Symptomatic intracranial stenosis patients (n=40) underwent a multimodal 3.0T MRI protocol including structural (T1-weighted and T2-weighted fluid-attenuated inversion recovery) and hemodynamic (BOLD and CBF-weighted arterial spin labeling) functional MRI during room air and hypercarbic gas administration. CBF changes in regions demonstrating negative BOLD reactivity were recorded, as well as clinical correlates including symptomatic hemisphere by infarct and lateralizing symptoms. Fifteen out of forty participants exhibited negative BOLD reactivity. Of these, a positive relationship was found between BOLD and CBF reactivity in unaffected (stenosis degree<50%) cortex. In negative BOLD cerebrovascular reactivity regions, three patients exhibited significant (P<0.01) reductions in CBF consistent with vascular steal; six exhibited increases in CBF; and the remaining exhibited no statistical change in CBF. Secondary findings were that negative BOLD reactivity correlated with symptomatic hemisphere by lateralizing clinical symptoms and prior infarcts(s). These data support the conclusion that negative hypercarbia-induced BOLD responses, frequently assigned to vascular steal, are heterogeneous in origin with possible contributions from autoregulation and/or metabolism.
Collapse
|
42
|
Siero JCW, Hendrikse J, Hoogduin H, Petridou N, Luijten P, Donahue MJ. Cortical depth dependence of the BOLD initial dip and poststimulus undershoot in human visual cortex at 7 Tesla. Magn Reson Med 2014; 73:2283-95. [PMID: 24989338 DOI: 10.1002/mrm.25349] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 11/09/2022]
Abstract
PURPOSE Owing to variability in vascular dynamics across cerebral cortex, blood-oxygenation-level-dependent (BOLD) spatial and temporal characteristics should vary as a function of cortical-depth. Here, the positive response, initial dip (ID), and post-stimulus undershoot (PSU) of the BOLD response in human visual cortex are investigated as a function of cortical depth and stimulus duration at 7 Tesla (T). METHODS Gradient-echo echo-planar-imaging BOLD fMRI with high spatial and temporal resolution was performed in 7 healthy volunteers and measurements of the ID, PSU, and positive BOLD response were made as a function of cortical depth and stimulus duration (0.5-8 s). Exploratory analyses were applied to understand whether functional mapping could be achieved using the ID, rather than positive, BOLD signal characteristics RESULTS The ID was largest in outer cortical layers, consistent with previously reported upstream propagation of vasodilation along the diving arterioles in animals. The positive BOLD signal and PSU showed different relationships across the cortical depth with respect to stimulus duration. CONCLUSION The ID and PSU were measured in humans at 7T and exhibited similar trends to those recently reported in animals. Furthermore, while evidence is provided for the ID being a potentially useful feature for better understanding BOLD signal dynamics, such as laminar neurovascular coupling, functional mapping based on the ID is extremely difficult.
Collapse
Affiliation(s)
- Jeroen C W Siero
- Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Rudolf Magnus Institute, Department of Neurosurgery and Neurology, University Medical Center Utrecht, The Netherlands
| | - Jeroen Hendrikse
- Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hans Hoogduin
- Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Natalia Petridou
- Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter Luijten
- Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Manus J Donahue
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA.,Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Neurology, Vanderbilt School of Medicine, Nashville, Tennessee, USA.,Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
43
|
Correlation between the Effects of Acupuncture at Taichong (LR3) and Functional Brain Areas: A Resting-State Functional Magnetic Resonance Imaging Study Using True versus Sham Acupuncture. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:729091. [PMID: 24963329 PMCID: PMC4055001 DOI: 10.1155/2014/729091] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 05/08/2014] [Accepted: 05/08/2014] [Indexed: 11/17/2022]
Abstract
Functional magnetic resonance imaging (fMRI) has been shown to detect the specificity of acupuncture points, as proved by numerous studies. In this study, resting-state fMRI was used to observe brain areas activated by acupuncture at the Taichong (LR3) acupoint. A total of 15 healthy subjects received brain resting-state fMRI before acupuncture and after sham and true acupuncture, respectively, at LR3. Image data processing was performed using Data Processing Assistant for Resting-State fMRI and REST software. The combination of amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) was used to analyze the changes in brain function during sham and true acupuncture. Acupuncture at LR3 can specifically activate or deactivate brain areas related to vision, movement, sensation, emotion, and analgesia. The specific alterations in the anterior cingulate gyrus, thalamus, and cerebellar posterior lobe have a crucial effect and provide a valuable reference. Sham acupuncture has a certain effect on psychological processes and does not affect brain areas related to function.
Collapse
|
44
|
Donahue MJ, Rane S, Hussey E, Mason E, Pradhan S, Waddell KW, Ally BA. γ-Aminobutyric acid (GABA) concentration inversely correlates with basal perfusion in human occipital lobe. J Cereb Blood Flow Metab 2014; 34:532-41. [PMID: 24398941 PMCID: PMC3948135 DOI: 10.1038/jcbfm.2013.231] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/14/2013] [Accepted: 12/03/2013] [Indexed: 01/03/2023]
Abstract
Commonly used neuroimaging approaches in humans exploit hemodynamic or metabolic indicators of brain function. However, fundamental gaps remain in our ability to relate such hemo-metabolic reactivity to neurotransmission, with recent reports providing paradoxical information regarding the relationship among basal perfusion, functional imaging contrast, and neurotransmission in awake humans. Here, sequential magnetic resonance spectroscopy (MRS) measurements of the primary inhibitory neurotransmitter, γ-aminobutyric acid (GABA+macromolecules normalized by the complex N-acetyl aspartate-N-acetyl aspartyl glutamic acid: [GABA(+)]/[NAA-NAAG]), and magnetic resonance imaging (MRI) measurements of perfusion, fractional gray-matter volume, and arterial arrival time (AAT) are recorded in human visual cortex from a controlled cohort of young adult male volunteers with neurocognitive battery-confirmed comparable cognitive capacity (3 T; n=16; age=23±3 years). Regression analyses reveal an inverse correlation between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.46; P=0.037), yet no relationship between AAT and [GABA(+)]/[NAA-NAAG] (R=-0.12; P=0.33). Perfusion measurements that do not control for AAT variations reveal reduced correlations between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.13; P=0.32). These findings largely reconcile contradictory reports between perfusion and inhibitory tone, and underscore the physiologic origins of the growing literature relating functional imaging signals, hemodynamics, and neurotransmission.
Collapse
Affiliation(s)
- Manus J Donahue
- 1] Department of Radiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA [2] Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA [3] Department of Neurology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA [4] Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA
| | - Swati Rane
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Erin Hussey
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Emily Mason
- 1] Department of Neurology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA [2] Department of Neuroscience, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Subechhya Pradhan
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kevin W Waddell
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Brandon A Ally
- 1] Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA [2] Department of Neurology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
45
|
Paprocki B, Szczepanski J. Transmission efficiency in ring, brain inspired neuronal networks. Information and energetic aspects. Brain Res 2013; 1536:135-43. [PMID: 23891793 DOI: 10.1016/j.brainres.2013.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 11/19/2022]
Abstract
Organisms often evolve as compromises, and many of these compromises can be expressed in terms of energy efficiency. Thus, many authors analyze energetic costs processes during information transmission in the brain. In this paper we study information transmission rate per energy used in a class of ring, brain inspired neural networks, which we assume to involve components like excitatory and inhibitory neurons or long-range connections. Choosing model of neuron we followed a probabilistic approach proposed by Levy and Baxter (2002), which contains all essential qualitative mechanisms participating in the transmission process and provides results consistent with physiologically observed values. Our research shows that all network components, in broad range of conditions, significantly improve the information-energetic efficiency. It turned out that inhibitory neurons can improve the information-energetic transmission efficiency by 50%, while long-range connections can improve the efficiency even by 70%. We also found that the most effective is the network with the smallest size: we observed that two times increase of the size can cause even three times decrease of the information-energetic efficiency. This article is part of a Special Issue entitled Neural Coding 2012.
Collapse
Affiliation(s)
- Bartosz Paprocki
- Institute of Mechanics and Applied Computer Science, Kazimierz Wielki University, Bydgoszcz, Kopernika 1, Poland.
| | | |
Collapse
|
46
|
Karahanoğlu FI, Caballero-Gaudes C, Lazeyras F, Van de Ville D. Total activation: fMRI deconvolution through spatio-temporal regularization. Neuroimage 2013; 73:121-34. [PMID: 23384519 DOI: 10.1016/j.neuroimage.2013.01.067] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 12/31/2012] [Accepted: 01/22/2013] [Indexed: 11/17/2022] Open
|
47
|
Jorge J, van der Zwaag W, Figueiredo P. EEG-fMRI integration for the study of human brain function. Neuroimage 2013; 102 Pt 1:24-34. [PMID: 23732883 DOI: 10.1016/j.neuroimage.2013.05.114] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/24/2013] [Accepted: 05/25/2013] [Indexed: 12/21/2022] Open
Abstract
Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have proved to be extremely valuable tools for the non-invasive study of human brain function. Moreover, due to a notable degree of complementarity between the two modalities, the combination of EEG and fMRI data has been actively sought in the last two decades. Although initially focused on epilepsy, EEG-fMRI applications were rapidly extended to the study of healthy brain function, yielding new insights into its underlying mechanisms and pathways. Nevertheless, EEG and fMRI have markedly different spatial and temporal resolutions, and probe neuronal activity through distinct biophysical processes, many aspects of which are still poorly understood. The remarkable conceptual and methodological challenges associated with EEG-fMRI integration have motivated the development of a wide range of analysis approaches over the years, each relying on more or less restrictive assumptions, and aiming to shed further light on the mechanisms of brain function along with those of the EEG-fMRI coupling itself. Here, we present a review of the most relevant EEG-fMRI integration approaches yet proposed for the study of brain function, supported by a general overview of our current understanding of the biophysical mechanisms coupling the signals obtained from the two modalities.
Collapse
Affiliation(s)
- João Jorge
- Institute for Systems and Robotics, Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal; Biomedical Imaging Research Center, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Wietske van der Zwaag
- Biomedical Imaging Research Center, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Patrícia Figueiredo
- Institute for Systems and Robotics, Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
48
|
Extended Broca's area in the functional connectome of language in adults: combined cortical and subcortical single-subject analysis using fMRI and DTI tractography. Brain Topogr 2012; 26:428-41. [PMID: 23001727 DOI: 10.1007/s10548-012-0257-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 09/07/2012] [Indexed: 10/27/2022]
Abstract
Traditional models of the human language circuitry encompass three cortical areas, Broca's, Geschwind's and Wernicke's, and their connectivity through white matter fascicles. The neural connectivity deep to these cortical areas remains poorly understood, as does the macroscopic functional organization of the cortico-subcortical language circuitry. In an effort to expand current knowledge, we combined functional MRI (fMRI) and diffusion tensor imaging to explore subject-specific structural and functional macroscopic connectivity, focusing on Broca's area. Fascicles were studied using diffusion tensor imaging fiber tracking seeded from volumes placed manually within the white matter. White matter fascicles and fMRI-derived clusters (antonym-generation task) of positive and negative blood-oxygen-level-dependent (BOLD) signal were co-registered with 3-D renderings of the brain in 12 healthy subjects. Fascicles connecting BOLD-derived clusters were analyzed within specific cortical areas: Broca's, with the pars triangularis, the pars opercularis, and the pars orbitaris; Geschwind's and Wernicke's; the premotor cortex, the dorsal supplementary motor area, the middle temporal gyrus, the dorsal prefrontal cortex and the frontopolar region. We found a functional connectome divisible into three systems-anterior, superior and inferior-around the insula, more complex than previously thought, particularly with respect to a new extended Broca's area. The extended Broca's area involves two new fascicles: the operculo-premotor fascicle comprised of well-organized U-shaped fibers that connect the pars opercularis with the premotor region; and (2) the triangulo-orbitaris system comprised of intermingled U-shaped fibers that connect the pars triangularis with the pars orbitaris. The findings enhance our understanding of language function.
Collapse
|
49
|
Rosa MJ, Daunizeau J, Friston KJ. EEG-fMRI integration: a critical review of biophysical modeling and data analysis approaches. J Integr Neurosci 2011; 9:453-76. [PMID: 21213414 DOI: 10.1142/s0219635210002512] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 09/17/2010] [Indexed: 11/18/2022] Open
Abstract
The diverse nature of cerebral activity, as measured using neuroimaging techniques, has been recognised long ago. It seems obvious that using single modality recordings can be limited when it comes to capturing its complex nature. Thus, it has been argued that moving to a multimodal approach will allow neuroscientists to better understand the dynamics and structure of this activity. This means that integrating information from different techniques, such as electroencephalography (EEG) and the blood oxygenated level dependent (BOLD) signal recorded with functional magnetic resonance imaging (fMRI), represents an important methodological challenge. In this work, we review the work that has been done thus far to derive EEG/fMRI integration approaches. This leads us to inspect the conditions under which such an integration approach could work or fail, and to disclose the types of scientific questions one could (and could not) hope to answer with it.
Collapse
Affiliation(s)
- M J Rosa
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, United Kingdom
| | | | | |
Collapse
|
50
|
Energy-based stochastic control of neural mass models suggests time-varying effective connectivity in the resting state. J Comput Neurosci 2011; 32:563-76. [DOI: 10.1007/s10827-011-0370-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 10/08/2011] [Accepted: 10/13/2011] [Indexed: 10/15/2022]
|